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Two numerical algorithms based on dual-Petrov-Galerkinmethod are developed for solving the integrated forms of high odd-order
boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices
of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual
boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be
efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully
investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of
the proposed algorithms, and some comparisons with some other methods are made.

1. Introduction

The spectral methods aim to approximate functions (solu-
tions of differential equations) by means of truncated series
of orthogonal polynomials. The main feature of spectral
methods is to take various orthogonal systems of infinitely
differentiable global functions as trial functions.The choice of
different trial functions leads to different spectral approxima-
tions; for instance, the choice of trigonometric polynomials is
suitable for periodic problems, while the choice of Chebyshev,
Legendre, ultraspherical and classical Jacobi polynomials is
suitable for nonperiodic problems. (see [1–7]).

Because of being extremely accurate, spectral methods
have been intensively studied and successfully applied to
numerical simulations in many fields. They have gained
new popularity in automatic computations for a wide class
of physical problems in fluid and heat flow. Mainly, there
are three types of spectral methods, namely, collocation,
tau, and Galerkin. The choice of the type of the method
depends essentially on the application. Collocation methods
are appropriate for studying nonlinear problems or when

the problem has complicated coefficients, while Galerkin
methods have the advantage of a more convenient analysis
and optimal error analysis estimates.The taumethod is appli-
cable in the case of complicated (even nonlinear) boundary
conditions, where Galerkin approach would be impossible
and the collocation is extremely tedious (see [2, 5, 8]).

For the spectral solutions of odd-order differential equa-
tions by direct collocation methods, we obtain condition
number of 𝑂(𝑁

2𝑘
), where 𝑁 is the number of retained

modes and 𝑘 is the order of equation. This high condition
number will lead to instabilities caused by rounding errors
(see [9, 10]).

High even-order boundary value problems have been
investigated by a large number of authors because of both
their mathematical importance and their potential for appli-
cations in hydrodynamic and hydromagnetic stability.There-
fore, availability of fast and accurate algorithms to solve
these equations will allow rapid solutions of many practical
problems. Doha and Abd-Elhameed [11] and Doha et al. [12–
14] have constructed efficient spectral-Galerkin algorithms
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using compact combinations of orthogonal polynomials for
solving second and higher order equations.

Also, the study of odd-order equations is of interest;
for example, the third-order equation is of fundamental
mathematical interest since it lacks symmetry. Also, it is of
physical interest since it contains a type of operator which
appears in many commonly occurring partial differential
equations such as the Korteweg-de Vries equation. Fifth-
order boundary value problems arise in the mathematical
modelling of viscoelastic flows (see [15, 16]). Some studies are
concerned with third- and fifth-order differential equations
in finite intervals (see [17, 18]). Doha and Abd-Elhameed [19]
have constructed efficient spectral-Galerkin algorithms using
compact combinations of ultraspherical polynomials for
solving the differentiated forms of elliptic equations of (2𝑛 +

1)th-order. Recently, Bhrawy and Alghamdi [20], Doha et al.
[21–23] have analyzed some algorithms for solving numeri-
cally the third- and fifth-order differential equations.

The main objective of this paper is to develop some
efficient spectral algorithms based on Legendre-dual-Petrov-
Galerkin method (LDPGM) for the solution of the integrated
forms of high odd-order BVPs in one variable. We present
two different choices of appropriate bases for the LDPGM
applied to high odd-order BVPs with homogenous and non-
homogenous boundary conditions. All the matrix systems
resulted from the application of LDPGM to the integrated
forms of (2𝑛 + 1)th-order differential equations are band,
and then they are cheaper to solve than the systems obtained
from the differentiated forms (see Doha and Abd-Elhameed
[19]). This motivates our interest for applying LDPGM
to the integrated forms of (2𝑛 + 1)th-order differential
equations.

The remainder of the article is organized as follows.
In Section 2, some properties of Legendre polynomials
and their shifted ones are given. The main results of this
paper are presented in Section 3, in which two numeri-
cal algorithms for solving the integrated forms of (2𝑛 +

1)th-order elliptic linear differential equations subject to
homogeneous boundary conditions using two choices of
bases functions are presented and implemented. Also, the
same equations but governed by nonhomogeneous bound-
ary conditions are noted in Section 3. For the sake of
demonstrating the efficiency and the applicability of our two
presented algorithms and also for the sake of comparison
between these two algorithms, some numerical results are
presented in Section 4. Some concluding remarks are given in
Section 5.

2. Some Properties of Legendre Polynomials

The Legendre polynomials {𝐿
𝑛
(𝑥), 𝑛 = 0, 1, 2, . . .} are a

sequence of orthogonal polynomials on the interval (−1, 1);
that is,

∫

1

−1

𝐿
𝑘
(𝑥) 𝐿
𝑗
(𝑥) 𝑑𝑥 =

{{

{{

{

0, 𝑘 ̸= 𝑗,

2

2𝑘 + 1
, 𝑘 = 𝑗.

(1)

The following special values of 𝐿
𝑘
(𝑥) and 𝐷

𝑞
𝐿
𝑘
(𝑥) =

(𝑑
𝑞
𝐿
𝑘
(𝑥)/𝑑𝑥

𝑞
) are important in our subsequent work:

𝐿
𝑘
(−𝑥) = (−1)

𝑛
𝐿
𝑘
(𝑥) , 𝐿

𝑘
(±1) = (±1)

𝑘
,

𝐷
𝑞
𝐿
𝑘
(±1) =

1

2
(±1)
𝑘+𝑞

𝑞−1

∏

𝑚=0

(𝑘 − 𝑚) (𝑘 + 𝑚 + 1)

(𝑚 + 1)
,

𝑞 = 1, 2, . . . .

(2)

The following two theorems and two lemmas are also needed
hereafter.

Theorem 1. If the 𝑞 times repeated integration of 𝐿
𝑘
(𝑥) is

denoted by

𝐼
(𝑞)

𝑘
(𝑥) =

𝑞 𝑡𝑖𝑚𝑒𝑠

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫∫ ⋅ ⋅ ⋅ ∫ 𝐿
𝑘
(𝑥) 𝑑𝑥 𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑥,

(3)

then 𝐼
(𝑞)

𝑘
(𝑥) is given by

𝐼
(𝑞)

𝑘
(𝑥) =

𝑞

∑

𝑗=0

𝑟
𝑗,𝑘,𝑞

𝐿
𝑘+𝑞−2𝑗

(𝑥) + 𝜋
𝑞−1

(𝑥) , (4)

where

𝑟
𝑗,𝑘,𝑞

=

(−1)
𝑗
(
𝑞

𝑗 ) (𝑘 + 𝑞 − 2𝑗 + (1/2)) Γ (𝑘 − 𝑗 + (1/2))

2𝑞Γ (𝑘 + 𝑞 − 𝑗 + (3/2))
,

(5)

and 𝜋
𝑞−1

(𝑥) is a polynomial of degree at most (𝑞 − 1).

(For the proof of Theorem 1, see Doha [3].)

Theorem 2. For all 𝑗, 𝑚 ∈ Z+, one has

𝑥
𝑚
𝐿
𝑗
(𝑥) =

𝑚

∑

𝑛=0

𝜆
𝑚,2𝑛

(𝑗) 𝐿
𝑗+𝑚−2𝑛

(𝑥) , (6)

where

𝜆
𝑚,2𝑛

(𝑗) =
2
𝑗+𝑚−2𝑛+1

𝑗!𝑚! (𝑗 + 𝑚 − 2𝑛 + (1/2))

(𝑗 + 𝑚 − 2𝑛)!

×

min(𝑗+𝑚−2𝑛,𝑗)

∑

𝑘=max(0,𝑗−2𝑛)

(((
𝑗 + 𝑚 − 2𝑛

𝑘
) (𝑗 + 𝑘)!)

× (2
𝑘
(2𝑛 + 𝑘 − 𝑗)!

