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To overcome the complication of jetty pile design process, artificial neural networks (ANN) are adopted. To generate the training
samples for training ANN, finite element (FE) analysis was performed 50 times for 50 different design cases. The trained ANN was
verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN) with two
hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure
and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from
FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute
parametric studies with FE analysis saving design time and cost.

1. Introduction

Mooring dolphins are usually constructed when it would
be impractical to extend the shore to provide access points
to moor vessels. A typical mooring dolphin consists of a
platform and several piles supporting the platform, which is
so-called jetty. The vertical or battered piles are driven into
the seabed. In design practice, deciding whether and where
to use the vertical or battered piles is important issue. In
the practical design process, the arrangement, the number,
and the inclination of the piles are tentatively decided
based on previous design experiences and then confirmed
through finite element (FE) analysis. Therefore, building and
analyzing lots of FE models adopting trial and error process
are needed to find the optimum design.

Many researches have been performed to help designers
to make decisions. An experimental study showed that the
pile group effect is an important factor to resist horizontal
loads [1]. For cyclic lateral loading, a zigzag arrangement
shows higher resistance than an in-line arrangement. Also
it was shown that as the pile center distance increases, the
stresses on the front piles decrease, while those on the
rear piles increase [2]. When the center distance between

piles becomes more than 3∼5 times of pile diameter, the
group effect decreases so that each pile can be considered
as a single pile when the distance reaches 6 times the pile
diameter [3]. The battered piles are commonly considered
to resist lateral loads solely while the vertical piles resist
gravity loads only. This traditional design assumption would
make the design process easier but also it usually results
in overestimated design. Moreover, it is well known that
the vertical piles can also resist bending moments from the
lateral loads. Through empirical studies, the p-y method has
been proposed and developed by Kondner [4], Reese et al.
[5], Scott [6], and Norris [7] to help the design of jetty
structure. Though it is still a commonly adopted method,
some concepts of the method are based on oversimplified or
improper assumptions, especially in the effects of actual soil
parameters after pile driving [8].

To overcome the complication of jetty pile design orig-
inated from mutual interaction among a number of design
parameters, artificial neural networks (ANN) have been
introduced in geotechnical engineering [9, 10]. This tech-
nique has also been applied successfully in static and dynamic
pile systems [11, 12]. Kim et al. [8] predicted the lateral
behavior of single and group piles using ANN and compared
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Figure 1: Methodology of design process using ANN.

the results from ANN with the model test results. In this
paper, as a suggestive solution of difficulties and cumbersome
processes in building and analyzing lots of FE models, the
ANN is adopted. Possibility of substituting ANN as a jetty
structure analyzer for FE analysis is examined.

2. Methodology: Application of ANN as
a Structure Analyzer

The jetty design process involves, as mentioned above,
searching for the optimum pile pattern which results in
the most effective pile usage within feasible design region.
The internal forces of the piles of jetty structure subjected
to horizontal mooring load vary unexpectedly depending
on the inclination of the piles and deployment pattern of
piles. Therefore, developing ANN, the input data to ANN
are decided as horizontal load exerting on the jetty platform
and the information of jetty piles, such as arrangement and
inclination of piles, and the output results as the stress
ratios of piles to confirm the feasibility of design candidate.
Whole concept of methodology adopted in this paper is
summarized in Figure 1. As shown in Figure 1, the trained
ANN is used as a structural analyzer in this research, placing
FE analysis. Firstly, the training samples are generated using
FE analysis for various design conditions. It is important
that the training samples should be generated from various
available design conditions so that the trained ANN may
predict adequately when it encounters real new design data.
Also the number of training samples should be large enough
to avoid overfitting. In this research, total of fifty design
cases with different loading conditions and pile patterns
are considered for generating training samples through FE
analysis.

To construct the ANN architecture with predefined input
and output layers, type of ANN, the number of hidden layers
and neurons in each hidden layer, and type of transfer func-
tion for each layer should be determined. So in this research,
because of the complexity of the problem, multilayer back-
propagation neural network (MBPNN) with two hidden
layers, shown in Figure 2, is adopted to tackle the problem.
For the transfer function tangent sigmoid function and pure
linear function are adopted for hidden layers and output

layer, respectively, since the stress ratio, output fromMBPNN,
could be either compressive or tensional value. Each neuron
of the hidden and output layers has bias and the neurons in
one layer are interconnectedwith the neurons before and after
the layer through weights.

