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Grasping objects by continuum arms or fingers is a new field of interest in robotics. Continuummanipulators have the advantages of
high adaptation and compatibility with respect to the object shape. However, due to their extremely nonlinear behavior and infinite
degrees of freedom, continuum arms cannot be easily modeled. In fact, dynamics modeling of continuum robotic manipulators
is state-of-the-art. Using the exact modeling approaches, such as theory of Cosserat rod, the resulting models are either too
much time-taking for computation or numerically unstable. Thus, such models are not suitable for applications such as real-time
control. However, based on realistic assumptions and using some approximations, these systems can be modeled with reasonable
computational efforts. In this paper, a planar continuum robotic arm is modeled, considering its backbone as two circular arcs.
In order to simulate finger grasping, the continuum arm experiences a point-force along its body. Finally, the results are validated
using obtained experimental data.

1. Introduction

Continuum robotic arms are typically made of a flexible
backbone, which gives them infinite degrees of freedom.
Thus, these robots are hyperredundant, compatible, and
underactuated [1]. Continuum robots are inspired by bio-
logical manipulators, such as octopus arms, mammalian
tongues, and elephant trunks [2] and are close to ordinary
hyperredundant manipulators, such as snakes and spines [3–
5]. Due to their special characteristics, continuum robots can
perform a variety of tasks, such as dexterous manipulation
[6, 7], whole arm grasping [8, 9], and ordinary underactuated
grasp [10].

One of our continuum robots is depicted in Figure 1, as
an example of continuum fingers. The finger consists of a
flexible backbone and a tendon driven actuation system. The
actuation system consists of the cable-guide disks and the ten-
dons. When a tendon is pulled, the backbone is bent towards
the tendon. Thus, using three cables, the backbone can be
bent in any direction. Modeling the nonlinear dynamics of

such continuum robots is essential for performing precise
grasp analysis, optimization, and control. Besides accuracy,
it is important that a model can be performed fast enough for
real-time applications [4].

Regarding continuum robots dynamics, the first work
was presented by Chirikjian, using modal approach to model
hyperredundantmanipulators, considered as continuum arcs
[11, 12]. The first exact continuous model for continuum
robotic arms was introduced by Mochiyama and Suzuki [13–
15].The robotwasmodeled as infinite number of infinitesimal
solid disks. Thus, the model has infinite degrees of freedom.
The backbone kinetic energy was presented in integral form.
Then, using Euler-Lagrange method, the resulting model was
derived in integral-differential form. However, the model
equations are numerically complex and not practical for
robotic implementations.The other exactmodeling approach
is using Cosserat dynamicmodel, as introduced in [16–18]. In
Cosserat equations, the elasticity of a differential part of the
backbone is modeled. Then, using Newton-Euler approach,
themodel is presented as a set of partial differential equations.
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Figure 1: Object grasping by KNTU hand.

However, the resulting equations are numerically unstable
or too slow [17, 18]. Thus, researchers sought simplification
approaches to model continuum arms.

In [19–23], a dynamics model was presented for octopus
continuum arms. The octopus muscles were modeled using
many linear lumped parameters, including point masses,
linear springs, and linear dampers. Furthermore, hydraulic
forces such as drag and buoyancy forces were included in the
model. However, because of the high number of elements, the
model is not practical for real-time implementations.

In [24], robot dynamics was modeled using Hamilton’s
principle, for a vibration control task. The only applied
force/moment was the one actuation torque applied to the
robot tip, which resulted in a constant curvature along
the backbone. Then, the vibration was modeled as a static
equilibrium configuration plus a vibration around it, for the
vibration control algorithm.

When a constant moment is applied to a section of a
continuum rod (without any other external force), it has a
uniform bending along its length. Hence, its shape is as a
circular arc, with constant curvature. Thus, since actuation
forces can be modeled as point torques, a reasonable approx-
imation of continuum robot kinematics is to consider their
shape as a series of circular pieces, based on the actuation
system [25]. This idea has also been used in dynamics
modeling.

In [26–28], continuum arm was simplified as three
variable length segments, based on its three actuation torques
that were applied at three points of the robot. No external
forces (contraction or gravitational forces) were applied to the
backbone.The three sections can bend and lengthen/shorten,
which gives the robot 6 degrees of freedom. Then, the mod-
eling approach of [13–15] was exploited, to model the arm.
The resulting 6-DOFmodel equations are pretty complex and
time-taking for real-time applications.

In [29, 30], the backbone kinematics between each two
adjacent cable-guide disks was approximated as a constant-
curvature arc. Then, one point mass was considered at the
mass center of each cable-guide disk. Then, the constant-
curvature segment of the backbone was modeled as a 2-DOF
spring. Finally, the dynamics model was derived using Kane’s
method. As mentioned, the number of elements was defined

based on the number of cable-guide disks, while typically a
robot has many of such disks. Thus, the calculation time is
too long for real-time applications.

One problem of using the constant-curvature geometry
is the numerical singularity that happens when the curvature
approaches zero. In [31–33], the singularity problem was
avoided, using a set of shape functions. The continuum arm
was approximated as one constant-curvature arc, in order to
achieve a fast approximation for model base control. Then,
a quadruped robot with four continuum limbs was modeled
and controlled. Although it is not accurate to approximate a
continuum limb as a single constant-curvature arc, themodel
provides enough accuracy for the control algorithm. Besides,
the model calculation time was perfect for real-time control
applications. More discussions on dynamics modeling of
continuum robots are available in [4, 34].

