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It is time consuming to numerically solve fractional differential equations. The fractional ordinary differential equations may
produce Toeplitz-plus-band triangular systems. An efficient iterationmethod for Toeplitz-plus-band triangular systems is presented
with 𝑂 (𝑀log (𝑀)) computational complexity and 𝑂 (𝑀) memory complexity in this paper, compared with the regular solution
with 𝑂 (𝑀2) computational complexity and 𝑂 (𝑀2) memory complexity. 𝑀 is the discrete grid points. Some methods such
as matrix splitting, FFT, compress memory storage and adjustable matrix bandwidth are used in the presented solution. The
experimental results show that the presentedmethod compares well with the exact solution and is 4.25 times faster than the regular
solution.

1. Introduction

Fractional differential equation (FDE) plays an important
role in dynamical systems [1] and has more than 300 years of
research history [2]. Many analytical solutions and numerical
solutions [3–6] have been proposed for FDE, such as finite
difference method [7, 8], finite element method [9], and
spectral method [10, 11]. In recent times, interest in fractional
ordinary differential equations (FODE) has increased [12–
15]. The derivatives in the FODE are approximated by linear
combinations of function values at the discrete grid points.
Compared with integer ordinary differential equations, the
FODE has nonlocal effect, whichmeans a grid point may rely
on the grid points far away from its position. And a grid point
of the classical integer equations may only rely on its several
neighboring grid points.

For integer order equations, the coefficient matrices are
often sparse. Because of the nonlocal property of fractional
differential operators, the numerical methods for fractional
diffusion equations often generate dense or even full coef-
ficient matrices [16]. This nonlocal property makes the
computation of FODE and FDE much heavier than that of

the traditional integer equations.The shortmemory principle
[17], parallel computing [18–21], fast Fourier transformation
(FFT) [22, 23], multigrid method [24], and preconditioner
technologies [25, 26] are used to overcome this heavy com-
putation. Gong et al. presented many parallel algorithms for
different FDEs on both traditional and heterogeneous parallel
platforms [16, 18]. Diethelm [19] proposed a parallel second-
order Adams-Bashforth-Moultonmethod for a FODE.Wang
and Du [26] proposed a superfast-preconditioned iterative
method for steady-state two-side space-fractional diffusion
equations.

The fractional ordinary differential equations may pro-
duce Toeplitz-plus-band triangular systems. Toeplitz-plus-
band systems were studied by professors Chan and Ng [27].
They considered the solutions of Hermitian Toeplitz-plus-
band systems (𝐴

𝑛
+ 𝐵
𝑛
)𝑥 = 𝑏, where 𝐴

𝑛
are 𝑛-by-𝑛 Toeplitz

matrices and 𝐵
𝑛
are 𝑛-by-𝑛 band matrices with bandwidth

independent of 𝑛. 𝐴
𝑛
and 𝐵

𝑛
are both Hermitian matrix.

The authors proved that if 𝐴
𝑛
is generated by a nonnegative

piecewise continuous function and 𝐵
𝑛
is positive semidef-

inite, then there exists a band matrix 𝐶
𝑛
, with bandwidth
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independent of 𝑛, such that the spectra of 𝐶−1
𝑛
(𝐴
𝑛
+ 𝐵
𝑛
) are

uniformly bounded by a constant independent of 𝑛.The band
preconditionerwas developed forHermitianToeplitz systems
[28]. The recursive blocked algorithms were proposed for
triangular systems and the recursive algorithms lead to an
automatic variable blocking that has the potential ofmatching
the memory hierarchies of today’s HPC (high performance
computing) systems [29, 30].

This paper focuses on the fractional ordinary differential
equation [13]:

𝑢

(𝑡) + 𝑎 (𝑡)

0
𝐷
𝛼

𝑡
𝑢 (𝑡) + 𝑏 (𝑡) 𝑢 (𝑡) = 𝑓 (𝑡) , 𝑢 (0) = 0,

(1)

where 0 < 𝛼 < 1, 0 < 𝑡 < 𝑇 < +∞, 𝑎(𝑡) > 0, and 𝑏(𝑡) > 0.
The fractional derivative is in the Caputo form [31].

