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We present a branch and bound algorithm for globally solving the sum of ratios problem. In this problem, each term in the objective
function is a ratio of two functionswhich are the sums of the absolute values of affine functionswith coefficients.This problemhas an
important application in financial optimization, but the global optimization algorithm for this problem is still rare in the literature
so far. In the algorithm we presented, the branch and bound search undertaken by the algorithm uses rectangular partitioning and
takes place in a space which typically has a much smaller dimension than the space to which the decision variables of this problem
belong. Convergence of the algorithm is shown. At last, some numerical examples are given to vindicate our conclusions.

1. Introduction

The sum of ratios problem has attracted considerable atten-
tion in the literature because of its large number of practi-
cal applications in various fields of study, including trans-
portation planning, government contracting, economics, and
finances [1–6]. And from a research point of view, the sum
of ratios problem poses significant theoretical and compu-
tational challenges. This is mainly due to the fact that it is
known to generally possess multiple local optima that are not
globally optimal.

Many solution algorithms have been proposed for glob-
ally solving sums of linear ratios problem with linear con-
straints (see, e.g., [7–11]). Recently, some algorithms have
been developed for solving globally the nonlinear sum of
ratios problems; for instance, Freund and Jarre [12] proposed
an interior-point approach for the convex-concave ratioswith
convex constraints; Dai et al. [13] and Pei and Zhu [14]
presented two algorithms for the sum of dc ratios; Benson
[15, 16] gave two branch and bound algorithms for the
concave-convex ratios; Yamamoto and Konno [17] proposed
an algorithm for convex-convex ratios; Shen and Jin [18] and
Jiao and Shen [19] developed global optimization algorithms
for two kinds of nonlinear sum of ratios.

In this paper, we are concerned with the following
nonlinear sum of ratios problem:

V = max ℎ (𝑥) =
𝑝

∑

𝑖=1

𝑛𝑖 (𝑥)

𝑑𝑖 (𝑥)

s.t. 𝑥 ∈ 𝑋,

(P)

where 𝑝 ≥ 1, 𝑋 is a compact, convex set in 𝑅

𝑛, and 𝑛𝑖(𝑥) =

∑

𝑆𝑖
𝑠=1

𝛼𝑠𝑖| ∑
𝑛

𝑗=1
𝑛𝑗𝑠𝑖𝑥𝑗+𝑛0𝑠𝑖|, 𝑑𝑖(𝑥) = ∑

𝑇𝑖
𝑡=1

𝛽𝑡𝑖| ∑
𝑛

𝑗=1
𝑑𝑗𝑡𝑖𝑥𝑗+𝑑0𝑡𝑖|,

𝑖 = 1, 2, . . . , 𝑝. In addition, we assume that 𝛼𝑠𝑖, 𝛽𝑡𝑖 ∈ 𝑅, 0 <

𝑙𝑖 ≤ 𝑛𝑖(𝑥) ≤ 𝑢𝑖, 0 < 𝐿 𝑖 ≤ 𝑑𝑖(𝑥) ≤ 𝑈𝑖, ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑝.
Problem (P) arises when we replace the variance by the

absolute deviation as ameasure of the variation of a portfolio.
And the global optimization algorithm for this problem is
still rare in the literature so far. So we believe that this paper
is of interest to researchers in both the fields of portfolio
optimization and fractional programming.

The purpose of this paper is to present a branch and
bound algorithm for globally solving problem (P).We believe
that the proposed algorithm has four potential practical and
computational advantages. First, upper bounds are obtained
by maximizing the concave envelope of the objective func-
tion of problem (P) over rectangles. Second, the proposed
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algorithm uses rectangles rather than simplices as partition
elements, so that branching only takes place in a space of
dimension 𝑝 rather than 𝑛 or 2𝑝 although the algorithm
search is carried outmainly in a space of dimension 2𝑝.Third,
we choose a simple and standard bisection rule. This rule
is sufficient to ensure convergence since the partition rule
is exhaustive. Finally, the upper bounding subproblems are
convex programming problems that differ from each other
only in the coefficients of certain linear constraints and in the
bounds that describe their associated rectangles.