In our previous works on continuum robotic fingers,
we analyzed grasp for a compound hand with a continuous
finger [10] (Figure 1), using the proposed MAG index [35,
36]. On modeling and control of continuum manipulators,
we presented statics modeling and control of planar and
spatial backbones [37–39], modeling by faster computation
methods [38, 40], and modeling of continuum robots with
tendon actuation systems [41]. However, a fast dynamic
model is essential for future grasp optimization, analysis, and
control. For such applications, a fast and accurate model is
required. The model calculation time must be short enough
for real-time optimization and control. Among the previous
dynamics model, only the model in [33] is fast enough for
real-time applications; however, its accuracy is not acceptable
for our purpose.

This paper presents a planar dynamics model for the con-
tinuum robotic finger. This dynamics model of continuum
finger is necessary for future grasp analysis, optimization, and
control. The model is fast enough for real-time calculations,
which is the main goal of this paper. Likewise, the model
accuracy is acceptable. In this model, the robot and the
grasped object can have two contact points, as depicted in
Figures 1 and 2 (the continuum finger and the mug). One
contact point is at the fingertip; the other contact point can
be anywhere along the finger. Thus, the robot experiences
gravitational forces, two contact forces, and one actuation
torque.

In this paper, the continuumbackbone is divided into two
elements, based on the middle contact point. As depicted in
Figure 3, one element is from the finger base to the contact
point and the other element is from the contact point to
the fingertip. As depicted in Figure 2, due to the cable-guide
disks, the grasped object cannot slip easily. If the object
slips, it hits the disks which results in impulsive contact
forces and complicated transient dynamics.Here, we consider
the common cases where the object does not slip. Thus, it
is assumed that the contact point is a fixed point in the
dynamics modeling. Moreover, since the disks are close to
each other, each contact area is simplified as a contact point.
Thus, each contact is represented by one external force, acting
on the finger backbone. Therefore, there is one external force
acting at the middle contact point and one acting at the
fingertip, as illustrated in Figure 3.
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Figure 3: The forces and moments applied to the finger backbone
and the two circular elements.

This papermostly focuses on fast backbonemodeling and
its interactions with the grasped object, for real-time grasp
optimization and control. Thus, unnecessary complexities
such as nonlinearities of the actuation system or geometry of
the grasped object are neglected. The two parts of the finger
are approximated as two circular elements; this assumption
is reasonable since typically a finger is not too long. The
dynamics of the backbone is modeled using Euler-Lagrange
equations. The main contribution of the proposed model
is having the properties of simplicity and fast calculation
time, accuracy, and consideration of external forces, at the
same time. Furthermore, a singularity-free version of model
equations is derived and proposed, using Taylor expansion.
Finally, the proposed model is validated using obtained
experimental results of a moving backbone. The model and
experimental backbone trajectories are compared, to show
the accuracy of the proposed model.

The outline of this paper is as follows. In Section 2, the
backbone kinematics is presented. In Section 3, the kinetic
and potential energies of the robotic finger are derived. In
Section 4, the applied forces and moments are modeled,
and the backbone’s equations of motion are presented. The
model validation is presented in Section 5, and conclusions
are discussed. Finally, in the appendix, the singularity-free
equations are presented.
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Figure 4: Kinematics variables of the backbone.

2. The Backbone Kinematics

In this section, the finger backbone kinematics is derived.The
backbone is considered as a rod with two circular elements,
as depicted in Figure 3. The rod is divided into these two
elements, based on an external force, considered as a contact
force F

𝑐
, applied to an arbitrary contact point. However, the

contact point is assumednot to be changed, so that the lengths
of the two elements are constant. The backbone can also be
subjected to an external tip force and moment and the robot
actuation forces/moments. In this paper, the robotic finger is
considered to be inextensible.Thus, for typical tendon driven
and hydraulic/pneumatic actuators, the actuation forces can
approximately be represented by a single torque, applied at
the fingertip [1, 4, 37, 38].

The kinematics variables of the backbone are illustrated
in Figure 4. The backbone is considered as a thin, one-
dimensional curve. Each element of the backbone is specified
with 𝑠, which represents the length from the finger base to the
specified point. A XY Cartesian coordinate can be defined at
each point of the backbone, as X(𝑠) and Y(𝑠), as the 𝑌-axis is
tangent to the backbone direction. At the finger base, where
𝑠 = 0, the coordinates are specified as X

𝑏
and Y

𝑏
, which will

be used as the reference coordinate.

2.1. Position and Orientation. As depicted in Figure 4, the
position vector of each point of the backbone is specified
by r(𝑠). At each point of the backbone, the orientation of
the backbone at each point can be determined by a rotation
matrix R(𝑠), as

R (𝑠) = [X (𝑠) Y (𝑠)]
2×2

= [

cos 𝜃 (𝑠) − sin 𝜃 (𝑠)
sin 𝜃 (𝑠) cos 𝜃 (𝑠) ] , (1)

where 𝜃(𝑠) is the angle of X(𝑠)-Y(𝑠) coordinates relative to
X
𝑏
Y
𝑏
, say the backbone bending angle at 𝑠.

As mentioned before, the robot is divided into two
circular elements. As depicted in Figure 4, the first element
is defined from the base to the contact point, and the second
element is from the contact point to the fingertip.The lengths
of these two elements are, respectively, 𝐿

1
and 𝐿

2
.The centers

of the circular element are depicted in the figure.The bending
angles of the two elements are represented by 𝜃

1
and 𝜃

2
.

These two angles determine the shape of the backbone.
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Figure 5: Kinematics of the two circular elements.

Thus, the backbone is a two-degree-of-freedom system, with
generalized variables 𝜃

1
and 𝜃
2
.