Though the number of hidden layers of the MBPNN is
determined as two, the performance of the MBPNN will
vary depending on the number of neurons in hidden layers.
Regarding the number of neurons in each hidden layer,
however, there is no general rule to determine. Thus, in
this study several neural network architectures with different
number of neurons are examined for the best performance
and generalization to new data based on the K-fold cross-
validation method [13–15]. The performance and general-
ization of the MBPNN are summarized as an average of
root mean squared error (RMSE) from the K-fold cross-
validation. After fixing the architecture of MBPNN, training
process is conducted to find the optimum values of the
biases and weights using all fifty training samples. Finally, the
trained MBPNN is used as a structural analyzer to produce
the stress ratio of each pile for real design conditions.

3. Description of Jetty Structure for Analysis

In this study, amooring dolphinwhichwas designed for a real
project is used. Variations of the pile layout which had been
proposed from the early design stage were also considered.
The main purpose of the project was to design and build a
liquefied natural gas (LNG) terminal at a port area so that the
gas product would be transmitted from floating storage and
regasification unit (FSRU) to natural gas network onshore by
pipelines. The dimension of the platform is 16m in length,
10m in width, and 2m in thickness. The platform is made of
reinforced concrete and its piles are made of steel. The plan
and elevation view of the testbed mooring dolphin are shown
in Figure 3.

3.1. Materials. The material properties of C35/45 concrete
for the platform are shown in Table 1. In the latest European
standard BS EN 206-1 [16], the strength classes are classified
using cylinder strength as well as a cube strength. S355
European standard steel is used for most of the structural
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Figure 2: Neural network structure.

members [17].Thematerial properties of S355 steel are shown
in Table 2.

3.2. Load Conditions. The expected largest FSRU at the
mooring dolphin has a capacity of 266,000m3 and the largest
LNG carrier has a capacity of 177,400m3. Maximummooring
force is calculated as 3750 kN.Dead loads are listed in Table 3.
All permanent structural members as well as nonstructural
members have been considered as dead loads on the struc-
ture. Nonstructural member (appurtenance) includes quick
release hook (QRH), fender, handrail, and grating. Detail
appurtenance loads are shown in Table 4. Pedestrian live load
of 4.0 kN/m2 is assumed. The maximum wave height varies
between 2.5 and 2.75m during a year, but about 60% days of
a year wave height is less than 0.5m.The mean (𝑇

𝑚−1,0
) wave

period varies between 2.5 sec and 7 sec. Measurements about
4 km offshore indicate that the typical astronomical velocities
are in the order of 0.5m/s.The largest sea water current speed
is 0.7m/sec at the project site. The wind speed at the location
is considered as 18m/s. The maximum wind speed with 100
years of return period is 32.2m/sec.

For the load combination, BS6349-2 [18] is adopted as
shown:

∑

𝑗≥1

𝛾

𝐺,𝑗
𝐺

𝑘,𝑗
+ 𝛾

𝑝
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𝛾
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𝜓
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𝑄

𝑘
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Table 1: Material properties of concrete.

Unit weight of concrete (dry/submerged) kN/m3 23/13.19
Unit weight of RC (dry/submerged) kN/m3 24/14.19
Cylinder strength of RC (𝑓cu) N/mm2 35
Cube strength of RC (𝑓cu) N/mm2 45
Modulus of elasticity (𝐸

𝑐
) kN/mm2 29

Poisson’s ratio (]) 0.2

where 𝛾
𝐺
, 𝛾
𝑄
are partial factors, 𝑃 is prestressing,𝑄 is leading

variable action, and 𝜓
0
is combination factor.

3.3. Soil Conditions. The location of the virtual fixity
points was computed by various methods: Chang’s method,
AASHTO, Hansen’s method, and L-pile method. The pile
penetration depth under the maximum tensile force was
also computed by the Japanese bridge construction standard
(2002), API recommended practice 2A-WSD, AASHTO, and
Broms’ analysis method. Based on those methods, it turned
out that the penetration depth of 5m into the bedrock would
provide a fixed boundary condition at the bedrock level.