The remainder of this paper is organized as follows. In
Section 2, an equivalent problem of problem (P) is given.
Next, in Section 3, we construct the function overestimating
the value of the sum of ratios. In Section 4, the proposed
branch and bound algorithm is described, and the conver-
gence of the algorithm is established. Some numerical results
are reported in Section 5. A summary is proposed in the last
section.

2. Equivalent Problem

In order to globally solve the problem (P), first problem (P)
can be converted into an equivalent nonconvex programming
problem (P1) as follows:

V = max
𝑝

∑

𝑖=1

𝑡𝑖

𝑠𝑖

s.t. 𝑛𝑖 (𝑥) − 𝑡𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑝,

− 𝑑𝑖 (𝑥) + 𝑠𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑝,

𝑥 ∈ 𝑋, 𝑙𝑖 ≤ 𝑡𝑖 ≤ 𝑢𝑖, 𝐿 𝑖 ≤ 𝑠𝑖 ≤ 𝑈𝑖,

𝑖 = 1, . . . , 𝑝.

(P1)

Theorem 1. If (𝑥

∗
, 𝑡

∗
, 𝑠

∗
) is a global optimal solution for

problem (P1), then 𝑡

∗

𝑖
= 𝑛𝑖(𝑥

∗
), 𝑠∗
𝑖
= 𝑑𝑖(𝑥

∗
), 𝑖 = 1, 2, . . . , 𝑝,

and 𝑥∗ is a global optimal solution for problem (P). Conversely,
if 𝑥

∗ is a global optimal solution for problem (P), then
(𝑥

∗
, 𝑡

∗
, 𝑠

∗
) is a global optimal solution for problem (P1), where

𝑡

∗

𝑖
= 𝑛𝑖(𝑥

∗
), 𝑠∗
𝑖
= 𝑑𝑖(𝑥

∗
), 𝑖 = 1, 2, . . . , 𝑝.

Proof. The proof of this result can be easily followed from the
definitions of problems (P) and (P1) and is therefore omitted.

Without loss of generality, we assume that 𝛼𝑠𝑖 > 0, 𝑠 =

1, . . . , 𝑆𝑠𝑖, 𝛽𝑡𝑖 < 0, 𝑡 = 1, . . . , 𝑇𝑡𝑖, 𝑖 = 1, . . . , 𝑝.
Let us define

𝑢𝑠𝑖 − V𝑠𝑖 =
𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖, 𝑢𝑠𝑖V𝑠𝑖 = 0, 𝑢𝑠𝑖 ≥ 0,

V𝑠𝑖 ≥ 0, 𝑠 = 1, . . . , 𝑆𝑠𝑖, 𝑖 = 1, . . . , 𝑝,

𝜉𝑡𝑖 − 𝜂𝑡𝑖 =

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖, 𝜉𝑡𝑖𝜂𝑡𝑖 = 0, 𝜉𝑡𝑖 ≥ 0,

𝜂𝑡𝑖 ≥ 0, 𝑡 = 1, . . . , 𝑇𝑡𝑖, 𝑖 = 1, . . . , 𝑝.

(1)

Then problem (P1) can be reformulated as follows:

max
𝑝

∑

𝑖=1

𝑡𝑖

𝑠𝑖

s.t.
𝑆𝑠𝑖

∑

𝑠=1

𝛼𝑠𝑖 (𝑢𝑠𝑖 + V𝑠𝑖)

+

𝑆𝑖

∑

𝑠=𝑆𝑠𝑖+1

𝛼𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− 𝑡𝑖 ≥ 0,

𝑖 = 1, . . . , 𝑝,

−

𝑇𝑡𝑖

∑

𝑡=1

𝛽𝑡𝑖 (𝜉𝑡𝑖 + 𝜂𝑡𝑖)