The two circular elements are illustratedwithmore details
in Figure 5. The position of the contact point is represented
by r
𝑐
. X
𝑐
Y
𝑐
and X

𝑡
Y
𝑡
are the local coordinates at the contact

point and the fingertip, respectively. The centers of mass of
the elements are depicted in the figure. Position of the 1st
element mass center is represented by r

𝐺1
; the position of the

2nd element mass center, relative to the X
𝑐
Y
𝑐
coordinate, is

represented by r
𝐺2/𝐶

.
For a circular curve, as depicted in Figure 5, the bending

angle 𝜃(𝑠) is linearly increasing by 𝑠 [39]. Thus, for the first
element of Figure 5, 𝜃(𝑠) is determined as

𝜃 (𝑠) =

𝑠

𝐿
1

𝜃
1
. (2)

Likewise, for the second element, the bending angle is
determined as

𝜃 (𝑠) = 𝜃
1
+

𝑠 − 𝐿
1

𝐿
2

𝜃
2
. (3)

In the 1st element, r(𝑠) can be determined [1, 2, 37] as

r (𝑠) = 𝐿
1

𝜃
1

[cos(
𝑠

𝐿
1

𝜃
1
) − 1 sin( 𝑠

𝐿
1

𝜃
1
)]

𝑇

. (4)

Likewise, in the 2nd element, the position relative to theX
𝑐
Y
𝑐

coordinates, rrel(𝑠), can be determined as

rrel (𝑠) =
𝐿
2

𝜃
2

[cos
𝑠 − 𝐿
1

𝐿
2

𝜃
2
− 1 sin 𝑠 − 𝐿

1

𝐿
2

𝜃
2
]

𝑇

. (5)

Then, using the rotation matrix R
𝑐
, r(𝑠) can be determined as

r (𝑠) = R
𝑐
rrel (𝑠) + r

𝑐
, (6)

where r
𝑐
is given by substituting 𝑠 = 𝐿

1
in (4), as

r
𝑐
=

𝐿
1

𝜃
1

[cos 𝜃
1
− 1 sin 𝜃

1
]

𝑇

, (7)

and R
𝑐
is given from (1), substituting 𝜃(𝑠) = 𝜃

1
, as

R
𝑐
= [

cos 𝜃
1

− sin 𝜃
1

sin 𝜃
1

cos 𝜃
1

] . (8)

For the fingertip, the position vector r
𝑡
is determined by

substituting 𝑠 = 𝐿
1
+ 𝐿
2
in (5) and (6), as

r
𝑡
= [

cos 𝜃
1

− sin 𝜃
1

sin 𝜃
1

cos 𝜃
1

]

𝐿
2

𝜃
2

[

cos 𝜃
2
− 1

sin 𝜃
2

] +

𝐿
1

𝜃
1

[

cos 𝜃
1
− 1

sin 𝜃
1

] .

(9)

Finally, for further use, the positions of elements centers
of mass are derived. In this paper, the backbone is con-
sidered to have a uniform mass distribution. Thus, from
basic mechanics, the mass center of the 1st element can be
determined as

r
𝐺1

=

∫

𝐿
1

0

r (𝑠) 𝑑𝑠
𝐿
1

=

𝐿
1

𝜃
2

1

[

sin 𝜃
1
− 𝜃
1

1 − cos 𝜃
1

] . (10)

Likewise, for the 2nd element mass center, we have

r
𝐺2/𝐶

=

∫

𝐿
2

𝐿
1

r (𝑠) 𝑑𝑠
𝐿
2

=

𝐿
2

𝜃
2

2

[

sin 𝜃
2
− 𝜃
2

1 − cos 𝜃
2

] .
(11)

Then, substituting in (6) yields

r
𝐺2

= R
𝑐

𝐿
2

𝜃
2

2

[

sin 𝜃
2
− 𝜃
2

1 − cos 𝜃
2

] + r
𝑐

= [

cos 𝜃
1

− sin 𝜃
1

sin 𝜃
1

cos 𝜃
1

]

𝐿
2

𝜃
2

2

[

sin 𝜃
2
− 𝜃
2

1 − cos 𝜃
2

]

+

𝐿
1

𝜃
1

[

cos 𝜃
1
− 1

sin 𝜃
1

] .

(12)

2.2. Velocities. The velocity of each point of the backbone
can be derived by direct differentiation. For the 1st element,
differentiating (4) with respect to time gives

̇r (𝑠) = 𝑑r (𝑠)
𝑑𝑡

=

𝐿
1

𝜃
2

1

[

[

[

[

1 − cos 𝑠𝜃1
𝐿
1

− 𝜃
1

𝑠

𝐿
1

sin 𝑠𝜃
1

𝐿
1

𝜃
1

𝑠

𝐿
1

cos 𝑠𝜃1
𝐿
1

− sin 𝑠𝜃
1

𝐿
1

]

]

]

]

̇
𝜃
1
. (13)

For the 2nd element, differentiating (6) gives

̇r (𝑠) = Ṙ
𝑐
rrel (𝑠) + R

𝑐
̇rrel (𝑠) + ̇r

𝑐
, (14)

where ̇R
𝑐
is given by differentiating (8), as

Ṙ
𝑐
= [

− sin 𝜃
1

− cos 𝜃
1

cos 𝜃
1

− sin 𝜃
1

]
̇

𝜃
1
. (15)
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Differentiating (5) yields

̇rrel (𝑠) =
𝐿
2

𝜃
2

2

[

[

[

[

1 − cos 𝑠𝜃2
𝐿
2

− 𝜃
2

𝑠

𝐿
2

sin 𝑠𝜃
2

𝐿
2

𝜃
2

𝑠

𝐿
2

cos 𝑠𝜃2
𝐿
2

− sin 𝑠𝜃
2

𝐿
2

]

]

]

]

̇
𝜃
2
. (16)

Substituting 𝑠 = 𝐿
1
in (13) gives

̇r
𝑐
=

𝐿
1

𝜃
2

1

[

1 − cos 𝜃
1
− 𝜃
1
sin 𝜃
1

𝜃
1
cos 𝜃
1
− sin 𝜃

1

]
̇

𝜃
1
. (17)

The fingertip velocity is determined by differentiating (9), as

̇r
𝑡
= [

− sin 𝜃
1

− cos 𝜃
1

cos 𝜃
1

− sin 𝜃
1

]

𝐿
2

𝜃
2

[

cos 𝜃
2
− 1

sin 𝜃
2

]
̇

𝜃
1

+ R
𝑐

𝐿
2

𝜃
2

2

[

1 − cos 𝜃
2
− 𝜃
2
sin 𝜃
2

𝜃
2
cos 𝜃
2
− sin 𝜃

2

]
̇

𝜃
2

+

𝐿
1

𝜃
2

1

[

1 − cos 𝜃
1
− 𝜃
1
sin 𝜃
1

𝜃
1
cos 𝜃
1
− sin 𝜃

1

]
̇

𝜃
1
.