×(3𝑗 + 2𝑚 − 4n − 𝑘 + 1)!)
−1

)
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×

𝑗−𝑘

∑

ℓ=0

(((−1)
ℓ
(2𝑗 + 𝑚 − 2𝑛 − 𝑘 − ℓ)!

× (𝑗 + 𝑚 − 2𝑛 + ℓ)!)

× (ℓ! (𝑗 − 𝑘 − ℓ)! (𝑗 − ℓ)! (𝑘 + ℓ)!)
−1

)

×
2
𝐹
1
(− (𝑘 − 𝑗 + 2𝑛) , 𝑗 + 𝑚 − 2𝑛 + ℓ + 1;

3𝑗 + 2𝑚 − 4𝑛 − 𝑘 + 2; 2) .

(7)
(For the proof of Theorem 2, see, Doha [24].)

Lemma 3. For all 𝑘,𝑚 ∈ Z+, one has

(1 − 𝑥
2
)
𝑚

𝐿
𝑘
(𝑥) =

2𝑚

∑

𝑠=0

ℎ
𝑠,𝑚

(𝑘) 𝐿
𝑘−2𝑠+2𝑚

(𝑥) , (8)

where

ℎ
𝑠,𝑚

(𝑘) =

𝑚

∑

𝑖=0

(−1)
𝑖
(
𝑚

𝑖
) 𝜆
2𝑖,𝑠+𝑖−𝑚

(𝑘) , (9)

and 𝜆
𝑚,𝑠

(𝑘) is defined as in relation (6).

Proof. By binomial theorem, we have

(1 − 𝑥
2
)
𝑚

𝐿
𝑘
(𝑥) =

𝑚

∑

𝑠=0

(−1)
𝑠
(
𝑚

𝑠
)𝑥
2𝑠

𝐿
𝑘
(𝑥) ; (10)

then, by using relation (6), we get

(1 − 𝑥
2
)
𝑚

𝐿
𝑘
(𝑥) =

𝑚

∑

𝑠=0

2𝑠

∑

𝑟=0

(−1)
𝑠
(
𝑚

𝑠
)𝜆
2𝑠,𝑟

(𝑘) 𝐿
𝑘+2𝑠−2𝑟

(𝑥) .

(11)
If we expand relation (11) and collect similar terms, then, after
some rather algebraic manipulation, relation (8) is obtained.
This completes the proof of Lemma 3.

Lemma 4. For all 𝑘,𝑚 ∈ Z+, one has

(1 − 𝑥
2
)
𝑚

(1 + 𝑥) 𝐿
𝑘
(𝑥) =

4𝑚+2

∑

𝑠=0

𝑤
𝑠,𝑚

(𝑘) 𝐿
𝑘+2𝑚−𝑠+1

(𝑥) ,

(1 − 𝑥
2
)
𝑚

(1 − 𝑥) 𝐿
𝑘
(𝑥) =

4𝑚+2

∑

𝑠=0

𝑤
𝑠,𝑚

(𝑘) 𝐿
𝑘+2𝑚−𝑠+1

(𝑥) ,

(12)
where
𝑤
𝑠,𝑚

(𝑘)

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑘 + 2𝑚 + 1)

(2𝑘 + 4𝑚 + 1)
ℎ
0,𝑚

(𝑘) , 𝑠 = 0,

(𝑘 − 2𝑚 + 1)

(2𝑘 − 4𝑚 + 1)
ℎ
2𝑚,𝑚

(𝑘) , 𝑠 = 4𝑚 + 2,

ℎ
(𝑠−1)/2,𝑚

(𝑘) , 𝑠 odd,
(𝑘 + 2𝑚 − 𝑠 + 3)

(2𝑘 + 4𝑚 − 𝑠 + 5)
ℎ
(𝑠−2)/2,𝑚

(𝑘)

+
(𝑘 + 2𝑚 − 𝑠 + 1)

(2𝑘 + 4𝑚 − 𝑠 + 1)
ℎ
𝑠/2,𝑚

(𝑘) , 𝑠 even,

(13)

𝑤
𝑠,𝑚

(𝑘) = (−1)
𝑠+1

𝑤
𝑠,𝑚

(𝑘) and ℎ
𝑠,𝑚

(𝑘) is defined as in
Lemma 3.

Proof. This lemma can be immediately proved bymultiplying
both sides of relation (8) by (1 + 𝑥) and (1 − 𝑥), respectively,
and performing some simple algebraic manipulations.

2.1. Shifted Legendre Polynomials. The shifted Legendre poly-
nomials are defined on [𝑎, 𝑏] as

𝐿
∗

𝑘
(𝑥) = 𝐿

𝑘
(
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
) . (14)

All results of Legendre polynomials can be easily transformed
to give the corresponding results for their shifted ones.

The orthogonality relation of 𝐿∗
𝑘
(𝑥) on [𝑎, 𝑏] is given by

∫

𝑏

𝑎

𝐿
∗

𝑘
(𝑥) 𝐿
∗

𝑗
(𝑥) 𝑑𝑥 =

{

{

{

0, 𝑘 ̸= 𝑗,

𝑏 − 𝑎

2𝑘 + 1
, 𝑘 = 𝑗.

(15)

Now, based on relation (14) and with the aid of formula (4),
we have the following theorem.

Theorem 5. If the 𝑞 times repeated integration of 𝐿
∗

𝑘
(𝑥) is

denoted by

𝐽
(𝑞)

𝑘
(𝑥) =

𝑞 𝑡𝑖𝑚𝑒𝑠

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫∫ ⋅ ⋅ ⋅ ∫ 𝐿
∗

𝑘
(𝑥)

𝑞 𝑡𝑖𝑚𝑒𝑠

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑑𝑥 𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑥,

(16)

then

𝐽
(q)
𝑘

(𝑥) = (
𝑏 − 𝑎

2
)

𝑞 𝑞

∑

𝑗=0

𝑟
𝑗,𝑘,𝑞

𝐿
∗

𝑘+𝑞−2𝑗
(𝑥) + 𝜋

𝑞−1
(𝑥) , (17)

where 𝑟
𝑗,𝑘,𝑞

is defined as in (5) and 𝜋
𝑞−1

(𝑥) is a polynomial in
𝑥 of degree (𝑞 − 1) at most.

Remark 6. For all 𝑥 ∈ [𝑎, 𝑏] and 𝑘,𝑚 ∈ Z+, one has

(𝑥 − 𝑎)
𝑚+1

(𝑏 − 𝑥)
𝑚
𝐿
∗

𝑘
(𝑥)

= (
𝑏 − 𝑎

2
)

2𝑚+1 4𝑚+2

∑

𝑠=0

𝑤
𝑠,𝑚

(𝑘) 𝐿
∗

𝑘+2𝑚−𝑠+1
(𝑥) ,

(18)

(𝑥 − 𝑎)
𝑚
(𝑏 − 𝑥)

𝑚+1
𝐿
∗

𝑘
(𝑥)

= (
𝑏 − 𝑎

2
)

2𝑚+1 4𝑚+2

∑

𝑠=0

𝑤
𝑠,𝑚

(𝑘) 𝐿
∗

𝑘+2𝑚−𝑠+1
(𝑥) ,

(19)

where 𝑤
𝑠,𝑚

(𝑘) and 𝑤
𝑠,𝑚

(𝑘) are defined as in Lemma 4.