−

𝑇𝑖

∑

𝑡=𝑇𝑡𝑖+1

𝛽𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑠𝑖 ≥ 0,

𝑖 = 1, . . . , 𝑝,

𝑢𝑠𝑖 − V𝑠𝑖 =
𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖, 𝑢𝑠𝑖V𝑠𝑖 = 0,

𝑢𝑠𝑖 ≥ 0, V𝑠𝑖 ≥ 0, 𝑠 = 1, . . . , 𝑆𝑠𝑖,

𝑖 = 1, . . . , 𝑝,

𝜉𝑡𝑖 − 𝜂𝑡𝑖 =

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖, 𝜉𝑡𝑖𝜂𝑡𝑖 = 0

𝜉𝑡𝑖 ≥ 0, 𝜂𝑡𝑖 ≥ 0, 𝑡 = 1, . . . , 𝑇𝑡𝑖,

𝑖 = 1, . . . , 𝑝,

𝑥 ∈ 𝑋, 𝑙𝑖 ≤ 𝑡𝑖 ≤ 𝑢𝑖, 𝐿 𝑖 ≤ 𝑠𝑖 ≤ 𝑈𝑖,

𝑖 = 1, . . . , 𝑝.

(P2)

As is well known, the set of complementarity conditions
𝑢𝑠𝑖V𝑠𝑖 = 0 can be represented as a system of linear inequalities
by introducing zero-one integer variable [20]:

𝑢𝑠𝑖 ≤ 𝑎𝑠𝑖 ≤ 𝑧𝑠𝑖, V𝑠𝑖 ≤ 𝑏𝑠𝑖 (1 − 𝑧𝑠𝑖) , (2)

where 𝑧𝑠𝑖 ∈ {0, 1} and 𝑎𝑠𝑖, 𝑏𝑠𝑖 are defined as follows:

𝑎𝑠𝑖 = max
{

{

{

max
{

{

{

𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖 | 𝑥 ∈ 𝑋

}

}

}

, 0

}

}

}

,

𝑏𝑠𝑖 = −min
{

{

{

min
{

{

{

𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖 | 𝑥 ∈ 𝑋

}

}

}

, 0

}

}

}

.

(3)

Then 𝑧𝑠𝑖 ∈ {0, 1} can be transformed into

0 ≤ 𝑧𝑠𝑖 ≤ 1, 𝑧𝑠𝑖 (1 − 𝑧𝑠𝑖) ≤ 0. (4)
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For 𝜉𝑡𝑖𝜂𝑡𝑖 = 0, we do with them similarly. Let

𝜉𝑡𝑖 ≤ 𝑐𝑡𝑖 ≤ 𝑤𝑡𝑖, 𝜂𝑡𝑖 ≤ 𝑑𝑡𝑖 (1 − 𝑤𝑡𝑖) ,

0 ≤ 𝑤𝑡𝑖 ≤ 1, 𝑤𝑡𝑖 (1 − 𝑤𝑡𝑖) ≤ 0,

(5)

where

𝑐𝑡𝑖 = max
{

{

{

max
{

{

{

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖 | 𝑥 ∈ 𝑋

}

}

}

, 0

}

}

}

,

𝑑𝑡𝑖 = −min
{

{

{

min
{

{

{

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖 | 𝑥 ∈ 𝑋

}

}

}

, 0

}

}

}

.

(6)

And let

𝐻

0
= {(𝑡, 𝑠) ∈ 𝑅

2𝑝
| 𝑙𝑖 ≤ 𝑡𝑖 ≤ 𝑢𝑖, 𝐿 𝑖 ≤ 𝑠𝑖 ≤ 𝑈𝑖, 𝑖 = 1, . . . , 𝑝} .