(18)

Differentiating (10), the first mass center velocity is

̇r
𝐺1

=

𝐿
1

𝜃
3

1

[

𝜃
1
cos 𝜃
1
+ 𝜃
1
− 2 sin 𝜃

1

𝜃
1
sin 𝜃
1
− 2 cos 𝜃

1
− 2

] . (19)

And for the second mass center, differentiating (12) gives

̇r
𝐺2

= [

− sin 𝜃
1

− cos 𝜃
1

cos 𝜃
1

− sin 𝜃
1

]

𝐿
2

𝜃
2

2

[

sin 𝜃
2
− 𝜃
2

1 − cos 𝜃
2

]
̇

𝜃
1

+ R
𝑐

𝐿
2

𝜃
3

2

[

𝜃
2
cos 𝜃
2
+ 𝜃
2
− 2 sin 𝜃

2

𝜃
2
sin 𝜃
2
− 2 cos 𝜃

2
− 2

]
̇

𝜃
2

+

𝐿
1

𝜃
2

1

[

1 − cos 𝜃
1
− 𝜃
1
sin 𝜃
1

𝜃
1
cos 𝜃
1
− sin 𝜃

1

]
̇

𝜃
1
.

(20)

Finally, for angular velocities, differentiating (2) and (3), ̇
𝜃(𝑠)

is

̇
𝜃 (𝑠) =

{
{

{
{

{

𝑠

𝐿
1

̇
𝜃
1
, 0 < 𝑠 < 𝐿

1
(1st element)

̇
𝜃
1
+

𝑠 − 𝐿
1

𝐿
2

̇
𝜃
2
, 𝐿
1
< 𝑠 < 𝐿

2
(2nd element) .

(21)

2.3. Jacobians. In this section, for further use, some velocities
are resolved using Jacobian matrices, as

̇r
𝑐
= J
𝑐
[
̇

𝜃
1

̇
𝜃
2
]

𝑇

, ̇r
𝑡
= J
𝑡
[
̇

𝜃
1

̇
𝜃
2
]

𝑇

,

̇r
𝐺1

= J
𝐺1

[
̇

𝜃
1

̇
𝜃
2
]

𝑇

, ̇r
𝐺2

= J
𝐺2

[
̇

𝜃
1

̇
𝜃
2
]

𝑇

,

(22)

where from (17)

J
𝑐
=

𝐿
1

𝜃
2

1

[

1 − cos 𝜃
1
− 𝜃
1
sin 𝜃
1

0

𝜃
1
cos 𝜃
1
− sin 𝜃

1
0
] , (23)

and from (18)

J
𝑡
= [

𝐽
11

𝐽
12

𝐽
21

𝐽
22

] ,

𝐽
11

=

𝐿
2

𝜃
2

((1 − 𝐶
2
) 𝑆
1
− 𝑆
2
𝐶
1
) +

𝐿
1

𝜃
2

1

(1 − 𝐶
1
− 𝜃
1
𝑆
1
) ,

𝐽
12

=

𝐿
2

𝜃
2

((𝐶
2
− 1)𝐶

1
− 𝑆
2
𝑆
1
)

𝐿
1

𝜃
2

1

(𝜃
1
𝐶
1
− 𝑆
1
) ,

𝐽
21

=

𝐿
2

𝜃
2

2

(1 − 𝐶
2
− 𝜃
2
𝑆
2
) 𝐶
1
− (𝜃
2
𝐶
2
− 𝑆
2
) 𝑆
1
,

𝐽
22

=

𝐿
2

𝜃
2

2

(1 − 𝐶
2
− 𝜃
2
𝑆
2
) 𝑆
1
+ (𝜃
2
𝐶
2
− 𝑆
2
) 𝐶
1
,

(24)

where, for abridgment, 𝐶
1
, 𝑆
1
, 𝐶
2
, and 𝑆

2
, respectively,

represent cos 𝜃
1
, sin 𝜃

1
, cos 𝜃

2
, and sin 𝜃

2
, for abridgment.

From (19), we have

J
𝐺1

=

𝐿
1

𝜃
3

1

× [

𝜃
1
cos 𝜃
1
+ 𝜃
1
− 2 sin 𝜃

1
𝜃
1
sin 𝜃
1
− 2 cos 𝜃

1
− 2

0 0
] ,

(25)

and from (20)

J
𝐺2

= [

𝐽
𝐺2 11

𝐽
𝐺2 12

𝐽
𝐺2 21

𝐽
𝐺2 22

] ,

𝐽
𝐺2 11

=

𝐿
2

𝜃
2

2

(− (𝑆
2
− 𝜃
2
) 𝑆
1
− (1 − 𝐶

2
) 𝐶
1
)

+

𝐿
1

𝜃
2

1

(1 − 𝐶
1
− 𝜃
1
𝑆
1
) ,

𝐽
𝐺2 12

=

𝐿
2

𝜃
2

2

((𝑆
2
− 𝜃
2
) 𝐶
1
− (1 − 𝐶

2
) 𝑆
1
)

×

𝐿
1

𝜃
2

1

(𝜃
1
𝐶
1
− 𝑆
1
) ,

𝐽
𝐺2 21

=

𝐿
2

𝜃
3

2

((𝜃
2
𝐶
2
+ 𝜃
2
− 2𝑆
2
) 𝐶
1

− (𝜃
2
𝑆
2
− 2𝐶
2
− 2) 𝑆

1
) ,

𝐽
𝐺2 22

=

𝐿
2

𝜃
3

2

((𝜃
2
𝐶
2
+ 𝜃
2
− 2𝑆
2
) 𝑆
1

+ (𝜃
2
𝑆
2
− 2𝐶
2
− 2)𝐶

1
) .