3. Solution of High Odd-Order BVPs

We are interested in using the LDPGM to solve the two-point
high odd-order BVPs

𝑢
(2𝑛+1)

(𝑥) +

2𝑛

∑

𝑖=0

𝜂
𝑖
𝑢
(𝑖)

(𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (𝑎, 𝑏) , 𝑛 ≥ 1, (20)
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governed by the homogeneous boundary conditions

𝑢
(𝑗)

(𝑎) = 𝑢
(𝑗)

(𝑏) = 𝑢
(𝑛)

(𝑎) = 0, 𝑗 = 0, 1, . . . , 𝑛 − 1, (21)

where 𝑢
(𝑗)

(𝑥) = 𝐷
𝑗
𝑢(𝑥) denotes the 𝑗th derivative of 𝑢(𝑥)

with respect to 𝑥 and {𝜂
𝑖
, 𝑖 = 0, 1, . . . , 2𝑛} are known constant

coefficients.
In this section, we consider two kinds of bases to

numerically solve (20) governed by (21) but by considering
its integrated form; namely,

𝑢 (𝑥) +

2𝑛

∑

𝑖=0

𝜂
𝑖
∫

(2𝑛−𝑖+1)

𝑢 (𝑥) (𝑑𝑥)
(2𝑛−𝑖+1)

= 𝑝 (𝑥) +

2𝑛

∑

𝑖=0

𝑏
𝑖
𝐿
∗

𝑖
(𝑥) , 𝑥 ∈ (𝑎, 𝑏) ,

𝑢
(𝑗)

(𝑎) = 𝑢
(𝑗)

(𝑏) = 𝑢
(𝑛)

(𝑎) = 0, 𝑗 = 0, 1, . . . , 𝑛 − 1,

(22)

where

∫

(𝑞)

𝑢 (𝑥) (𝑑𝑥)
𝑞
=

𝑞 𝑡𝑖𝑚𝑒𝑠

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫∫ ⋅ ⋅ ⋅ ∫ 𝑢 (𝑥)

𝑞 𝑡𝑖𝑚𝑒𝑠

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑑𝑥 𝑑𝑥 ⋅ ⋅ ⋅ 𝑑𝑥,

𝑝 (𝑥) = ∫

(2𝑛+1)

𝑓 (𝑥) (𝑑𝑥)
(2𝑛+1)

,

(23)

and {𝑏
𝑖
, 𝑖 = 0, 1, . . . , 2𝑛} are the unknown constants of

integration.
We set

𝑆
𝑁

= span {𝐿
∗

0
(𝑥) , 𝐿

∗

1
(𝑥) , . . . , 𝐿

∗

𝑁
(𝑥)} ,

𝑌
𝑁

= {𝑦 ∈ 𝑆
𝑁

: 𝑦
(𝑗)

(𝑎) = 𝑦
(𝑗)

(𝑏) = 𝑦
(𝑛)

(𝑎) = 0,

𝑗 = 0, 1, . . . , 𝑛 − 1} ,

𝑌
𝑁

= {𝑦 ∈ 𝑆
𝑁

: 𝑦
(𝑗)

(𝑎) = 𝑦
(𝑗)

(𝑏) = 𝑦
(𝑛)

(𝑏) = 0,

𝑗 = 0, 1, . . . , 𝑛 − 1} ,

(24)

and then the LDPGM for solving (20)-(21) or its equivalent
integrated form (22) is to find 𝑢

𝑛

𝑁
∈ 𝑌
𝑁
such that

(𝑢
𝑛

𝑁
(𝑥) , 𝑦 (𝑥))

+

2𝑛

∑

𝑖=0

𝜂
𝑖
(∫

(2𝑛−𝑖+1)

𝑢
𝑛

𝑁
(𝑥) (𝑑𝑥)

(2𝑛−𝑖+1)
, 𝑦 (𝑥))

= (𝑝 (𝑥) +

2𝑛

∑

𝑖=0

𝑏
𝑖
𝐿
∗

𝑖
(𝑥) , 𝑦 (𝑥)) , ∀𝑦 ∈ 𝑌

𝑁
,

(25)

where (𝑢, V) = ∫
𝑏

𝑎
𝑢(𝑥)V(𝑥)𝑑𝑥 is the scalar inner product in

the space 𝐿
2
(𝑎, 𝑏). Chebyshev, Legendre,

In the following two subsections, we will apply the dual
Petrov-Galerkin method to solve (22) based on choosing two
kinds of bases functions. These two choices enable one to
obtain two linear systems of specially structuredmatrices that
can be efficiently inverted.

3.1. The First Choice of Basis Functions. First, we consider the
case [𝑎, 𝑏] = [−1, 1] and set

𝜃
𝑘,𝑛

(𝑥) = 𝐿
𝑘
(𝑥) +

2𝑛+1

∑

𝑚=1

𝑑
𝑚,𝑘

𝐿
𝑘+𝑚

(𝑥) ,

𝑘 = 0, 1, 2, . . . , 𝑁 − 2𝑛 − 1, 𝑛 ≥ 1,

𝜃
𝑘,𝑛

(𝑥) = 𝐿
𝑘
(𝑥) +

2𝑛+1

∑

𝑚=1

𝑑
𝑚,𝑘

𝐿
𝑘+𝑚

(𝑥) ,

𝑘 = 0, 1, 2, . . . , 𝑁 − 2𝑛 − 1, 𝑛 ≥ 1.

(26)

We choose the coefficients {𝑑
𝑚,𝑘

} and {𝑑
𝑚,𝑘

} such that
𝜃
𝑘,𝑛

(𝑥) ∈ 𝑌
𝑘+2𝑛+1

and 𝜃
𝑘,𝑛

(𝑥) ∈ 𝑌
𝑘+2𝑛+1

, respectively. The
boundary conditions 𝜃

(𝑗)

𝑘,𝑛
(𝑎) = 𝜃

(𝑗)

𝑘,𝑛
(𝑏) = 𝜃

(𝑛)

𝑘,𝑛
(𝑎) = 0, 𝑗 =

0, 1, . . . , 𝑛 − 1 lead to the following system of equations:
2𝑛+1

∑

𝑚=1

(−1)
𝑚
𝑑
𝑚,𝑘

= −1,

2𝑛+1

∑

𝑚=1

(−1)
𝑚

[

𝑞−1

∏

𝑠=0

(𝑘 + 𝑚 − 𝑠) (𝑘 + 𝑚 + 𝑠 + 1)]

× 𝑑
𝑚,𝑘

= −

𝑞−1

∏

𝑠=0

(𝑘 − 𝑠) (𝑘 + 𝑠 + 1) ,

𝑞 = 1, 2, . . . , 𝑛, 𝑛 ≥ 1,

2𝑛+1

∑

𝑚=1

𝑑
𝑚,𝑘

= −1,

2𝑛+1

∑

𝑚=1

𝑞−1

∏

𝑠=0

(𝑘 + 𝑚 − 𝑠) (𝑘 + 𝑚 + 𝑠 + 1) 𝑑
𝑚,𝑘

= −

𝑞−1

∏

𝑠=0

(𝑘 − 𝑠) (𝑘 + 𝑠 + 1) ,

𝑞 = 1, 2, . . . , 𝑛 − 1, 𝑛 ≥ 1.