(7)

So the problem (P2) is equivalent to the following problem:

max
𝑝

∑

𝑖=1

𝑡𝑖

𝑠𝑖

s.t.
𝑆𝑠𝑖

∑

𝑠=1

𝛼𝑠𝑖 (𝑢𝑠𝑖 + V𝑠𝑖)

+

𝑆𝑖

∑

𝑠=𝑆𝑠𝑖+1

𝛼𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− 𝑡𝑖 ≥ 0,

𝑖 = 1, . . . , 𝑝,

−

𝑇𝑡𝑖

∑

𝑡=1

𝛽𝑡𝑖 (𝜉𝑡𝑖 + 𝜂𝑡𝑖)

−

𝑇𝑖

∑

𝑡=𝑇𝑡𝑖+1

𝛽𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑠𝑖 ≥ 0,

𝑖 = 1, . . . , 𝑝,

𝑢𝑠𝑖 − V𝑠𝑖 =
𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖, 𝑠 = 1, . . . , 𝑆𝑠𝑖,

𝑖 = 1, . . . , 𝑝,

𝜉𝑡𝑖 − 𝜂𝑡𝑖 =

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖, 𝑡 = 1, . . . , 𝑇𝑡𝑖,

𝑖 = 1, . . . , 𝑝,

𝑢𝑠𝑖 ≤ 𝑎𝑠𝑖 ≤ 𝑧𝑠𝑖, V𝑠𝑖 ≤ 𝑏𝑠𝑖 (1 − 𝑧𝑠𝑖) ,

𝑧𝑠𝑖 (1 − 𝑧𝑠𝑖) ≤ 0, 𝑠 = 1, . . . , 𝑆𝑠𝑖,

𝑖 = 1, . . . , 𝑝,

𝜉𝑡𝑖 ≤ 𝑐𝑡𝑖 ≤ 𝑤𝑡𝑖, 𝜂𝑡𝑖 ≤ 𝑑𝑡𝑖 (1 − 𝑤𝑡𝑖) ,

𝑤𝑡𝑖 (1 − 𝑤𝑡𝑖) ≤ 0, 𝑡 = 1, . . . , 𝑇𝑡𝑖,

𝑖 = 1, . . . , 𝑝,

0 ≤ 𝑧𝑠𝑖 ≤ 1, 0 ≤ 𝑤𝑡𝑖 ≤ 1, 𝑠 = 1, . . . , 𝑆𝑠𝑖,

𝑡 = 1, . . . , 𝑇𝑡𝑖, 𝑖 = 1, . . . , 𝑝,

𝑥 ∈ 𝑋, (𝑡, 𝑠) ∈ 𝐻

0
.

(P (H0))

3. Convex Relaxation Programming

The principle construct in the development of a solution
procedure for solving (P (H0)) is the construction of a
convex relaxation programming of (P (H0)) for obtaining
the upper bound for this problem, as well as for its partitioned
subproblems. Such a convex relaxation can be realized by
using the concave envelope of the objective function of
(P (H0)) over an associated rectangle.

To help obtain convex relaxations, the concept of a
concave envelope may be defined as follows.

Definition 2 (see [21]). Let𝑀 ⊆ 𝑅

𝑞 be a compact, convex set,
and let 𝑓 : 𝑀 → 𝑅 be upper semicontinuous on 𝑀. Then
𝑓

𝑀
: 𝑀 → 𝑅 is called the concave envelope of 𝑓 on𝑀 if

(i) 𝑓𝑀(𝑥) is a concave function on𝑀,

(ii) 𝑓𝑀(𝑥) ≥ 𝑓(𝑥) for all 𝑥 ∈ 𝑀,

(iii) there is no function 𝜔(𝑥) satisfying (i) and (ii) such
that 𝜔(𝑥) < 𝑓

𝑀
(𝑥) for some point 𝑥 ∈ 𝑀.

The following theorem is obtained from the definition
above.