Define 𝑡
𝑖
= 𝑖𝜏 for 0 ≤ 𝑖 ≤ 𝑀, where 𝑀 is a positive

integer, and 𝜏 = 𝑇/𝑀 are step size. Assume 𝑢
𝑖
to be

the numerical approximation to 𝑢(𝑡
𝑖
) and 𝑓

𝑖
the numerical

approximation to 𝑓(𝑡
𝑖
). Using the Grünwald approximation,

the finite difference scheme for (1) is shown as follows:

𝑢
𝑖
− 𝑢
𝑖−1

𝜏
+ 𝑎
𝑖
𝜏
−𝛼

𝑖

∑

𝑘=0

𝑤
𝑘
𝑢
𝑛

𝑖−𝑘
+ 𝑏
𝑖
𝑢
𝑖
= 𝑓
𝑖
, 𝑢
0
= 0, (2)

where the normalized Grünwald weight 𝑤 is defined by

𝑤
0
= 1, 𝑤

𝑖
= (−1)

𝑖𝛼 (𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑖 + 1)

𝑖!
,

𝑖 = 1, 2, 3, . . . .

(3)

Equation (2) results in a linear system of equations

𝐴𝑈 = 𝐹, (4)

where 𝑈 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑀
)
𝑇 and 𝐹 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑀
)
𝑇. If

𝑢
0
̸= 0, the term should be included in 𝐹. 𝐴 = (𝑎

𝑖𝑗
)
𝑀×𝑀

is the
coefficient matrix. 𝐴 is defined by

𝑎
𝑖,𝑗
=

{{{{{{{{{{{

{{{{{{{{{{{

{

0 for 𝑖 < 𝑗
1

𝜏
+
𝑎
𝑖
𝑤
0

𝜏𝛼
+ 𝑏
𝑖

for 𝑖 = 𝑗

−1

𝜏
+
𝑎
𝑖
𝑤
1

𝜏𝛼
for 𝑖 = 𝑗 + 1

𝑎
𝑖
𝑤
𝑖−𝑗

𝜏𝛼
for 𝑖 > 𝑗 + 1.

(5)

2. Method

2.1. Analysis. In a more explicit format, matrix 𝐴 can be
represented as

𝐴 =
(
(
(

(

1

𝜏
+
𝑎1𝑤0

𝜏
𝛼
+ 𝑏1 0 ⋅ ⋅ ⋅ 0

−1

𝜏
+
𝑎2𝑤1

𝜏
𝛼

1

𝜏
+
𝑎2𝑤0

𝜏
𝛼
+ 𝑏2 ⋅ ⋅ ⋅ 0

...
... d

...
𝑎𝑀𝑤𝑀−1

𝜏
𝛼

𝑎𝑀𝑤𝑀−2

𝜏
𝛼

⋅ ⋅ ⋅
1

𝜏
+
𝑎𝑀𝑤0

𝜏
𝛼
+ 𝑏𝑛

)
)
)

)

.

(6)

input:𝑀,𝐹,𝐴
output: 𝐹

(1) for 𝑖 = 1 to 𝑀 by 1 do
(2) 𝑓

𝑖
← 𝑓
𝑖
/𝑎
𝑖,𝑖

(3) for 𝑗 = 𝑖 + 1 to 𝑀 by 1 do
(4) 𝑓

𝑗
← 𝑓
𝑗
− 𝑎
𝑖,𝑗
𝑓
𝑗

Algorithm 1: Forward substitution for lower triangular matrix.

The linear system (4) can be solved with computational
complexity 𝑂(𝑀2), shown in Algorithm 1. The output 𝐹
equals 𝑈.

From (6), we can see that 𝐴 has some properties.