(27)

The determinant of the above system of linear equations is
different from zero; hence, {𝑑

𝑚,𝑘
} can be uniquely determined

to give

𝑑
𝑚,𝑘

= (−1)
𝑚

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

((−1)
𝑚/2

(

𝑛

𝑚

2

)(𝑘 + 𝑚 +
1

2
)

×Γ (𝑘 +
𝑚 + 1

2
) Γ (𝑘 + 𝑛 +

3

2
))

×(Γ (𝑘 +
3

2
) Γ (𝑘 + 𝑛 +

𝑚 + 3

2
))

−1

,

𝑚 even,

((−1)
(𝑚+1)/2

(

𝑛

𝑚 − 1

2

)(𝑘 + 𝑚 +
1

2
)

× Γ (𝑘 +
𝑚

2
+ 1) Γ (𝑘 + 𝑛 +

3

2
))

×(Γ (𝑘 +
3

2
) Γ (𝑘 + 𝑛 +

𝑚

2
+ 2))

−1

,

𝑚 odd.
(28)
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Similarly, it can be easily shown that {𝑑
𝑚,𝑘

} are given by

𝑑
𝑚,𝑘

= (−1)
𝑚

𝑑
𝑚,𝑘

, 𝑚 = 1, 2, . . . , 2𝑛 + 1. (29)

Second, if we replace 𝑥 in (26) by ((2𝑥 − 𝑎 − 𝑏)/(𝑏 − 𝑎)), for
𝑎 ≤ 𝑥 ≤ 𝑏, and if we define

𝜃
𝑘,𝑛

(
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
) = 𝜙

𝑘,𝑛
(𝑥) ,

𝜃
𝑘,𝑛

(
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
) = 𝜓

𝑘,𝑛
(𝑥) , 𝑥 ∈ [𝑎, 𝑏] ,

(30)

then it is obvious that the basis functions and their dual are
given, respectively, by

𝜙
𝑘,𝑛

(𝑥) =

2𝑛+1

∑

𝑚=0

𝑑
𝑚,𝑘

𝐿
∗

𝑘+𝑚
(𝑥) , (31)

𝜓
𝑘,𝑛

(𝑥) =

2𝑛+1

∑

𝑚=0

𝑑
𝑚,𝑘

𝐿
∗

𝑘+𝑚
(𝑥) , (32)

where 𝑑
𝑚,𝑘

and 𝑑
𝑚,𝑘

are as given in (28) and (29), respectively.
Now it is clear that (25) is equivalent to

(𝑢
𝑛

𝑁
(𝑥) , 𝜓

𝑘,𝑛
(𝑥))

+

2𝑛

∑

𝑖=0

𝜂
𝑖
(∫

(2𝑛−𝑖+1)

𝑢
𝑛

𝑁
(𝑥) (𝑑𝑥)

(2𝑛−𝑖+1)
, 𝜓
𝑘,𝑛

(𝑥))

= (𝑝 (𝑥) +

2𝑛

∑

𝑖=0

𝑏
𝑖
𝐿
∗

𝑖
(𝑥) , 𝜓

𝑘,𝑛
(𝑥)) .

(33)

If we take 𝑘 ≥ 2𝑛+1 in (33), then the constants 𝑏
𝑖
, 0 ≤ 𝑖 ≤ 2𝑛,

would disappear, and then we get

(𝑢
𝑛

𝑁
(𝑥) , 𝜓

𝑘,𝑛
(𝑥))

+

2𝑛

∑

𝑖=0

𝜂
𝑖
(∫

(2𝑛−𝑖+1)

𝑢
𝑛

𝑁
(𝑥) (𝑑𝑥)

(2𝑛−𝑖+1)
, 𝜓
𝑘,𝑛

(𝑥))

= (𝑝 (𝑥) , 𝜓
𝑘,𝑛

(𝑥)) , 2𝑛 + 1 ≤ 𝑘 ≤ 𝑁.

(34)

If we denote

𝑝
𝑛

𝑘
= (𝑝 (𝑥) , 𝜓

𝑘,𝑛
(𝑥)) ,

p𝑛 = (𝑝
𝑛

2𝑛+1
, 𝑝
𝑛

2𝑛+2
, . . . , 𝑝

𝑛

𝑁
)
𝑇

,

𝑢
𝑛

𝑁
(𝑥) =

𝑁−2𝑛−1

∑

𝑚=0

V𝑛
𝑚
𝜙
𝑚,𝑛

(𝑥) ,

k𝑛 = (V𝑛
0
, V𝑛
1
, . . . , V𝑛

𝑁−2𝑛−1
)
𝑇

,

𝐴
𝑛
= (𝑎
𝑛

𝑘𝑗
)
2𝑛+1≤𝑘,𝑗≤𝑁

,

𝐵
2𝑛−𝑖+1,𝑛

= (𝑏
2𝑛−𝑖+1,𝑛

𝑘𝑗
)
2𝑛+1≤𝑘,𝑗≤𝑁

, 0 ≤ 𝑖 ≤ 2𝑛,

(35)

then (34) is equivalent to the following matrix system:

(𝐴
𝑛
+

2𝑛

∑

𝑖=0

𝜂
𝑖
𝐵
2𝑛−𝑖+1,𝑛

) k𝑛 = p𝑛, (36)

where the nonzero elements of the matrices 𝐴
𝑛

and
𝐵
2𝑛−𝑖+1,𝑛

(0 ≤ 𝑖 ≤ 2𝑛) are given explicitly in the following
theorem.

Theorem 7. If the basis functions 𝜙
𝑘,𝑛

(𝑥) and their dual
𝜓
𝑘,𝑛

(𝑥) are taken as in (31) and (32), respectively, and if
we denote 𝑎

𝑛

𝑘𝑗
= (𝜙

𝑗−2𝑛−1,𝑛
(𝑥), 𝜓

𝑘,𝑛
(𝑥)) and 𝑏

2𝑛−𝑖+1,𝑛

𝑘𝑗
=

(∫
(2𝑛−𝑖+1)

𝜙
𝑗−2𝑛−1,𝑛

(𝑥)(𝑑𝑥)
(2𝑛−𝑖+1)

, 𝜓
𝑘,𝑛

(𝑥)), 0 ≤ 𝑖 ≤ 2𝑛, then

𝑌
𝑁+2𝑛+1

= 𝑠𝑝𝑎𝑛 {𝜙
0,𝑛

(𝑥) , 𝜙
1,𝑛

(𝑥) , . . . , 𝜙
𝑁,𝑛

(𝑥)} ,

𝑌
𝑁+2𝑛+1

= 𝑠𝑝𝑎𝑛 {𝜓
0,𝑛

(𝑥) , 𝜓
1,𝑛

(𝑥) , . . . , 𝜓
𝑁,𝑛

(𝑥)} ,

(37)

and the nonzero elements of the matrices𝐴
𝑛
, 𝐵
2𝑛−𝑖+1,𝑛

(0 ≤ 𝑖 ≤

2𝑛) are given explicitly by

𝑎
𝑛

𝑘𝑘
=

(−1)
𝑛+1

(𝑏 − 𝑎) Γ
2
(𝑘 − 𝑛 + (1/2))

2Γ (𝑘 + (3/2)) Γ (𝑘 − 2𝑛 + (1/2))
, (38)

𝑎
𝑛

𝑘𝑗
= (−1)

𝑗−𝑘−1
(𝑏 − 𝑎)

×

2𝑛+1

∑

𝑚=0

(−1)
𝑚
𝑑
𝑚,𝑗−2𝑛−1

𝑑
𝑗−𝑘+𝑚−2𝑛−1,𝑘

(2𝑗 + 2𝑚 − 4𝑛 − 1)
,

1 ≤ 𝑗 − 𝑘 ≤ 4𝑛 + 2,

(39)

𝑏
2𝑛−𝑖+1,𝑛

𝑘𝑗
=

(−1)
𝑗−𝑘−𝑖

(𝑏 − 𝑎)
2𝑛−𝑖+2

22𝑛−𝑖+1

×

2𝑛+1

∑

𝑚=0

2𝑛−𝑖+1

∑

ℓ=0

(((−1)
𝑚

𝑑
𝑚, 𝑗−2𝑛−1

𝑑
𝑗+𝑚−𝑖−2ℓ−𝑘, 𝑘

×𝑟
ℓ, 𝑗−2𝑛+𝑚−1, 2𝑛−𝑖+1

)

× (2𝑗 + 2𝑚 − 2𝑖 − 4ℓ + 1)
−1

) ,

𝑖 − 2𝑛 − 1 ≤ 𝑗 − 𝑘 ≤ 6𝑛 − 𝑖 + 3,

(40)

where 𝑟
ℓ,𝑗,𝑞

and 𝑑
𝑚,𝑗

are, respectively, defined as in (5) and (28).