Theorem 3. Consider a rectangle 𝑀 of 𝑅2 : 𝑀 = {(𝑥1, 𝑥2) ∈

𝑅

2
| 𝑙 ≤ 𝑥1 ≤ 𝑢, 𝐿 ≤ 𝑥2 ≤ 𝑈}, where 𝑙, 𝑢, Ł, 𝑈 satisfy 0 <

𝑙 < 𝑢, 0 < 𝐿 < 𝑈. For any (𝑥1, 𝑥2) ∈ 𝑅

2
(𝑥2 ̸= 0), we define

function 𝑓(𝑥1, 𝑥2) = 𝑥1/𝑥2; then the concave envelope 𝑓𝑀 of
the function 𝑓 : 𝑀 → 𝑅 is given by

𝑓

𝑀
(𝑥1, 𝑥2)

= min{1

𝐿

𝑥1 −
𝑙

𝐿𝑈

𝑥2 +
𝑙

𝑈

,

1

𝑈

𝑥1 −
𝑢

𝐿𝑈

𝑥2 +
𝑢

𝐿

} .

(8)

Proof. This result is essentially shown in [15] and is therefore
omitted.

In order to obtain an upper bound of the optimal value to
(P (H0)) by solving a convex programming, we can utilize



4 Mathematical Problems in Engineering

Theorem 3 and convex the reverse convex constraints to
problem (P (H0)) such that a convex program is given by

max
𝑝

∑

𝑖=1

𝑟𝑖

s.t. 𝑟𝑖 ≤
1

𝐿 𝑖

𝑡𝑖 −
𝑙𝑖

𝐿 𝑖𝑈𝑖

𝑠𝑖 +
𝑙𝑖

𝑈𝑖

, 𝑖 = 1, . . . , 𝑝,

𝑟𝑖 ≤
1

𝑈𝑖

𝑡𝑖 −
𝑢𝑖

𝐿 𝑖𝑈𝑖

𝑠𝑖 +
𝑢𝑖

𝐿 𝑖

, 𝑖 = 1, . . . , 𝑝,

𝑆𝑠𝑖

∑

𝑠=1

𝛼𝑠𝑖 (𝑢𝑠𝑖 + V𝑠𝑖)

+

𝑆𝑖

∑

𝑠=𝑆𝑠𝑖+1

𝛼𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

− 𝑡𝑖 ≥ 0,

𝑖 = 1, . . . , 𝑝,

−

𝑇𝑡𝑖

∑

𝑡=1

𝛽𝑡𝑖 (𝜉𝑡𝑖 + 𝜂𝑡𝑖)

−

𝑇𝑖

∑

𝑡=𝑇𝑡𝑖+1

𝛽𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝑠𝑖 ≥ 0,

𝑖 = 1, . . . , 𝑝,

𝑢𝑠𝑖 − V𝑠𝑖 =
𝑛

∑

𝑗=1

𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖, 𝑠 = 1, . . . , 𝑆𝑠𝑖,

𝑖 = 1, . . . , 𝑝,

𝜉𝑡𝑖 − 𝜂𝑡𝑖 =

𝑛

∑

𝑗=1

𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖, 𝑡 = 1, . . . , 𝑇𝑡𝑖,

𝑖 = 1, . . . , 𝑝,

𝑢𝑠𝑖 ≤ 𝑎𝑠𝑖 ≤ 𝑧𝑠𝑖, V𝑠𝑖 ≤ 𝑏𝑠𝑖 (1 − 𝑧𝑠𝑖) ,

𝜉𝑡𝑖 ≤ 𝑐𝑡𝑖 ≤ 𝑤𝑡𝑖, 𝜂𝑡𝑖 ≤ 𝑑𝑡𝑖 (1 − 𝑤𝑡𝑖) ,

𝑧𝑠𝑖 − (𝑧

𝑙

𝑠𝑖
)