(26)
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3. Modeling of the Energies

In this section the robotic finger’s gravitational potential
energy 𝑉

𝑔
and elastic potential energy 𝑉

𝑒
and its kinetic

energy 𝑇 and their derivatives with respect to 𝜃
1
and 𝜃

2
are

calculated.

3.1. Gravitational Potential Energy. Asmentioned above (10),
the robotic finger has a uniform mass distribution along its
length. Thus, the masses of the two circular elements are

𝑚
1
= 𝜌𝐴𝐿

1
, 𝑚

2
= 𝜌𝐴𝐿

2
, (27)

where 𝐴 is the backbone cross-sectional area and 𝜌 is the
backbone density. In cases such as in tendon driven actu-
ation systems, where some cable-guide disks are uniformly
installed on the backbone [38], we can use 𝑚 = 𝜌

𝐿
𝐿 instead

of (27), where 𝜌
𝐿
is the average mass per unit of length of the

backbone.
An extra mass, 𝑚tip, might be attached to the fingertip,

such as a sensor or a shield, as depicted in Figure 6. For more
generalization, we also consider an extra mass at the contact
point, as𝑚

𝑐
, since such sensor or shield might be used at the

contact point too. Using all these masses, the gravitational
potential energy of the robotic finger can be determined, in
the matrix form, as

𝑉
𝑔
= −𝑚
1
r𝑇
𝐺1
g − 𝑚

2
r𝑇
𝐺2
g − 𝑚tipr

𝑇

𝑡
g − 𝑚

𝑐
r𝑇
𝑐
g, (28)

where g is the vector of gravitational acceleration.
Using (22)–(26) and differentiating (29) with respect to 𝜃

1

and 𝜃
2
give the vector of 𝑉

𝑔
derivatives, as

G
𝑔
=

[

[

[

[

[

𝜕𝑉
𝑔

𝜕𝜃
1

𝜕𝑉
𝑔

𝜕𝜃
2

]

]

]

]

]

= −𝑚
1
J𝑇
𝐺1
g − 𝑚

2
J𝑇
𝐺2
g − 𝑚tipJ

𝑇

𝑡
g − 𝑚

𝑐
J𝑇
𝑐
g.

(29)

3.2. Elastic Potential Energy. For a flexible rod with linear
elasticity, the bendingmoment of an element, 𝜏bending, is given
(as discussed in [16, 37, 39]) as

𝜏bending = −

𝐸𝐼
𝑐𝑎

𝐿

𝜃, (30)

where 𝐸 is the module of elasticity, 𝐼
𝑐𝑎
is the second moment

of cross-sectional area, 𝐿 is the element length, and 𝜃 is the
element banding angle.

By definition, the elastic potential energy equals negative
of the work done by the bending moment 𝜏bending. Thus,
the potential energy of an element is ∫

𝜃

0

(𝐸𝐼
𝑐𝑎
/𝐿)𝜃𝑑𝜃 =

(𝐸𝐼
𝑐𝑎
/2𝐿)𝜃

2. In some cases, an element is preshaped; that
is when no force or moment is applied to the element,
its free bending angle is not zero. Representing this pre-
shape bending angle by 𝜃

∗, the element bending moment is
𝜏bending = (𝐸𝐼

𝑐𝑎
/𝐿)(𝜃 − 𝜃

∗

) and its elastic potential energy is

g

rt
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Figure 6: Gravitational potential energy.

(𝐸𝐼
𝑐𝑎
/2𝐿)(𝜃 − 𝜃

∗

)
2. Thus, the elastic potential energy of the

two-element backbone is

𝑉
𝑒
=

𝐸𝐼
𝑐𝑎

2𝐿
1

(𝜃
1
− 𝜃
∗

1
)
2

+

𝐸𝐼
𝑐𝑎

2𝐿
2

(𝜃
2
− 𝜃
∗

2
)
2

. (31)

Finally, the vector of derivatives of 𝑉
𝑒
with respect to 𝜃

1
and

𝜃
2
is achieved as

G
𝑒
=

[

[

[

[

𝜕𝑉
𝑒

𝜕𝜃
1

𝜕𝑉
𝑒

𝜕𝜃
2

]

]

]

]

= 𝐸𝐼
𝑐𝑎

[

[

[

[

(𝜃
1
− 𝜃
∗

1
)

𝐿
1

(𝜃
2
− 𝜃
∗

2
)

𝐿
2

]

]

]

]

. (32)

3.3. The Kinetic Energy. For a differential section of the
backbone, with mass of 𝑑𝑚 and inertial moment of 𝑑𝐼, the
kinetic energy is 1/2 ̇r2(𝑠)𝑑𝑚 + 1/2

̇
𝜃
2

(𝑠)𝑑𝐼. If the backbone
distribution of mass is uniform, we have

𝑑𝑚 = 𝜌𝐴𝑑𝑠, 𝑑𝐼 = 𝜌𝐼
𝑐𝑎
𝑑𝑠, (33)

where 𝐼
𝑐𝑎

is the second moment of cross-sectional area,
𝜌 is the rod’s density, and 𝐴 is the cross-sectional area.
For instance, for a rod with circular cross-sectional area of
diameter 𝑑