3.4. Design Configuration of Jetty Pile Pattern. Ten different
configurations of jetty pile pattern are considered in this
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Table 2: Material properties of S355 steel.

Thick. 𝑡 ≤ 16 16 < 𝑡 ≤ 25 25 < 𝑡 ≤ 40 40 < 𝑡 ≤ 63 63 < 𝑡 ≤ 80 80 < 𝑡 ≤ 100 100 < 𝑡 ≤ 150

Yield strength (MPa) 355 345 345 335 325 315 295
Tensile strength (MPa) 460–620
Modulus of elasticity (𝐸) 205 kN/mm2

Shear modulus (𝐺) 80 kN/mm2

Poisson’s ratio (]) 0.3

study depending on whether vertical or battered, if inclined,
the batter direction, and the number of piles (Figure 4).
The combination of ten different configurations and five
different mooring forces (70%, 80%, 90%, 100%, and 110%
of original mooring force) produced 50 FE models and they
were analyzed to compute the stress ratios of piles. Among FE
models, Patterns 1 and 2 are shown in Figure 5.

4. Preliminary FE Analysis

After analyzing 50 FEmodels of mooring dolphins, the ratios
of maximum stress to allowable stress of each pile were
obtained under given loading condition as shown in Figure 6.
Here, a pile pattern with the less number of required piles
as well as with the smaller stress ratio is considered as the
improved.

4.1. Comparison of Battered and Vertical Piles. In Pattern 1,
the absolute values of the stress ratio are all less than unity
except Pile 5. Pile 5 shows the maximum compressive stress
and Pile 8 shows themaximum tensile stress. Pattern 2, whose
piles are all vertical, shows compressive stress andmost of the
stress ratios are greater than unity.

4.2. Patterns 3 and 4. When Pile 5 is absent (Pattern 3),
the tensile stress of Pile 8 becomes bigger than that of the
proposed design (Pattern 1). In Pattern 3, the compressive
force on Pile 5 in Pattern 1 redistributes to the adjacent
piles. Considering all stress ratios and the number of piles,
Pattern 3 can be considered asmore improved design than the
proposed one. Pile 11 of Pattern 4 is compressive within 90%
of applied force but it turns to be tensile when the mooring
force is equal to or more than 100%. In this case, the absence
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Figure 4: Patterns of piles (circle means vertical pile and circle with triangle means battered pile).
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Table 3: Dead load.

(ton/m3) RC Concrete Mortar Steel Rubble Fill sand Sea water
Dry 2.45 2.30 2.15 7.85 0.8 2.0 1.025
Submerged 1.45 1.30 1.15 6.85 1.8 1.0

(a)

(b)

Figure 5: Finite element modes of Pattern 1 and Pattern 2.

Table 4: Appurtenance loads.

Nonstructural member Loads Remark
Q.R.H 49 kN/EA

Vertical loadCone type fender (1800H (F0.3) or
equivalent) 196 kN/EA

Handrail 0.285 kN/m
Grating 0.838 kN/m2

of Pile 8 causes a rapid stress change in Pile 11 and design
of reinforcing bars in concrete platform is difficult; therefore
Pattern 4 shall be avoided.

Table 5: Example of neuron inputs for neural network training
process.

Input neuron Remark
Number Assigned value

1 1.0 Normalized value of horizontal
mooring force to 3750 kN

2 1.0 Pile 1: battered
3 1.0 Pile 2: battered
...

... ...
12 2.0 Pile 11: vertical
13 2.0 Pile 12: vertical

4.3. Patterns 5, 6, and 7. When it is compared to Pattern 1,
Pile 4 of Pattern 5 remains tensile. However, Piles 4 and 8 of
Pattern 1 change to be compressive in Pattern 5, while Piles
5 and 11 become tensile. The use of vertical piles in Pattern 5
makes stress sign changed.All absolute values of stress ratio of
Pattern 5 are less than unity. In this point of view, Pattern 5 is
more effective than the proposed design.With absence of Pile
5, Pattern 6 shows slightly higher stress than Pattern 5. Similar
to Pattern 4, the absence of Pile 8 causes rapid stress change in
Pile 11 of Pattern 7. Pattern 7 shows higher compressive stress
than Pattern 5.