(1) 𝐴 is a low triangular, diagonal dominant matrix.
(2) One has |𝑎

𝑖,𝑗+1
| > |𝑎

𝑖,𝑗
| for 1 ≤ 𝑖 ≤ 𝑀, 𝑗 < 𝑖. This

property is determined by the normalized Grünwald
weight 𝑤

𝑖
and is the mathematical background of

short memory principle.This property means that for
grid point 𝑝, if the distance of grid point 𝑝

1
is smaller

than that of grid point 𝑝
2
, 𝑝
1
has more impact on 𝑝

than 𝑝
2
.

(3) If 𝐴 is split into two matrices 𝐵 and 𝐶, 𝐴 = 𝐵 − 𝐶.
𝐵 is a banded matrix and the bandwidth (number
of diagonals) 𝜂 > 2. Matrix 𝐶 can be factorized
into a product 𝐶 = 𝐷𝑇. 𝐷 is a diagonal matrix
diag{𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑀
}. 𝑇 is a Toeplitz matrix with𝑀−𝜂

nonzero diagonals on its left-bottom part.
(4) The Toeplitz matrix 𝑇 can be stored with 𝑀 − 𝜂

memory space compared with (𝑀 − 𝜂)(𝑀 − 𝜂 + 1)/2
for a general low triangular matrix with order𝑀− 𝜂.

2.2. Efficient Iteration Method. Equation (4) evolves as fol-
lows:

(𝐵 − 𝐶)𝑈 = 𝐹 (7)

𝐵𝑈
𝑛+1
= 𝐶𝑈

𝑛
+ 𝐹 (8)

𝐵𝑈
𝑛+1
= 𝐷𝑇𝑈

𝑛
+ 𝐹 (9)

𝐵𝑈
𝑛+1
= 𝐷 (𝑇𝑈

𝑛
) + 𝐹. (10)

So the linear algebra can be solved iteratively, shown in
(10). Because 𝐷 is a diagonal matrix, 𝐷 keeps associative
law and commutative law for matrix-matrix multiplication.
The rate of convergence associated with (10) depends on the
eigenvalues of the iteration matrix [32]:

𝐻 = 𝐵
−1
𝐷𝑇 = 𝐵

−1
𝐶. (11)

Assuming error 𝑒𝑛+1 = 𝑈𝑛+1 −𝑈 with𝑈 satisfies𝐴𝑈 = 𝐹,
then

𝑒
𝑛+1
= 𝐵
−1
𝐶𝑒
𝑛
= 𝐻𝑒
𝑛
= 𝐻
𝑛
𝑒
1 (12)
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input:𝑀, 𝜂, 𝐹, 𝐴
output: 𝑈

(1) 𝜖 ← 10−6, 𝛿 = 1.0
(2) while 𝛿 > 𝜖 do
(3) set V𝑏

1→𝑀−𝜂
with 𝑢𝑎

𝑀−𝜂→1

(4) 𝑉1 ← FFT(V𝑏)
(5) 𝑉2 ← FFT(V𝑎)
(6) V← 𝑉1⨀𝑉2

(7) 𝑢
1→𝑀

← 𝑓
1→𝑀

(8) for 𝑖 = 1 to 𝑀− 𝜂 by 1 do
(9) 𝑢

𝜂+𝑖
← 𝑢
𝜂+𝑖
+ V
2(𝑀−𝜂)−𝑖

(10) for 𝑗 = 1 to 𝑀 by 1 do
(11) 𝑢

𝑗
← 𝑢
𝑗
𝑑
𝑗

(12) for 𝑖 = 𝑗 + 1 to min {𝑗 + 𝜂 − 1,𝑀} by 1 do
(13) 𝑢

𝑖
← 𝑢
𝑖
− 𝑏
𝑖−𝑗+1

𝑢
𝑗

(14) 𝛿 ← max (𝑢1→𝑀 − 𝑢𝑎1→𝑀
)

(15) 𝑢𝑎
1→𝑀

← 𝑢𝑎
1→𝑀

Algorithm 2: The efficient iteration method for FODE.

with norm ‖ ∗ ‖ [32]:

𝑒
𝑛+1

=

𝐺
𝑛
𝑒
1
=
𝐺
𝑛 ×


𝑒
1
. (13)

So the spectral radius of 𝐻 (𝜌(𝐻)) determines the
asymptotic behavior of𝐻𝑛. FromTheorem 11.2.1 of [32], we
can conclude that if and only if 𝜌(𝐻) < 1, (10) will converge
to𝐴−1𝐹. Generally speaking, the iteration is expected to work
well with small 𝜌(𝐻).