𝑐
, we have 𝐴 = 𝜋𝑑

2

𝑐
/4 and 𝐼

𝑐𝑎
= 𝜋𝑑

4

𝑐
/64. As

discussed below (27), for cases such as tendon driven robots,
instead of (33), the average mass per unit 𝜌

𝐿
and the average

moment of inertia per unit of length 𝐼
𝐿
can be used, as 𝑑𝑚 =

𝜌
𝐿
𝑑𝑠 and 𝑑𝐼 = 𝐼

𝐿
𝑑𝑠. However, using (33), the backbone

kinetic energy is

𝑇backbone = ∫

𝐿
2

0

1

2

( ̇r2 (𝑠) 𝜌𝐴 +
̇

𝜃
2

(𝑠) 𝜌𝐼
𝑐
) 𝑑𝑠. (34)

Substituting (13), (14), (17), and (18) gives

𝑇backbone =
1

2

[
̇

𝜃
1

̇
𝜃
2
]MBackbone [

̇
𝜃
1

̇
𝜃
2

] , (35)
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where

MBackbone = [

𝑀
𝐵 11

𝑀
𝐵 12

𝑀
𝐵 12

𝑀
𝐵 22

] ,

𝑀
𝐵 11

= 𝜌
2
𝐴
2
𝐿
3

2
(

V𝑐𝑥2 + V𝑐𝑦2

𝐿
2

2

+

𝑆
2
− 𝜃
2

𝐿
2
𝜃
2

2

V𝑐𝑦

+

𝐶
2
− 1

𝐿
2
𝜃
2

2

V𝑐𝑥 + 2

𝜃
2
− 𝑆
2

𝜃
3

2

+

𝐼
𝐶2

𝐴
2
𝐿
2

2

)

+ 𝜌
1
𝐴
1
𝐿
3

1
(

1

3𝜃
2

1

+ 2

𝐶
1
+ 1

𝜃
4

1

−

𝑆
1

𝜃
5

1

+

𝐼
𝐶1

3𝐴
1
𝐿
2

1

) ,

𝑀
𝐵 12

= 𝜌
2
𝐴
2
𝐿
3

2
(

𝜃
2
𝑆
2
− 2𝐶
2
− 2

𝐿
2
𝜃
3

2

V𝑐𝑦

+

𝜃
2
(𝐶
2
+ 1) − 2𝑆

2

𝐿
2
𝜃
3

2

V𝑐𝑥

+

1 − 𝐶
2

𝜃
4

2

−

𝑆
2

𝜃
3

2

+

1

2𝜃
2

2

+

𝐼
𝐶2

2𝐴
2
𝐿
2

2

) ,

𝑀
𝐵 22

= 𝜌
2
𝐴
2
𝐿
3

2
(

1

3𝜃
2

2

+ 2

𝐶
2
+ 1

𝜃
4

2

−

𝑆
2

𝜃
5

2

+

𝐼
𝐶1

3𝐴
2
𝐿
2

2

) ,

V𝑐𝑥 = (𝐶
1
(1 − 𝐶

1
− 𝜃
1
𝑆
1
) + 𝑆
1
(𝜃
1
𝐶
1
− 𝑆
1
))

𝐿
1

𝜃
2

1

,

V𝑐𝑦 = (−𝑆
1
(1 − 𝐶

1
− 𝜃
1
𝑆
1
) + 𝐶
1
(𝜃
1
𝐶
1
− 𝑆
1
))

𝐿
1

𝜃
2

1

,

(36)

and 𝐶
1
, 𝑆
1
, 𝐶
2
, and 𝑆

2
are, respectively, cos 𝜃

1
, sin 𝜃

1
, cos 𝜃

2
,

and sin 𝜃
2
, for abridgment.The whole finger kinetic energy is

𝑇 = 𝑇backbone +
1

2

𝑚tip ̇𝑟
2

𝑡
+

1

2

𝑚
𝑐
̇𝑟
2

𝑐

=

1

2

[
̇

𝜃
1

̇
𝜃
2
] (MBackbone + J𝑇

𝑡
𝑚tipJ𝑡 + J𝑇

𝑐
𝑚
𝑐
J
𝑐
)

× [

̇
𝜃
1

̇
𝜃
2

] ,

M = MBackbone + 𝑚tipJ
𝑇

𝑡
J
𝑡
+ 𝑚
𝑐
J𝑇
𝑐
J
𝑐
.

(37)

Finally, the derivatives of the kinetic energy with respect
to 𝜃
1
and 𝜃
2
are derived using Christoffel symbols [42] as

𝑉
1
=

𝜕𝑇

𝜕𝜃
1

= 𝑚
∗

111

̇
𝜃
1

̇
𝜃
1
+ 𝑚
∗

112

̇
𝜃
1

̇
𝜃
2
+ 𝑚
∗

121

̇
𝜃
2

̇
𝜃
1
+ 𝑚
∗

122

̇
𝜃
2

̇
𝜃
2
,

𝑉
2
=

𝜕𝑇

𝜕𝜃
2

= 𝑚
∗

211

̇
𝜃
1

̇
𝜃
1
+ 𝑚
∗

212

̇
𝜃
1

̇
𝜃
2
+ 𝑚
∗

221

̇
𝜃
2

̇
𝜃
1
+ 𝑚
∗

222

̇
𝜃
2

̇
𝜃
2
,

𝑚
∗

𝑖𝑗𝑘
=

𝜕M (𝑖, 𝑗)

𝜕𝜃
𝑘

−

𝜕M (𝑗, 𝑘)

2𝜕𝜃
𝑖

𝑖, 𝑗 = 1, 2.