Proof . We choose the basis functions 𝜙
𝑘,𝑛

(𝑥) and their dual
𝜓
𝑘,𝑛

(𝑥) such that 𝜙
𝑘,𝑛

(𝑥) ∈ 𝑌
𝑁+2𝑛+1

and 𝜓
𝑘,𝑛

(𝑥) ∈ 𝑌
𝑁+2𝑛+1

for 𝑘 = 0, 1, . . . , 𝑁. Moreover, it is clear that {𝜙
𝑘,𝑛

(𝑥)} and
{𝜓
𝑘,𝑛

(𝑥)} are linearly independent and the dimension of each
of 𝑌
𝑁+2𝑛+1

and 𝑌
𝑁+2𝑛+1

is equal to (𝑁 + 1). Hence,

𝑌
𝑁+2𝑛+1

= span {𝜙
0,𝑛

(𝑥) , 𝜙
1,𝑛

(𝑥) , . . . , 𝜙
𝑁,𝑛

(𝑥)} ,

𝑌
𝑁+2𝑛+1

= span {𝜓
0,𝑛

(𝑥) , 𝜓
1,𝑛

(𝑥) , . . . , 𝜓
𝑁,𝑛

(𝑥)} .

(41)
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The nonzero elements (𝑎
𝑛

𝑘𝑗
) for 2𝑛 + 1 ≤ 𝑘, 𝑗 ≤ 𝑁, can be

obtained by making use of formulae (31) and (32). Now, 𝑎𝑛
𝑘𝑗
is

given by

𝑎
𝑛

𝑘𝑗
= (

2𝑛+1

∑

𝑚=0

𝑑
𝑚,𝑗−2𝑛−1

𝐿
∗

𝑗−2𝑛+𝑚−1
(𝑥) ,

2𝑛+1

∑

𝑝=0

(−1)
𝑝
𝑑
𝑝,𝑘

𝐿
∗

𝑘+𝑝
(𝑥))

=

2𝑛+1

∑

𝑚=0

2𝑛+1

∑

𝑝=0

(−1)
𝑝
𝑑
𝑚,𝑗−2𝑛−1

𝑑
𝑝,𝑘

(𝐿
∗

𝑗−2𝑛+𝑚−1
(𝑥) , 𝐿

∗

𝑘+𝑝
(𝑥)) ,

(42)

which in turn, with the aid of the orthogonality relation (15),
yields

𝑎
𝑛

𝑘𝑗
= (−1)

𝑗−𝑘−1
(𝑏 − 𝑎)

×

2𝑛+1

∑

𝑚=0

(−1)
𝑚
𝑑
𝑚,𝑗−2𝑛−1

𝑑
𝑗−𝑘+𝑚−2𝑛−1,𝑘

(2𝑗 + 2𝑚 − 4𝑛 − 1)
,

(43)

which proves relation (39). From (43) and (28), it is not
difficult to prove that

𝑎
𝑛

𝑘𝑘
=

(−1)
𝑛+1

(𝑏 − 𝑎) Γ
2
(𝑘 − 𝑛 + (1/2))

2Γ (𝑘 + (3/2)) Γ (𝑘 − 2𝑛 + (1/2))
. (44)

To prove relation (40), we have, for 0 ≤ 𝑖 ≤ 2𝑛,

𝑏
2𝑛−𝑖+1,𝑛

𝑘𝑗
= (∫

(2𝑛−𝑖+1)

𝜙
𝑗−2𝑛−1,𝑛

(𝑥) (𝑑𝑥)
(2𝑛−𝑖+1)

, 𝜓
𝑘,𝑛

(𝑥))

= (

2𝑛+1

∑

𝑚=0

𝑑
𝑚,𝑗−2𝑛−1

𝐽
(2𝑛−𝑖+1)

𝑗−2𝑛+𝑚−1
(𝑥) ,

2𝑛+1

∑

𝑝=0

(−1)
𝑝

𝑑
𝑝,𝑘

𝐿
∗

𝑘+𝑝
(𝑥)) .

(45)

Making use of Theorem 5 enables one to write

𝐽
(2𝑛−𝑖+1)

𝑗−2𝑛+𝑚−1
(𝑥) = (

𝑏 − 𝑎

2
)

(2𝑛−𝑖+1)

×

2𝑛−𝑖+1

∑

ℓ=0

𝑟
ℓ,𝑗−2𝑛+𝑚−1,2𝑛−𝑖+1

× 𝐿
∗

𝑗+𝑚−𝑖−2ℓ
(𝑥) + 𝜋

2𝑛−𝑖
(𝑥) ,

(46)

where 𝑟
𝑗,𝑘,𝑞

is defined as in (5) and 𝜋
2𝑛−𝑖

is a polynomial in 𝑥

of degree (2𝑛 − 𝑖) at most.

This, with the orthogonality relation (15), yields

𝑏
2𝑛−𝑖+1,𝑛

𝑘𝑗
=

(−1)
𝑗−𝑘−𝑖

(𝑏 − 𝑎)
2𝑛−𝑖+2

22𝑛−𝑖+1

×

2𝑛+1

∑

𝑚=0

2𝑛−𝑖+1

∑

ℓ=0

(((−1)
𝑚
𝑑
𝑚,𝑗−2𝑛−1

𝑑
𝑗+𝑚−𝑖−2ℓ−𝑘,𝑘

×𝑟
ℓ,𝑗−2𝑛+𝑚−1,2𝑛−𝑖+1

)

×(2𝑗 + 2𝑚 − 2𝑖 − 4ℓ + 1)
−1

) ,

(47)

which completes the proof of Theorem 7.

3.2.The Second Choice of Basis Functions. As a second choice
of 𝜙
𝑘,𝑛

(𝑥) and 𝜓
𝑘,𝑛

(𝑥), we write

𝜙
𝑘,𝑛

(𝑥) = (
2

𝑏 − 𝑎
)

2𝑛+1

(𝑥 − 𝑎)
𝑛+1

(𝑏 − 𝑥)
𝑛
𝐿
∗

𝑘
(𝑥) , (48)

𝜓
𝑘,𝑛

(𝑥) = (
2

𝑏 − 𝑎
)

2𝑛+1

(𝑥 − 𝑎)
𝑛
(𝑏 − 𝑥)

𝑛+1
𝐿
∗

𝑘
(𝑥) , (49)

which automatically fulfill the boundary conditions (21) and
their dual conditions, respectively.

The following lemma is of fundamental importance in
what follows.

Lemma 8. For arbitrary constants V𝑛
𝑘
, one has

𝑁−2𝑛−1

∑

𝑘=0

V𝑛
𝑘
𝜙
𝑘,𝑛

(𝑥) =

𝑁

∑

𝑘=0

𝑒
𝑘
𝐿
∗

𝑘
(𝑥) , (50)

where

𝑒
𝑘
=

4𝑛+2

∑

𝑠=0

𝑤
𝑠,𝑛

(𝑘 − 2𝑛 + 𝑠 − 1) V𝑛
𝑘−2𝑛+𝑠−1

. (51)

Moreover,

∫

(𝑞)

(

𝑁−2𝑛−1

∑

𝑘=0

V𝑛
𝑘
𝜙
𝑘,𝑛

(𝑥)) (𝑑𝑥)
(𝑞)

=

𝑁+𝑞

∑

𝑘=0

𝑡
𝑘,𝑞

𝐿
∗

𝑘
(𝑥) + 𝜌

𝑞−1
(𝑥) , 1 ≤ 𝑞 ≤ 2𝑛 + 1,

(52)

where

𝑡
𝑘,𝑞

= (
𝑏 − 𝑎

2
)

𝑞

×

𝑞

∑

𝑗=0

4𝑛+2

∑

𝑠=0

𝑤
𝑠,𝑛

(𝑘 − 2𝑛 + 𝑠 + 2𝑗 − 𝑞 − 1)