4.4. Patterns 8, 9, and 10. The stress ratios of Patterns 8, 9, and
10 are similar to those of Patterns 5, 6, and 7 but they are not
compatible for horizontal load direction change.

5. Architecture and Training of MBPNN

5.1. Training Samples. The first neuron of the input layer is
assigned for load condition, and the other input neurons
take the information of piles. To distinguish the battered and
the vertical piles, the numbers “1” and “2” are assigned as
neuron input values for each pile. To the location where pile
is absent, the number “0” is assigned to the corresponding
input neuron. For the value of mooring force corresponding
to the value of input neuron 1which is very big comparedwith
the values of the other input neurons might lead to a failure
of MBPNN training, the mooring force is normalized to the
mooring force of 3750 kN. Table 5 shows the example of input
values and corresponding pile locations.

In this study, MBPNN, with two hidden layers, utilizing
back-propagation process is used. To obtain the training
samples, five load cases—70%, 80%, 90%, 100%, and 110%
of mooring force of 3750 kN—are applied to 10 different
pile patterns of jetty structures. The combination of 10 jetty
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Figure 6: Continued.
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Figure 6: Maximum stress ratio of each pile.

Table 6: Example of training samples.

(a)

Cases
Input neuron (load and information of each pile)

1
(Load)

2
(Pile 1)

3
(Pile 2)

4
(Pile 3)

5
(Pile 4) ⋅ ⋅ ⋅

11
(Pile 10)

12
(Pile 11)

13
(Pile 12)

1 0.7 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1
2 0.7 2 2 2 2 ⋅ ⋅ ⋅ 2 2 2
3 0.7 1 1 1 1 ⋅ ⋅ ⋅ 1 1 1
...

...
...

...
...

...
...

...
...

...
48 1.1 1 1 1 2 ⋅ ⋅ ⋅ 1 1 1
49 1.1 1 1 2 0 ⋅ ⋅ ⋅ 1 1 1
50 1.1 1 1 1 2 ⋅ ⋅ ⋅ 1 1 1

(b)

Cases
Output neuron (stress ratio of each pile)

1
(Pile 1)

2
(Pile 2)

3
(Pile 3)

4
(Pile 4)

5
(Pile 5) ⋅ ⋅ ⋅

11
(Pile 11)

12
(Pile 12)

1 −0.364 −0.363 −0.364 0.302 −0.727 ⋅ ⋅ ⋅ −0.307 −0.305
2 −0.877 −0.877 −0.877 −0.847 −0.847 ⋅ ⋅ ⋅ −0.771 −0.771
3 −0.547 −0.548 −0.547 0.404 0.404 ⋅ ⋅ ⋅ −0.399 −0.397
...

...
...

...
...

...
...

...
...

48 −0.750 −0.751 −0.750 0.737 0.737 ⋅ ⋅ ⋅ 0.573 0.574
49 −0.788 −0.787 −0.788 0.856 0.856 ⋅ ⋅ ⋅ 0.651 0.651
50 −0.863 −0.864 −0.863 0.831 0.830 ⋅ ⋅ ⋅ 0.613 0.616

pile patterns and 5 load cases makes 50 training cases in
total. Table 6 shows an example of input and target output of
training samples.

5.2. Construction ofMBPNNArchitecture and Training. Since
the performance and generalization of MBPNN to new
design data will vary depending on the number of neurons
in hidden layers, four different topologies of MBPNN with
different number of neurons in hidden layers are examined:

(1) 13 (input neurons)-15(1st hidden layer)-15 (2nd hidden
layer)-12 (output layers), (2) 13-10-10-12, (3) 13-7-15-12, and
(4) 13-15-10-12.The number of neurons in hidden layers of the
first MBPNNmodel (13-15-15-12) is greater than that of input
or output layers and vice versa in the secondmodel (13-10-10-
12). In this paper, the K-fold cross-validation method is used
to assess the generalization of model and to select the best
architecture of MBPNN. For the K-fold cross-validation the
fifty training samples are randomly divided into 10 subsets,
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that is, 10-fold cross-validation. In the K-fold cross-validation
one subset is assigned as validation data set and the other
nine subsets as training data set. Each MBPNN model is
trained using the training data set and RMSE is computed
for the validation data set. This procedure continues 10 times
changing validation data set and training data set. Finally, a
MBPNN model with the least averaged RMSE is selected as
the best model.