2

− (𝑧

𝑢

𝑠𝑖
+ 𝑧

𝑙

𝑠𝑖
) (𝑧𝑠𝑖 − 𝑧

𝑙

𝑠𝑖
) ≤ 0,

𝑠 = 1, . . . , 𝑆𝑠𝑖, 𝑖 = 1, . . . , 𝑝,

𝑤𝑡𝑖 − (𝑤

𝑙

𝑡𝑖
)

2

− (𝑤

𝑢

𝑡𝑖
+ 𝑤

𝑙

𝑡𝑖
) (𝑤𝑡𝑖 − 𝑤

𝑙

𝑡𝑖
) ≤ 0,

𝑡 = 1, . . . , 𝑇𝑡𝑖, 𝑖 = 1, . . . , 𝑝,

0 ≤ 𝑧𝑠𝑖 ≤ 1, 0 ≤ 𝑤𝑡𝑖 ≤ 1, 𝑠 = 1, . . . , 𝑆𝑠𝑖,

𝑡 = 1, . . . , 𝑇𝑡𝑖, 𝑖 = 1, . . . , 𝑝,

𝑥 ∈ 𝑋, (𝑡, 𝑠) ∈ 𝐻

0
.

(RCP (H0))

4. Branch and Bound Algorithm

In this section, a branch and bound algorithm is developed
to solve (P (H0)) based on the former convex relaxation
method. This algorithm needs to solve a sequence of convex
relaxation programming problems about rectangle𝐻0 or the
subrectangle𝐻 of𝐻0 to find a global solution.

4.1. Rectangular Partition Rule. The critical element in guar-
anteeing convergence to a global maximum of (P (H0)) is
the choice of a suitable partitioning strategy. In this paper,
we choose a simple and standard bisection rule. This rule
is sufficient to ensure convergence since it derives all the
intervals shrinking to a singleton for all the variables along
any infinite branch of the branch and bound tree. Assume
that, at each stage of the branch and bound algorithm,𝐻0 or
a subrectangle of𝐻0 is subdivided into two rectangles by the
branching process. To explain this process, assume without
loss of generality that𝐻0 or a subrectangle of𝐻0 to be divided
is 𝐻 = {(𝑡, 𝑠) ∈ 𝑅

2𝑝
| 𝑙𝑖 ≤ 𝑡𝑖 ≤ 𝑢𝑖, 𝐿 𝑖 ≤ 𝑠𝑖 ≤ 𝑈𝑖, 𝑖 = 1, . . . , 𝑝}.

This branching rule is as follows.

(i) Let 𝑞 ∈ argmax{𝑈𝑖 − 𝐿 𝑖 | 𝑖 = 1, . . . , 𝑝}.
(ii) Let 𝛾 = (𝐿𝑞 + 𝑈𝑞)/2.
(iii) Let

𝐻

1
= { (𝑡, 𝑠) ∈ 𝑅

2𝑝
| 𝑙𝑖 ≤ 𝑡𝑖 ≤ 𝑢𝑖, 𝐿 𝑖 ≤ 𝑠𝑖 ≤ 𝑈𝑖,

𝑖 ̸= 𝑞, 𝐿𝑞 ≤ 𝑠𝑞 ≤ 𝛾} ,

𝐻

2
= { (𝑡, 𝑠) ∈ 𝑅

2𝑝
| 𝑙𝑖 ≤ 𝑡𝑖 ≤ 𝑢𝑖, 𝐿 𝑖 ≤ 𝑠𝑖 ≤ 𝑈𝑖,

𝑖 ̸= 𝑞, 𝛾 ≤ 𝑠𝑞 ≤ 𝑈𝑞} .

(9)

It follows easily that this branching process is exhaustive.
We are now ready to formally state the overall algorithm

for globally solving problem (P). The basic steps of the
algorithm are summarized in the following statement.