Assume the bandwidth of matrix 𝐵 is 𝜂 and 𝑉 =

𝐷(𝑇𝑈
𝑛
) + 𝐹. Solving 𝐵𝑈𝑛+1 = 𝑉 needs about𝑀𝜂 arithmeti-

cal operations. If 𝜂 is near log
2
𝑀, there are about 𝑀log

2
𝑀

arithmetical operations with forward substitution. So the
computational complexity of 𝐵𝑈𝑛+1 = 𝑉 is 𝑂(𝑀log

2
𝑀).

Assume 𝐸1 = 𝑇𝑈
𝑛, 𝐸2 = 𝐷𝐸

1
, and 𝑉 = 𝐸2 +

𝐹. The computation of 𝐸2 and 𝑉 needs 𝑀 multiplications
and 𝑀 additions, respectively. Because 𝑇 only has nonzero
𝑀 − 𝜂 diagonals on its left-bottom part, only the front𝑀 −

𝜂 elements of 𝑈𝑛 are effective for the multiplication 𝑇𝑈𝑛.
The back 𝜂 elements of 𝐸1 are zero. So 𝐸1 = 𝑇𝑈

𝑛 can
be regarded as a Toeplitz matrix vector multiplication 𝑇

1
𝑈
𝑛

1

with order 𝑀 − 𝜂. It is well known that Toeplitz matrix
vector multiplication with order 𝑀 − 𝜂 can be finished
with 𝑂(𝑀log

2
𝑀) = 𝑂((𝑀 − 𝜂)log

2
(𝑀 − 𝜂)) operations

[33]. The Toeplitz matrix vector multiplication 𝑇
1
𝑈
𝑛

1
can be

computed by FFTs by first embedding 𝑇
1
into a 2(𝑀− 𝜂)-by-

2(𝑀−𝜂) circulant matrix.The cost of circulant matrix vector
multiplication is𝑂(2(𝑀−𝜂)log

2
(2(𝑀−𝜂))) by using FFTs of

length 2(𝑀 − 𝜂).
So the cost of each iteration of (10) is𝑂(𝑀log

2
𝑀). If𝐴 is

a diagonal dominant matrix, we can expect (10) can converge
with not too many iterations. The efficient iteration method
is shown in Algorithm 2.

In Algorithm 2, 𝑢𝑎
1→𝑀

stands for the value of previous
iteration and 𝑢

1→𝑀
stands for the current iteration. 𝑉1⊙𝑉2

stands for V1
𝑖
V2
𝑖
with 1 ≤ 𝑖 ≤ 2(𝑀 − 𝜂) − 1. 𝑑

𝑖
equals the

reciprocal of 𝑎
𝑖,𝑖
with 1 ≤ 𝑖 ≤ 𝑀. 𝑏

𝑖
stands for 𝑎

𝑖,1
with 1 ≤ 𝑖 ≤

𝜂. V𝑎 and V𝑏 are 2(𝑀− 𝜂) − 1 arrays. V𝑎
𝑀−𝜂−𝑖+1

equals −𝑎
𝜂+𝑖,1

.

u
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t
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Figure 1: Comparison of exact solution to the solution of the fast
solution at time 𝑡 = 1.0.

The value of 𝜂 can affect the performance of Algorithm 2
shown in Table 1.

Algorithm 2 has five features/advantages compared to
Algorithm 1.

(1) Split the coefficient matrix and solve the triangular
system iteratively.