The neural network toolbox provided by commercial
program MATLAB was used to construct and for training
of MBPNN models. The Levenberg-Marquardt method with
back-propagation process was adopted for the optimization
algorithm for training. The Levenberg-Marquardt method is
considered to be effective for the complicated MBPNN for
the fastest training [19, 20]. The objective function in the

Table 7: RMSE of each MBPNN model from K-fold cross-
validation.

Round MBPNNmodel
13-15-15-12 13-10-10-12 13-7-15-12 13-15-10-12

1 0.0130 0.0986 0.0482 0.1205
2 0.0606 0.0125 0.0796 0.0118
3 0.0192 0.0086 0.1495 0.0238
4 0.0295 0.0046 0.0675 0.0264
5 0.1138 0.0986 0.1181 0.0078
6 0.1733 0.0383 0.1607 0.0413
7 0.0147 0.0346 0.1218 0.1053
8 0.1147 0.0643 0.0791 0.0730
9 0.1396 0.0461 0.1098 0.2451
10 0.0052 0.0258 0.0343 0.0131
Averaged 0.0684 0.0432 0.0969 0.0668

neural network training is defined as the minimization of
mean squared error as shown:

Objective Function = Minimization : 1
𝑛

𝑛

∑

𝑖=1

(𝑦

𝑖
− 𝑓 (𝑥

𝑖
, 𝛿))

2
,

(2)

where 𝑛 = total number of training pattern,𝑦
𝑖
= 𝑖th target,𝑥

𝑖
=

𝑖th input, and 𝛿 = weights and biases of neural network.
In the Levenberg-Marquardt method, the optimum

weights and biases are searched using

𝛿

𝑘+1
= 𝛿

𝑘
− (𝐽

𝑇
𝐽 + 𝜇 diag (𝐽𝑇𝐽))

−1

𝐽

𝑇
𝑒,

(3)

where 𝛿
𝑘+1
= (𝑘+1)thweights and biases, 𝐽= Jacobianmatrix,

𝜇 = adaptive value, and 𝑒 = error.
The successful performance of the Levenberg-Marquardt

method depends on the choice of 𝜇. Where the gradient is
small, the search movement should be large so that the slow
convergence is avoided. However, it should be small for the
steeper gradient region.The initial value of 𝜇 was assumed as
0.001, and the increase and decrease factor of 𝜇were assigned
as 10 and 0.1, respectively. Thus, during the training, 𝜇 will
take the value of 0.001×(increase factor or decrease factor)𝑛,
where 𝑛 is zero or natural number.The training process starts
with the initial value and at the second step the objective func-
tion (i.e., mean squared error) is computed with the previous
value of 𝜇 = 0.001 and 𝜇 = 0.001 × (decrease factor). If both
of these values do not result in good performance, a new value
of 𝜇 = 0.001 × (increase factor) is adopted for the next step.
In the following steps, the best 𝜇 value is searched among
“previous 𝜇 value,” “(previous 𝜇 value) × (decrease factor),”
and “(previous 𝜇 value) × (increase factor)𝑛.” If a previous 𝜇
value results in reduction of the objective function, the value
is not changed.

Table 7 summarizes the averaged RMSE of each MBPNN
model from the K-fold cross-validation. Interestingly the first
model (13-15-15-12)which is themost complex one among the
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Table 8: Simulation results.

Pile number
Number of training cases

3 15 27 39 50
Target Simul. Target Simul. Target Simul. Target Simul. Target Simul.