4.2. Algorithm Statement

Step 1 (initialization). Given a convergence tolerance 𝜀 > 0.
Set the iteration counter 𝑘 = 0, the set of all active nodesΩ0 =
{𝐻

0
}, the lower bound LB = −∞, and the set of feasible points

𝐹 = 0.
Solve the convex relaxation programming problem

(RCP (H0)) and obtain the optimal value 𝜇(𝐻

0
) and an

optimal solution 𝑥(𝐻

0
). Set UB0 = 𝜇(𝐻

0
), 𝑥𝑐 = 𝑥(𝐻

0
), and

LB = ℎ(𝑥

𝑐
). Update 𝐹 = 𝐹⋃{𝑥

𝑐
}.

If UB0 −LB ≤ 𝜀, then stop with 𝑥𝑐 which is the globally 𝜀-
optimal solution and LB is the optimal value to problem (P).
Otherwise, proceed to Step 2.

Step 2 (branching). According to the above selected branch-
ing rule, partition𝐻

𝑘 into two new rectangles. Call the set of
new partition rectangles Θ𝑘.
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For each 𝐻 ∈ Θ𝑘, solve convex programming problem
(RCP (H0)) to obtain optimal value 𝜇(𝐻) and optimal
solution 𝑥(𝐻) of the problem (RCP (H0)). If 𝜇(𝐻) < LB,
then remove the corresponding subrectangle𝐻 fromΘ𝑘, that
is, Θ𝑘 = Θ𝑘 \ 𝐻, and skip to the next element of Θ𝑘.

If Θ𝑘 = 0, go to Step 3. Otherwise, update 𝐹 =

𝐹⋃{𝑥(𝐻),𝐻 ∈ Θ𝑘}, and set LB = max𝑥∈𝐹ℎ(𝑥); the best
known feasible point is denoted by 𝑥𝑐 = argmax

𝑥∈𝐹
ℎ(𝑥).

Step 3 (updating upper bound). Denote the partition set
remaining as

Ω𝑘+1 = (Ω𝑘 \ 𝐻
𝑘
)⋃Θ𝑘 (10)

giving a new upper bound UB𝑘 = inf𝐻∈Ω𝑘+1𝜇(𝐻).

Step 4 (convergence check). Fathom any improving nodes by
settingΩ𝑘+1 = Ω𝑘 \{𝐻 : 𝜇(𝐻)−LB ≤ 𝜀,𝐻 ∈ Ω𝑘}. IfΩ𝑘+1 = 0,
then stop: LB is the optimal value, and 𝑥𝑐 are global 𝜀-optimal
solutions for problem (P), respectively. Otherwise, set 𝑘 = 𝑘+

1 and return to Step 2.

4.3. Convergence Analysis. Next, wewill give the convergence
properties of the algorithm.

Theorem 4. (a) If the algorithm is finite, then, upon termina-
tion, 𝑥𝑘 is a global 𝜀-optimal solution to problem (P).

(b) If the algorithm is infinite, then every accumulation
point 𝑥

∗ of an infinite feasible solutions sequence {𝑥

𝑘
} to

problem (P) generated by the algorithm is a global optimal
solution to problem (P).

Proof. (a) If the algorithm is finite, then it terminates in Step
𝑘, 𝑘 ≥ 1. Upon termination, since 𝑥

𝑘 is found by solving
problem (P (H0)) for some𝐻 ⊆ 𝐻

0, 𝑥𝑘 is a feasible solution
to problem (P). Upon termination of the algorithm,

UB𝑘 −
𝑝

∑

𝑖=1

𝑛𝑖 (𝑥
𝑘
)

𝑑𝑖 (𝑥
𝑘
)

≤ 𝜀 (11)

is satisfied. It is easy to show by standard arguments for
branch and bound algorithm that

UB𝑘 ≥ V. (12)

Since 𝑥𝑘 is a feasible solution for problem (P), we have

𝑝

∑

𝑖=1

𝑛𝑖 (𝑥
𝑘
)

𝑑𝑖 (𝑥
𝑘
)

≤ V. (13)

Taken together, the three previous statements imply that

V ≤ UB𝑘 ≤
𝑝

∑

𝑖=1

𝑛𝑖 (𝑥
𝑘
)