× 𝑟
𝑗,𝑘−𝑞+2𝑗,𝑞

V𝑛
𝑘−2𝑛+𝑠+2𝑗−𝑞−1

,

(53)

and 𝑤
𝑠,𝑛

(𝑘) is defined as in (13) and 𝜌
𝑞−1

(𝑥) is a polynomial of
degree (𝑞 − 1) at most.
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Proof. Thefirst part of this lemma can be directly provedwith
the aid of Lemma 4. To prove the second part, we integrate
both sides of (50) 𝑞 times, 1 ≤ 𝑞 ≤ 2𝑛 + 1, and, after making
use of formula (17), we obtain

∫

(𝑞)

(

𝑁−2𝑛−1

∑

𝑘=0

V𝑛
𝑘
𝜙
𝑘,𝑛

(𝑥)) (𝑑𝑥)
(𝑞)

= (
𝑏 − 𝑎

2
)

𝑞 𝑁

∑

𝑘=0

𝑒
𝑘

𝑞

∑

𝑗=0

𝑟
𝑗,𝑘,𝑞

𝐿
∗

𝑘+𝑞−2𝑗
(𝑥) + 𝜌

𝑞−1
,

(54)

which may be written in the form

∫

(𝑞)

(

𝑁−2𝑛−1

∑

𝑘=0

V𝑛
𝑘
𝜙
𝑘,𝑛

(𝑥)) (𝑑𝑥)
(𝑞)

=

𝑁+𝑞

∑

𝑘=0

𝑡
𝑘,𝑞

𝐿
∗

𝑘
(𝑥) + 𝜌

𝑞−1
,

(55)

where

𝑡
𝑘,𝑞

= (
𝑏 − 𝑎

2
)

𝑞 𝑞

∑

𝑗=0

𝑒
𝑘−𝑞+2𝑗

𝑟
𝑗,𝑘−𝑞+2𝑗,𝑞

. (56)

Now, making use of relation (51) enables one to write 𝑡
𝑘,𝑞

in
the form

𝑡
𝑘,𝑞

= (
𝑏 − 𝑎

2
)

𝑞

×

𝑞

∑

𝑗=0

4𝑛+2

∑

𝑠=0

𝑤
𝑠,𝑛

(𝑘 − 2𝑛 + 𝑠 + 2𝑗 − 𝑞 − 1)

× 𝑟
𝑗,𝑘−𝑞+2𝑗,𝑞

V𝑛
𝑘−2𝑛+𝑠+2𝑗−𝑞−1

,

(57)

and this completes the proof of Lemma 8.

Theorem 9. If 𝑢𝑛
𝑁
(𝑥) = ∑

𝑁−2𝑛−1

𝑘=0
V𝑛
𝑘
𝜙
𝑘,𝑛

(𝑥) is the dual Petrov-
Galerkin approximation to (20) and (21), then the expansion
coefficients {V𝑛

𝑘
: 𝑘 = 0, 1, . . . , 𝑁 − 2𝑛 − 1} satisfy the matrix

system

(𝐴
𝑛
+

2𝑛+1

∑

𝑞=1

𝜂
2𝑛−𝑞+1

𝐵
𝑞,𝑛

) k𝑛 = p∗𝑛, (58)

where the nonzero elements of the matrices 𝐴
𝑛
and 𝐵

𝑞,𝑛
, 1 ≤

𝑞 ≤ 2𝑛 + 1 are given by

𝑎
𝑛

𝑘𝑘
=

𝑘!Γ (𝑘 − 2𝑛 − (1/2))

22𝑛+1 (𝑘 − 2𝑛 − 1)!Γ (𝑘 + (1/2))
, (59)

𝑎
𝑛

𝑘𝑗
= 𝑤
𝑗−𝑘,𝑛

(𝑗 − 2𝑛 − 1) , 𝑘 ≤ 𝑗 ≤ 𝑘 + 4𝑛 + 2, (60)

𝑏
𝑞,𝑛

𝑘𝑗
= (

𝑏 − 𝑎

2
)

𝑞 𝑞

∑

𝑠=0

𝑤
𝑗−𝑘+𝑞−2𝑠,𝑛

(𝑗 − 2𝑛 − 1) 𝑟
𝑠,𝑘−𝑞+2𝑠,𝑞

,

𝑘 − 𝑞 ≤ 𝑗 ≤ 𝑘 + 4𝑛 + 𝑞 + 2,

(61)

where 𝑟
ℓ,𝑗,𝑞

and𝑤
𝑠,𝑛

are, respectively, defined as in (5) and (13).

Proof. If we apply the LDPGM to (20), then we have

(𝑢
𝑛

𝑁
(𝑥) +

2𝑛+1

∑

𝑞=1

𝜂
2𝑛+1−𝑞

∫

(𝑞)

𝑢
𝑛

𝑁
(𝑑𝑥)
(𝑞)

, 𝜓
𝑘,𝑛

(𝑥))

= (𝑝 (𝑥) +

2𝑛

∑

𝑖=0

𝜉
𝑖
𝐿
∗

𝑖
(𝑥) , 𝜓

𝑘,𝑛
(𝑥)) ,

(62)

where 𝑢
𝑛

𝑁
(𝑥) = ∑

𝑁−2𝑛−1

𝑘=0
V𝑛
𝑘
𝜙
𝑘,𝑛

(𝑥), 𝜙
𝑘,𝑛

(𝑥) and 𝜓
𝑘,𝑛

(𝑥) are
defined as in (48) and (49), respectively.

Substitution of formulae (19), (50), and (52) into (62)
yields

(

𝑁

∑

𝑠=0

𝑒
𝑠
𝐿
∗

𝑠
(𝑥) +

2𝑛+1

∑

𝑞=1

𝜂
2𝑛−𝑞+1

𝑁+𝑞

∑

𝑠=0

𝑡
𝑠,𝑞

𝐿
∗

𝑠
(𝑥) ,

4𝑛+2

∑

ℓ=0

𝑤
ℓ,𝑛

(𝑘) 𝐿
∗

𝑘−ℓ+2𝑛+1
(𝑥))

= (𝑝 (𝑥) +

2𝑛

∑

𝑖=0

𝜉
𝑖
𝐿
∗

𝑖
(𝑥) ,

4𝑛+2

∑

ℓ=0

𝑤
ℓ,𝑛

(𝑘) 𝐿
∗

𝑘−ℓ+2𝑛+1
(𝑥)) .

(63)

The constants of integration 𝜉
𝑖
, 0 ≤ 𝑖 ≤ 2𝑛 would disappear

if we take 𝑘 ≥ 2𝑛 + 1, and therefore the application of the
orthogonality relation (15) yields

(
𝑏 − 𝑎

2𝑘 + 1
)(𝑒
𝑘
+

2𝑛+1

∑

𝑞=1

𝜂
2𝑛+1−𝑞

𝑡
𝑘,𝑞

) = 𝑝
𝑛

𝑘
,

𝑘 = 2𝑛 + 1, 2𝑛 + 2, . . . , 𝑁,

(64)

which is equivalent to

𝑒
𝑘
+

2𝑛+1

∑

𝑞=1

𝜂
2𝑛+1−𝑞

𝑡
𝑘,𝑞

= 𝑝
∗𝑛

𝑘
𝑘 = 2𝑛 + 1, 2𝑛 + 2, . . . , 𝑁, (65)

𝑝
∗𝑛

𝑘
=

(2𝑘 + 1) 𝑝
𝑛

𝑘

(𝑏 − 𝑎)
. (66)

The system of linear equation (65) in turn may be written in
the following matrix form:

(𝐴
𝑛
+

2𝑛+1

∑

𝑞=1

𝜂
2𝑛−𝑞+1

𝐵
𝑞,𝑛

) k𝑛 = p∗𝑛, (67)

and this completes the proof of Theorem 9.