(38)

4. Robot Modeling

In this section, the effects of the applied forces and moments
are modeled, and the robotic finger equations of motion are
represented.

4.1. Forces and Moments. As depicted in Figure 3, the only
nonconservative works done on the backbone are𝑊

𝜏𝑡
by the

tip moment 𝜏
𝑡
,𝑊
𝐹𝑡
by the tip force F

𝑡
, and𝑊

𝐹𝑐
by the contact

force F
𝑐
. Friction can also be added to the applied forces.

Here, for simplification, we only consider a structural friction
moment at each section, as internal moments, as

𝜏frc,1 = −𝑐frc
̇

𝜃
1
, 𝜏frc,2 = −𝑐frc

̇
𝜃
2
, (39)

where 𝑐frc is a friction coefficient. Considering the friction
work as 𝑊frc, the rate of work done on the finger backbone
is

𝑊̇ = 𝑊̇
𝐹𝑐

+ 𝑊̇
𝜏𝑡
+ 𝑊̇
𝐹𝑡

+ 𝑊̇frc

= F𝑇
𝑐
̇r
𝑐
+ 𝜏
𝑡
(

̇
𝜃
1
+

̇
𝜃
2
) + F𝑇
𝑡
̇r
𝑡
− 𝜏frc,1

̇
𝜃
1
− 𝜏frc,2

̇
𝜃
2

= (F𝑇
𝑐
J
𝑐
+ [𝜏
𝑡
𝜏
𝑡
] + F𝑇
𝑡
J
𝑡
− [𝑐frc

̇
𝜃
1

𝑐frc
̇

𝜃
2
])

× [

̇
𝜃
1

̇
𝜃
2

] .

(40)

Using (40), the derivatives of𝑊 with respect to 𝜃
1
and 𝜃
2
are

[

[

[

[

𝜕𝑊

𝜕𝜃
1

𝜕𝑊

𝜕𝜃
2

]

]

]

]

= J𝑇
𝑐
F
𝑐
+ J𝑇
𝑡
F
𝑡
− [

𝑐frc
̇

𝜃
1

𝑐frc
̇

𝜃
2

] + [

𝜏
𝑡

𝜏
𝑡

] . (41)

Several approaches have been introduced tomodel actua-
tion forces [1, 18, 29, 41].The aim of this paper is modeling the
robot backbone, regardless of the actuation system. However,
a simplified model of a tendon driven actuation system is
presented here. A continuum robotic finger with tendon
driven actuation system is depicted in Figure 7. This system
consists of two tendons (cables). The tendons pass through
the cable-guide disks, so that the disks keep the cables almost
parallel to the backbone, with a constant distance of 𝑒, as
depicted in the figure. Neglecting tendons friction with the
disks, the actuation system can approximately be modeled by
the tip moment 𝜏

𝑡
, as

𝜏
𝑡
= (𝐹
1
− 𝐹
2
) 𝑒, (42)

where 𝐹
1
and 𝐹

2
are, respectively, the tension forces of the 1st

and 2nd tendons, as depicted in Figure 7.

4.2. Equations of Motion. Using the Euler-Lagrange equa-
tions, the robotic continuum finger can be modeled as

M[

̈
𝜃
1

̈
𝜃
2

] + [

𝑉
1

𝑉
2

] + G
𝑒
+ G
𝑔

= J𝑇
𝑐
F
𝑐
+ J𝑇
𝑡
F
𝑡
− [

𝑐frc
̇

𝜃
1

𝑐frc
̇

𝜃
2

] + [

𝜏
𝑡

𝜏
𝑡

] ,

(43)
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Figure 7: A tendon driven actuation system.

Figure 8: The experimental setup for dynamics tests.

whereM is determined by (36) and (37), 𝑉
1
and 𝑉

2
are given

by (38), G
𝑔
and G

𝑒
are calculated by (29) and (32), and the

last term is determined by (41) and (42).

4.3. Singularity-Free Equations. When 𝜃
1
or 𝜃
2
is close to zero,

the denominators of most of the abovementioned equations
are close to zero, which results in a numerical singularity. In
order to avoid such numerical singularities, we can use Taylor
expansions of the proposed model equations.

Since the bending angles are limited to a small range,
the Taylor expansions can always be used instead of the
main equations, if a proper order is chosen. For our case, we
consider a very conservative range for the bending angles, as

𝜃
1
, 𝜃
2
∈ [−

2𝜋

3

2𝜋

3

] . (44)

For this range of bending angle, a 5th order Taylor expansion
of (4) can approximate r(𝑠)with an error less than 1.7%.Thus,
(4) is approximated as

r (𝑠) ≃
[

[

[

[

[

𝑠
6

720𝐿
5

1

𝜃
5

1
+

𝑠
4

24𝐿
3

1

𝜃
3

1
−

𝑠
2

2𝐿
1

𝜃
1

𝑠
5

120𝐿
4

1

𝜃
4

1
−

𝑠
3

6𝐿
2

1

𝜃
2

1
+ 𝑠

]

]

]

]

]

. (45)

Using (45), the whole model equations can be resolved
from the beginning, to achieve a singularity-free model. For

The backbone statics simulation

First section The two-section model
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Figure 9: Comparison of an exact solution, with the proposed
model in statics equilibrium.

our case, the model equations are derived as presented in
the appendix. This model is based on a common continuum
finger, where the density 𝜌 and the cross section area 𝐴 are
constant along the backbone, and the masses𝑚tip and𝑚

𝑐
are

negligible.

5. Validation and Conclusion

The experimental setup used for the backbone dynamics
model validation is depicted in Figure 8. A super elastic 60-
cm length 2-mm thick NiTinol rod was used as a continuous
backbone. Other characteristics of the rod, such as its module
of elasticity 𝐸, were identified as discussed in our previous
work [43]. For each test, different weights were attached to
the backbone tip. Formeasurement, a graph paper was placed
behind the rod.