1 −0.6050 −0.6051 −0.6030 −0.6035 −0.7580 −0.7580 −0.7120 −0.7117 −0.7500 −0.7492
2 −0.6050 −0.6055 −0.6030 −0.6032 −0.7580 −0.7588 −0.7120 −0.7121 −0.7510 −0.7496
3 −0.6050 −0.6051 −0.6030 −0.6035 −0.7580 −0.7580 −0.7120 −0.7117 −0.7500 −0.7492
4 0.5230 0.5227 0.6090 0.6082 0.6680 0.6673 0.6540 0.6537 0.6400 0.6398
5 0.5220 0.5227 0† 0.0001 0.7080 0.7092 0.6940 0.6937 0† −0.0004
6 0.5230 0.5227 0.6090 0.6082 0.6680 0.6672 0.6540 0.6538 0.6400 0.6399
7 −0.7660 −0.7649 −0.7440 −0.7433 −0.9210 −0.9210 −0.8060 −0.8057 −0.9990 −0.9990
8 0† −0.0008 −0.7490 −0.7475 0† −0.0004 −0.8600 −0.8599 0.9600 0.9593
9 −0.7660 −0.7657 −0.7440 −0.7432 −0.9210 −0.9203 −0.8060 −0.8059 −0.9990 −1.0010
10 −0.3970 −0.3963 0.4530 0.4528 −0.5100 −0.5096 0.5310 0.5302 −0.5580 −0.5580
11 −0.3980 −0.3974 0.4520 0.4521 −0.5080 −0.5093 0.5300 0.5294 −0.5600 −0.5600
12 −0.3970 −0.3963 0.4530 0.4528 −0.5100 −0.5096 0.5310 0.5302 −0.5580 −0.5580
RMSE 0.0008 0.0004 0.0007 0.0006 0.0005
RMSE: root mean squared error.
†No pile at this location.

four models does not show the least averaged RMSE, rather
than the second model of which the number of neurons in
hidden layers is between that of input and output layer which
shows the least. From the K-fold cross-validation results, the
secondMBPNNmodel with 10 neurons for each hidden layer
is selected as the best architecture.

After fixing the architecture of the MBPNN, the MBPNN
was trained again with all the training samples. The training
process was completed at 147 epochs, as shown in Figure 7,
and terminated at performance goal of 10−6 which was set
as one of the termination conditions. Figure 8 shows the
gradient changes of the problem surface and changes of
the 𝜇 value during the training process. If a 𝜇 value gives
the reduction of objective function, the value is kept for
the following steps. However, if it does not result in good
performance, it is updated using the increase or decrease
factor. To find the optimum point, the 𝜇 value is continuously
updated during the training process and with the change of
the 𝜇 value the searching direction and gradient of problem
surface are changed. As long as the gradient is large enough to
improve the training performance, the 𝜇 value is unchanged;
however, when the gradient gets smaller and the training
performance gets worse, which means the surface of the
objective function becomes flat, the 𝜇 value is updated.
Comparing the training performance graph and the 𝜇 graph,
it is observed that the 𝜇 value starts from the initial value of
0.001 and is updated at epochs 2, 7, 16, 42, and 82. In Figure 8
with the constant 𝜇 values the performance and gradient
become flat; however, the training performance and gradient
are improved dramatically at those epochs.

5.3. Verification of Training. Cases 3, 15, 27, 39, and 50 were
selected for verification of MBPNN training. Table 8 shows

the comparison of 5 known targets of training cases and the
simulated results from the trainedMBPNN.The values in the
last row are root mean squared error (RMSE) between the
known targets and the simulated values. At the locations of
no pile, the target value is 0 and the simulation results also
show similar value and RMSE is very small. This ensures that
the MBPNN is well trained.

6. Design with Trained MBPNN

Through the trained MBPNN, the stress ratios of jetty piles
were obtained under different loading conditions which were
not included in the training samples. The feasibility of the
MBPNN was verified by comparing the results from FE
model and the MBPNN. Table 9 shows the stress ratios
computed by FE analysis and the MBPNN. The results from
the MBPNN are very close to the FE analysis results. The
RMSE is also very small regardless of the pile patterns.

7. Conclusions

In this paper, the application of MBPNN as a structural
analyzer for jetty structures is explored. The framework of
MBPNN is defined as the input with the lateral forces on
the jetty structure and the type of piles and the output
with the stress ratios of the piles. For the highly complex
jetty pile patterns the results from the MBPNN show very
good agreement with those from FE analysis. With the more
training samples and the expansion of input parameters
for jetty structure design, the MBPNN shows possibility
to replace the repetitive and time-consuming FE analysis.
Although only 50 cases have beenmodeled for study purpose
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Table 9: Comparison of stress ratios obtained by MBPNN and FE analysis.