3.3. Structure and Complexities of the Two Matrix Systems
(36) and (58). The structures of the coefficient matrices
𝐴
𝑛
, 𝐵
2𝑛−𝑖+1,𝑛

(0 ≤ 𝑖 ≤ 2𝑛), 𝐴
𝑛
, 𝐵
𝑞,𝑛

(1 ≤ 𝑞 ≤ 2𝑛) and
hence the structures of the two combined matrices 𝐷

𝑛
=

𝐴
𝑛

+ ∑
2𝑛

𝑖=0
𝜂
𝑖
𝐵
2𝑛−𝑖+1,𝑛

and 𝐷
𝑛

= 𝐴
𝑛

+ ∑
2𝑛+1

𝑞=1
𝜂
2𝑛−𝑞+1

𝐵
𝑞,𝑛
,

which appear in the two linear systems (36) and (58), will
be discussed in this section. Also, the influence of such
structures on the efficiency of the solution of these twomatrix
systems will be discussed.
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Table 1: Condition numbers for the matrices 𝐴
𝑛
, 𝐷
𝑛
.

𝑁 𝑛 Cond (𝐴
𝑛
) (Cond (𝐴

𝑛
))/𝑁 Cond (𝐷

𝑛
) (Cond (𝐷

𝑛
))/𝑁

12

1

2.347 1.956 ⋅10
−1 3.120 2.600 ⋅10

−1

24 4.387 1.828 ⋅10
−1 5.461 2.275 ⋅10

−1

32 5.754 1.798 ⋅10
−1 7.039 2.199 ⋅10

−1

48 8.493 1.769 ⋅10
−1 10.191 2.123 ⋅10

−1

64 1.123 1.755 ⋅10
−1 13.333 2.083 ⋅10

−1

12

2

1.379 1.149 ⋅10
−1 2.263 1.886 ⋅10

−1

24 1.756 7.315 ⋅10
−2 2.569 1.071 ⋅10−1

32 2.218 6.932 ⋅10
−2 3.147 9.836 ⋅10

−2

48 3.160 6.584 ⋅10
−2 4.349 9.059 ⋅10

−2

64 4.109 6.421 ⋅10−2 5.564 8.694 ⋅10
−2

12

3

2.657 2.214 ⋅10
−1 3.208 2.673 ⋅10

−1

24 2.780 1.159 ⋅10
−1 3.683 1.535 ⋅10

−1

32 2.780 8.689 ⋅10
−2 3.683 1.151 ⋅10−1

48 2.780 5.793 ⋅10
−2 3.683 7.673 ⋅10

−2

64 2.780 4.344 ⋅10
−2 3.683 5.755 ⋅10

−2

Table 2: Condition numbers for the matrices 𝐴
𝑛
, 𝐷
𝑛
.

𝑁 𝑛 Cond (𝐴
𝑛
) Cond (𝐷

𝑛
) 𝑛 Cond (𝐴

𝑛
) Cond (𝐷

𝑛
) 𝑛 Cond (𝐴

𝑛
) Cond (𝐷

𝑛
)

12

1

2.781 10.003

2

3.127 8.327

3

3.127 6.759
24 2.996 10.152 3.620 9.105 4.026 8.866
32 3.048 10.152 3.735 9.107 4.224 8.899
48 3.099 10.152 3.847 9.107 4.414 8.899
64 3.124 10.152 3.902 9.106 4.506 8.899

With respect to the two matrices 𝐴
𝑛
and 𝐴

𝑛
, they

are always nonsingular special upper band triangular of
bandwidth (4𝑛+2), ∀𝑛 ≥ 1. Therefore, it is worth noting here
that the case whichcorresponds to 𝜂

𝑖
= 0, 0 ≤ 𝑖 ≤ 2𝑛, leads

to linear systems with special nonsingular upper triangular
matrices. The results for such case are summarized in the
following two important corollaries.

Corollary 10. If 𝜂
𝑖
= 0, 0 ≤ 𝑖 ≤ 2𝑛, then the system (36)

takes the form 𝐴
𝑛
v𝑛 = p𝑛, where 𝐴

𝑛
is an upper triangular

matrix whose solution can be obtained directly by the backward
substitution

V𝑛
𝑘
=

𝑝
𝑛

𝑘+2𝑛+1
− ∑
𝑘+4𝑛+2

𝑗=𝑘+1
𝑎
𝑛

𝑘+2𝑛+1,𝑗+2𝑛+1
V𝑛
𝑗

𝑎
𝑛

𝑘+2𝑛+1,𝑘+2𝑛+1

,

𝑘 = 0, 1, . . . , 𝑁 − 2𝑛 − 1,

(68)

where 𝑎
𝑛

𝑘𝑘
and 𝑎

𝑛

𝑘𝑗
are given by (38) and (39), respectively.

Corollary 11. If 𝜂
2𝑛−𝑞+1

= 0, 1 ≤ 𝑞 ≤ 2𝑛 + 1, then the
system (58) takes the form𝐴

𝑛
v𝑛 = p∗𝑛, where𝐴

𝑛
is an upper

triangular matrix whose solution can be obtained directly by
the backward substitution

V𝑛
𝑘
=

𝑝
∗𝑛

𝑘+2𝑛+1
− ∑
𝑘+4𝑛+2

𝑗=𝑘+1
𝑎
𝑛

𝑘+2𝑛+1, 𝑗+2𝑛+1
V𝑛
𝑗

𝑎
𝑛

𝑘+2𝑛+1, 𝑘+2𝑛+1

,

𝑘 = 0, 1, . . . , 𝑁 − 2𝑛 − 1,

(69)

where 𝑎
𝑛

𝑘𝑘
and 𝑎

𝑛

𝑘j are given by (59) and (60), respectively.

Each of the matrices 𝐵
𝑞,𝑛

and 𝐵
𝑞,𝑛

(1 ≤ 𝑞 ≤ 2𝑛 + 1)

is a band matrix whose total number of nonzero diagonals
upper the main diagonal is 4𝑛 + 𝑞 + 2, while the total number
of nonzero diagonals lower the main diagonal is 𝑞. Thus,
the coefficient matrices 𝐷

𝑛
= 𝐴
𝑛

+ ∑
2𝑛+1

𝑞=1
𝜂
2𝑛−𝑞+1

𝐵
𝑞,𝑛

and
𝐷
𝑛
= 𝐴
𝑛
+ ∑
2𝑛+1

𝑞=1
𝜂
2𝑛−𝑞+1

𝐵
𝑞,𝑛

are band whose total number of
nonzero diagonals upper the main diagonal does not exceed
6𝑛 + 3 and the total number of nonzero diagonals lower
the main diagonal does not exceed 2𝑛 + 1. These special
structures of 𝐷

𝑛
and 𝐷

𝑛
simplify greatly the solutions of the

two linear systems (36) and (58).The two systems in such case
can be factorized by 𝐿𝑈-decomposition, and the number of
operations necessary to construct this factorization is of order
12(𝑁 − 2𝑛 − 1)(2𝑛 + 1)

2 (see Stewart [28]).
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3.4. ConditionNumber. Whenever spectralmethods are used
for solving the (2𝑛 + 1)th-order equations, one should be
concerned with round-off errors caused by potentially large
condition numbers. However, the LDPGM presented in this
paper leads to systems with small condition numbers. For
LDPGM, the two linear systems which resulted from the
integrated form of the equation (𝑢

(2𝑛+1)
(𝑥) = 𝑓(𝑥)) using

the two choices of basis functions are given, respectively, by
𝐴
𝑛
k𝑛 = p𝑛 and 𝐴

𝑛
k𝑛 = p∗𝑛, where the matrices 𝐴

𝑛
and

𝐴
𝑛
, 𝑛 ≥ 1 are upper triangular matrices whose diagonal

elements are given by (38) and (59), respectively. Thus, for
all 𝑛 ≥ 1, we note that the condition number of the matrix
𝐴
𝑛
behaves like𝑂(𝑘) for large values of 𝑘, while the condition

number of thematrix𝐷
𝑛
is independent of 𝑘.Thismeans that

the matrix 𝐷
𝑛
is well conditioned. Hence, the propagation of

round-off errors should not be very significant.
Table 1 illustrates the condition numbers for the two

matrices𝐴
𝑛
and𝐷

𝑛
= 𝐴
𝑛
+∑
2𝑛+1

𝑞=1
𝜂
2𝑛−𝑞+1

𝐵
𝑞,𝑛

in (36) for some
values of the parameter 𝑁 and (𝑎, 𝑏) = (−1, 1), while Table 2
illustrates the condition numbers for the twomatrices𝐴

𝑛
and

𝐷
𝑛
= 𝐴
𝑛
+ ∑
2𝑛+1

𝑞=1
𝜂
2𝑛−𝑞+1

𝐵
𝑞,𝑛

in (58) (1 ≤ 𝑛 ≤ 3) for the same
values of 𝑁 and in the same interval.