This setup provides some feasible and reliable results for
backbone model validation, without unnecessary complica-
tions. For instance, in an actuated continuum arm, there
might be complexities due to tendon friction, installation tol-
erances, nonlinear elasticity, and so forth. Besides, dynamic
measurement of the arm position and the applied forces need
highly sensitive and precise sensors, which were not practical
in our case.

Using typical finite element methods, a model with
only two degrees of freedom would not be an accurate
approximation, since it cannot resemble the system geometry
accurately. If there is a considerable error in geometry
approximation, the kinetic and potential energies cannot be
determined accurately, which means the model stiffness and
inertia matrices cannot be accurate. Thus, first, the accuracy
of the proposedmodel in estimation of the whole robot shape
should be investigated. To check this, the proposed model
is compared to an exact model in statics equilibrium, as
depicted in Figure 9. For exact modeling, the static Cosserat
model of our previous work in [38] was used. Solving (43)
by considering all velocities and accelerations equal to zero,
the statics solution of the proposed model was determined.
Comparing the two models, as shown in the figure, the
proposed model can approximate the backbone shape with
good precision. Furthermore, some portion of this small
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Figure 10: Recording the backbone’s motion for further image
processing and measurements.

shape approximation error can be compensated by using the
identification method of [43] for characteristics such as 𝐸.

To run the tests, different weights were attached to the
backbone’s tip. Then, the backbone was pulled upward to
an initial position and released to move freely. The motion
was recorded by a camera; a video snapshot is depicted in
Figure 10. Using image processing methods, the tip position
was detected in each snapshot. Then, calibrating the results
using the graph paper, the trajectory of the backbone tip was
achieved.

For model validation, the obtained experimental results
and the results from model simulation were compared, in
several tests. The simulation and experimental trajectories
of tip position of three cases are depicted in Figure 11. Each
plot shows the trajectories of a case with a different weight
attached to the backbone tip, specified as𝑚tip.

There are some sources of errors in the experiments.
One is the precision of image processing methods. The other
is the exact time, the initial speed, and the initial shape
of the backbone when it is physically held and released.
However, the modeling results show good precision, as
depicted in Figure 11.

The results show the accuracy of the proposedmodel.The
calculation timewas suitable for real-time applications. Using
a 2.8GHz PC and a code inMATLAB, the calculation time of
the model was around one-tenth of the real time, in average.
Thus, the proposed model can be used for real-time grasp
optimization, planning, and control, as it will be used in our
future works.

Appendix

Here, the proposed model is resolved by Taylor expansions
of the model equations to avoid the numerical singularities.
The new equations are derived for the most common case
of continuum fingers, where the density 𝜌 and the cross-
sectional area 𝐴 are constant along the backbone, and the
masses𝑚tip and𝑚

𝑐
are negligible.

In Section 4, the dynamics model was presented as (43).
Among the variables of (43), G

𝑒
can be directly calculated

by (32). For the other variables M, 𝑉
1
, 𝑉
2
, G
𝑔
, J
𝑡
, and J

𝑐
, the

following singularity-free equations are derived using Taylor

expansions. Since𝑚tip and𝑚𝑐 are negligible,𝑀 is determined
using (36) and (37), as

M = 𝜌𝐴[

𝑀
11

𝑀
12

𝑀
12

𝑀
22

] ,

𝑀
11

≃ (

𝐿
3

1

25920

+

𝐿
1
𝐿
2

2

144

+

𝐿
2

1
𝐿
2

2880

) 𝜃
4

1
−

𝐿
1
𝐿
2

2

90

𝜃
3

1
𝜃
1

2

+

𝐿
1
𝐿
2

2

96

𝜃
2

1
𝜃
2

2
−

𝐿
1
𝐿
2

2

180

𝜃
1

1
𝜃
3

2
+ (

𝐿
3

2

2520

+

𝐿
1
𝐿
2

2

720

) 𝜃
4

2

− (

𝐿
3

1

504

+

𝐿
1
𝐿
2

2

8

+

𝐿
2

1
𝐿
2

72

) 𝜃
2

1
+

𝐿
1
𝐿
2

2

9

𝜃
1
𝜃
2

− (

𝐿
3

2

60

+

𝐿
1
𝐿
2

2

24

) 𝜃
2

2

+ (

𝐿
3

1

20

+

𝐿
2

1
𝐿
2

4

+

𝐿
1
𝐿
2

2

2

+

𝐿
3

2

3

) ,

𝑀
12

≃

𝐿
1
𝐿
2

2

864

𝜃
4

1
−

𝐿
1
𝐿
2

2

360

𝜃
3

1
𝜃
2
+

𝐿
1
𝐿
2

2

320

𝜃
2

1
𝜃
2

2

−

𝐿
1
𝐿
2

2

540

𝜃
1
𝜃
3

2
+

7𝐿
3

2
+ 20𝐿

1
𝐿
2

2

40320

𝜃
4

2

−

𝐿
1
𝐿
2

2

2880

𝜃
2

1
+

𝐿
1
𝐿
2

2

36

𝜃
1
𝜃
2

−

5𝐿
3

2
+ 9𝐿
1
𝐿
2

2

720

𝜃
2

2
+

3𝐿
3

2
+ 2𝐿
1
𝐿
2

2

24

,

𝑀
22

≃

𝐿
3

2

25920

𝜃
4

2
−

𝐿
3

2

504

𝜃
2

2
+

𝐿
3

2

20

.

(A.1)

From (23) and (24), the Jacobian matrices J
𝑐
and J
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Figure 11: The trajectory of backbone vertical tip position with four different tip weights.
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Using (38) and (A.1), we have
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Finally, the gravitational forces of (29) are
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