Pile number
Patterns (75% of original mooring force)

1 2 3 4 5
Anlys. ANN Anlys. ANN Anlys. ANN Anlys. ANN Anlys. ANN

1 −0.3800 −0.3803 −0.9350 −0.9333 −0.5710 −0.5697 −0.4290 −0.4297 −0.5720 −0.5710
2 −0.3790 −0.3788 −0.9350 −0.9335 −0.5710 −0.5701 −0.4270 −0.4281 −0.5730 −0.5713
3 −0.3800 −0.3803 −0.9350 −0.9333 −0.5710 −0.5697 −0.4290 −0.4297 −0.5720 −0.5710
4 0.3260 0.3259 −0.9020 −0.9004 0.4330 0.4333 0.4500 0.4486 0.4830 0.4834
5 −0.7610 −0.7633 −0.9020 −0.9012 0† −0.0004 −0.8870 −0.8873 0.5120 0.5127
6 0.3260 0.3261 −0.9020 −0.9004 0.4330 0.4333 0.4500 0.4487 0.4830 0.4834
7 −0.4910 −0.4885 −0.8690 −0.8679 −0.7360 −0.7347 −0.5450 −0.5442 −0.6350 −0.6357
8 0.4590 0.4580 −0.8740 −0.8727 0.6530 0.6529 0† 0.0005 −0.7050 −0.7038
9 −0.4910 −0.4790 −0.8690 −0.8678 −0.7360 −0.7357 −0.5450 −0.5437 −0.6350 −0.6346
10 −0.3140 −0.3154 −0.8190 −0.8147 −0.4170 −0.4168 −0.3320 −0.3308 0.3820 0.3825
11 −0.3160 −0.3171 −0.8190 −0.8146 −0.4190 −0.4187 −0.3320 −0.3313 0.3810 0.3814
12 −0.3140 −0.3154 −0.8190 −0.8147 −0.4170 −0.4168 −0.3320 −0.3308 0.3820 0.3825
RMSE 0.0037 0.0025 0.0007 0.0010 0.0008

Pile number
Patterns (75% of original mooring force)

6 7 8 9 10
Anlys. ANN Anlys. ANN Anlys. ANN Anlys. ANN Anlys. ANN

1 −0.5900 −0.5918 −0.6550 −0.6556 −0.5590 −0.5587 −0.5750 −0.5749 −0.6330 −0.6336
2 −0.5900 −0.5912 −0.6240 −0.6563 −0.5600 −0.5593 −0.5740 −0.5747 −0.6340 −0.6341
3 −0.5900 −0.5918 −0.6550 −0.6556 −0.5590 −0.5587 −0.5750 −0.5749 −0.6330 −0.6336
4 0.5610 0.5598 0.5540 0.5540 0.4920 0.4920 0.5680 0.5670 0.5620 0.5615
5 0† −0.0001 0.5880 0.5869 0.4920 0.4921 0† −0.0001 0.5610 0.5599
6 0.5610 0.5599 0.5540 0.5540 0.4920 0.4920 0.5680 0.5670 0.5620 0.5615
7 −0.6840 −0.6834 −0.7930 −0.7928 −0.6770 −0.6757 −0.7130 −0.7107 −0.7990 −0.7973
8 −0.7430 −0.7420 0† −0.0003 −0.6830 −0.6825 −0.7180 −0.7158 0† 0.0003
9 −0.6840 −0.6833 −0.7930 −0.7917 −0.6770 −0.6750 −0.7130 −0.7106 −0.7990 −0.7981
10 0.4350 0.4353 −0.4410 −0.4396 0.3710 0.3718 0.4200 0.4200 −0.4170 −0.4161
11 0.4350 0.4344 −0.4420 −0.4398 0.3700 0.3705 0.4190 0.4192 −0.4180 −0.4169
12 0.4350 0.4353 −0.4410 −0.4396 0.3710 0.3718 0.4200 0.4200 −0.4170 −0.4161
RMSE 0.0010 0.0094 0.0008 0.0013 0.0009
RMSE: root mean squared error.
†No pile at this location.

in this paper, the merit of MBPNN would be clearer as the
number of cases increases.
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