(2) Use FFT to compute matrix vector multiplication.
(3) Precompute 𝑑

𝑖
.

(4) Compress storage.
(5) Adjust parameter 𝜂.

3. Numerical Example

The experiment platform is a laptop with Intel(R) Core (TM)
i3-3110MCPU, 2GBmainmemory, andWindows 7 operating
system. The CPU clock frequency is 2.40GHz. The code is
developed withMATLAB R2012a and runs on default double
precision floating point operations.

The following fractional (𝛼 = 0.8) ordinary differential
equation [13] was considered:

𝑢

(𝑡) +
0
𝐷
𝛼

𝑡
𝑢 (𝑡) + (1 + 𝑡) 𝑢 (𝑡) = 𝑓 (𝑡) , 𝑡 > 0, 𝑢 (0) = 0,

(14)

where 𝑓(𝑡) = (14/Γ(3.8))𝑡1.8 + (5/2)𝑡2 + (5/Γ(3.8))(1 + 𝑡)𝑡2.8.
The exact solution of (14) is

𝑢 (𝑡) =
5

Γ (3.8)
𝑡
2.8
. (15)

The efficient iteration method of Algorithm 2 compares
well with the exact solution to the FODE in the test case of
(14), shown in Figure 1.The 𝜏 is 1.0/100.Themaximum abso-
lute error is 9.78 × 10−3. The difference between the efficient
iteration method and the forward substitution Algorithm 1
is only 2.37 × 10−10. The efficient iteration method and
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Table 1: Impact of 𝜂.

Procedure Big 𝜂 Small 𝜂
Iterations Less More
𝐵𝑈
𝑛+1
= 𝑉 Slow Fast

𝑉 = 𝐷(𝑇𝑈
𝑛
) + 𝐹 Fast Slow

Table 2: Performance comparison between regular solution and the
presented efficient iteration method.

𝑀 Presented method Regular solution Speedup
5 × 10

3 0.14 0.27 1.96
1 × 10

4 0.41 1.10 2.67
2 × 10

4 1.37 4.39 3.20
4 × 10

4 4.51 17.74 3.93
8 × 10

4 14.30 60.71 4.25

Table 3: Impact of 𝜂 for𝑀 = 4 × 10
4.

𝜂 Number of iterations Runtime
1(⌈log

2
𝑀⌉ + 1) 93 7.95

2(⌈log
2
𝑀⌉ + 1) 57 4.62

3(⌈log
2
𝑀⌉ + 1) 43 5.61

4(⌈log
2
𝑀⌉ + 1) 36 4.51

5(⌈log
2
𝑀⌉ + 1) 31 4.93

6(⌈log
2
𝑀⌉ + 1) 28 5.01

the regular forward substitution solution have no noticeable
artifacts.

The performance comparison between regular forward
substitution solution of Algorithm 1 and efficient iteration
method of Algorithm 2 is shown in Table 2. Columns 2 and
3 of Table 2 are the runtime and the runtime is recorded in
seconds. With𝑀 = 8 × 10

4, the maximum speedup is 4.25.
Because the speedup increases with𝑀, the bigger𝑀 is, the
higher the speedup that can be expected is. Because of the
2GB memory limitation, the compress memory usage is also
used in Algorithm 1.

The impact of 𝜂 on the performance of Algorithm 2 is
shown in Table 3. The runtime of the presented method
varies with 𝜂. So 𝜂 is a key parameter for the performance
of Algorithm 2. In real fractional ordinary applications, the
proper 𝜂 should be chosen.

The presented iteration method should be regarded as
an iteration method to solve not only the system generated
from FODE but also the more general Toeplitz-plus-band
triangular systems. The technology of parallel computing is
very useful, but with less mathematical background. Parallel
computing is attractive for fractional differential equations
[34]. As a part of futurework, first, wewould like to parallelize
the presented solution on shared memory or distributed
memory systems. Second, accelerating the presented effi-
cient iterationmethod on heterogeneous architecture [35–38]
should also be interesting.
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