3.5. Nonhomogeneous Boundary Conditions. If we consider
the differential equation

𝑢
(2𝑛+1)

(𝑥) +

2𝑛

∑

𝑖=0

𝜂
𝑖
𝑢
(𝑖)

(𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (𝑎, 𝑏) , 𝑛 ≥ 1, (70)

governed by the nonhomogeneous boundary conditions

𝑢
(𝑗)

(𝑎) = 𝛼
𝑗
, 𝑢
(𝑗)

(𝑏) = 𝛽
𝑗
, 𝑢
(𝑛)

(𝑎) = 𝛾,

𝑗 = 0, 1, . . . , 𝑛 − 1,

(71)

one can easily show that the differential equation (70)
with its nonhomogeneous boundary conditions (71) can
be transformed—by using a suitable transformation—to a
differential equation governed by homogeneous boundary
conditions, but details will not be given here and the inter-
ested reader is referred to Doha and Abd-Elhameed [19].

4. Numerical Results

In this section, we give some numerical results obtained by
using the two algorithms presented in the previous sections.

Example 1. Consider the following third-order one-
dimensional BVP:

𝑢


(𝑥) + 𝜂
2
𝑢

(𝑥) + 𝜂

1
𝑢

(𝑥) + 𝜂

0
𝑢 (𝑥) = 𝑓 (𝑥) ,

𝑢 (±1) = 𝑢

(−1) = 0,

(72)

where 𝑓(𝑥) is chosen such that the exact solution of (72) is
𝑢(𝑥) = (1 − 𝑥

2
)(1 + 𝑥)𝑒

𝑥.

Table 3 lists the maximum pointwise error 𝐸 given by |𝑢−

𝑢
𝑁
| to the problem (72) of the given example using LDPGM

Table 3: Maximum pointwise error 𝐸 for Example 1.

𝑁 𝜂
0

𝜂
1

𝜂
2

LDPG—1st choice LDPG—2nd choice
18

0 0 0
2.20843 × 10

−14
5.40665 × 10

−15

20 3.06209 × 10
−14

6.58881 × 10
−15

22 7.61484 × 10
−14

3.63132 × 10
−15

18
1 −1 −1

1.14394 × 10
−13

5.25079 × 10
−15

20 1.00142 × 10
−13

2.18044 × 10
−15

22 2.17211 × 10
−13

5.40459 × 10
−15

18
16 −16

2
−16
3

1.15044 × 10
−13

2.02084 × 10
−15

20 1.65338 × 10
−14

1.08947 × 10
−14

22 5.91763 × 10
−13

7.53041 × 10
−14

Table 4: Maximum pointwise error 𝐸 for Example 2 with 𝑁 =

14, 16, 18, 20.

𝑁 LDPG—1st choice LDPG—2nd choice
14 2.66574 × 10

−15
1.36447 × 10

−15

16 4.18619 × 10
−16

1.3787 × 10
−16

18 9.4369 × 10
−16

1.70355 × 10
−16

20 1.28588 × 10
−15

2.01205 × 10
−16

24 5.1337 × 10
−16

1.80926 × 10
−16

with the two choices of basis functions for various values of
𝑁 and for some values of the coefficients 𝜂

0
, 𝜂
1
, and 𝜂

2
.

Example 2. Consider the boundary value problem (see Lang
and Xu [25] and Siddiqi and Akram [26]):

𝑢
(5)

(𝑥) − 𝑢 (𝑥) = − (15 + 10𝑥) 𝑒
𝑥
, 0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 0, 𝑢

(0) = 1, 𝑢


(0) = 0,

𝑢 (1) = 0, 𝑢

(1) = −𝑒,

(73)

with exact solution 𝑢(𝑥) = 𝑥(1 − 𝑥)𝑒
𝑥.

Table 4 lists the maximum pointwise error 𝐸 given by
|𝑢−𝑢
𝑁
| using LDPGMwith the two choices of basis functions

and for various values of 𝑁. In Table 5, we give a compar-
ison between the best errors obtained by our two methods
(LDPGM-1st choice and LDPGM-2nd choice), quartic spline
method (QSM) in [25], and sextic spline method (SSM) in
[26]. This table shows that our methods are more accurate
if compared with quartic spline method and sextic spline
method illustrated in [25, 26], respectively.

Example 3. Consider the linear ninth-order BVP (see
Wazwaz [27]):

𝑢
(9)

(𝑥) − 𝑢 (𝑥) = −9𝑒
𝑥
, 0 < 𝑥 < 1,

𝑢
(𝑗)

(0) = (1 − 𝑗) , 0 ≤ 𝑗 ≤ 4,

𝑢
(𝑗)

(1) = −𝑗𝑒, 0 ≤ 𝑗 ≤ 3,

(74)

with theoretical solution 𝑢(𝑥) = (1 − 𝑥)𝑒
𝑥.

In Table 6, we list the errors 𝐸 given by |𝑢 − 𝑢
𝑁
| for

Example 3 for𝑁 = 16 using LDPGM based on the two kinds
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Table 5: Comparison between different methods for Example 2.

Error LDPG—1st choice LDPG—2nd choice QSM in [25] SSM in [26]
𝐸 4.18619 × 10

−16
1.3787 × 10

−16
1.2331 × 10

−10
5.2812 × 10

−7

Table 6: Error 𝐸 for Example 3 with 𝑁 = 16.

𝑥 LDPG—1st choice LDPG—2nd choice Method in Wazwaz [27]
0.0 0.000000 0.000000 0.000000

0.1 2.22045 × 10
−16

2.22045 × 10
−16

2.0 × 10
−10

0.2 1.11022 × 10
−16

1.11022 × 10
−16

2.0 × 10
−10

0.3 1.11022 × 10
−16

1.11022 × 10
−16

2.0 × 10
−10

0.4 1.11022 × 10
−16

1.11022 × 10
−16

2.0 × 10
−10

0.5 1.11022 × 10
−16

0.000000 2.0 × 10
−10

0.6 1.11022 × 10
−16

1.11022 × 10
−16

6.0 × 10
−10

0.7 1.11022 × 10
−16

0.000000 1.0 × 10
−9

0.8 0.000000 1.11022 × 10
−16

2.0 × 10
−9

0.9 0.000000 0.000000 3.4 × 10
−9

0.1 2.22045 × 10
−16

2.22045 × 10
−16

0.000000

of basis functions. For the sake of comparisonwith the results
obtained by Wazwaz in [27], the best errors obtained in [27]
are listed in column 4 of Table 6. This table shows that our
two algorithms are more accurate than the method presented
by Wazwaz [27], for the problem considered.

5. Concluding Remarks

We have presented two numerical spectral algorithms for the
solution of high odd-order differential equations based on
Legendre-dual-Petrov-Galerkin method. The two presented
algorithms are very reliable and efficient.Themain advantage
of our algorithms is that all the resulting systems are band and
this of course simplifies the numerical computational efforts
required to solve them. The presented numerical results
exhibit the high accuracy and efficiency of the proposed
algorithms.
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