𝑑𝑖 (𝑥
𝑘
)

+ 𝜀 ≤ V + 𝜀. (14)

Therefore,

V − 𝜀 ≤

𝑝

∑

𝑖=1

𝑛𝑖 (𝑥
𝑘
)

𝑑𝑖 (𝑥
𝑘
)

≤ V, (15)

and the proof of part (a) is complete.
(b) Assume that the algorithm is infinite, by [21]; then a

sufficient condition for a global optimization to be convergent
to the global maximum requires that the bounding operation
must be consistent and the selection operation is bound
improving.

A bounding operation is called consistent if at every
step any unfathomed partition can be further refined and
if any infinitely decreasing sequence of successively refined
partition elements satisfies

lim
𝑘→∞

(UB𝑘 − LB) = 0, (16)

where UB𝑘 is a computed upper bound in Step 𝑘 and LB is
the best lower bound at iteration 𝑘 not necessarily occurring
inside the same subrectangle with UB𝑘. Now, we show that
(16) holds.

Since the employed subdivision process is rectangle
bisection, the process is exhaustive. Consequently, from the
relation V(𝑅𝐶𝑃(𝐻)) ≤ V(𝑃), where V(𝑅𝐶𝑃(𝐻)) and V(𝑃)
denote the optimal values of problem (RCP (H0)) and (P)
over the rectangle 𝐻, respectively, the formulation holds,
and this implies that the employed bounding operation is
consistent.

A selection operation is called bound improving if at
least one partition element where the actual upper bound is
attained is selected for further partition after a finite number
of refinements. Clearly, the employed selection operation is
bound improving because the partition element where the
actual upper bound is attained is selected for further partition
in the immediately following iteration.

From the above discussion, the branch and bound algo-
rithm proposed in this paper is convergent to the global
maximum of (P).

5. Computational Results

We conducted numerical experiments on the branch and
bound algorithm on a Pentium IV microcomputer and the
algorithm was coded in Fortran 95. Although these problems
have a relatively small number of variables, they are quite
challenging. For all test problems, numerical results show that
the proposed global optimization algorithm can solve these
problems efficiently. Computational results are illustrated in
Tables 1 and 2.

In Tables 1 and 2, some notations have been used for
column headers: Iter: the number of the algorithm iterations;
Max-node: the maximal number of the active nodes neces-
sary; Time: the execution time in seconds, where when the
execution time is very short (e.g., Time < 0.1 second), we
record with 0 second in short.

We choose the following two types of sum of ratios prob-
lems to test our algorithm, which are generated randomly.
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Table 1: Computational results for Problem 5.

𝑛 𝑝 Iter Node Time 𝑝 Iter Node Time 𝑝 Iter Node Time
50 2 11 3 0 4 59 10 0 6 103 17 0
100 2 13 5 0 4 67 11 0 6 145 21 0
150 2 16 3 0 4 69 11 0 6 180 19 0
200 2 26 7 0 4 77 13 0 6 185 23 0

Table 2: Computational results for Problem 6.

𝑛 𝑝 Iter Node Time 𝑝 Iter Node Time 𝑝 Iter Node Time
50 2 14 2 0 4 91 13 0 6 117 21 0
100 2 17 3 0 4 75 15 0 6 136 22 0
150 2 26 4 0 4 79 17 0 6 150 29 0
200 42 29 7 0 4 87 23 0 6 212 33 0

Problem 5. Consider

max
𝑝

∑

𝑖=1

(1/𝑇𝑖)∑
𝑇𝑖
𝑡=1

󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑛

𝑗=1
(𝑟𝑗𝑡𝑖 − 𝑟𝑗𝑖) 𝑥𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

(1/𝑇𝑖)∑
𝑇𝑖
𝑡=1

󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑛

𝑗=1
(𝑟𝑗𝑡𝑖 − 𝑟𝑗𝑖) 𝑥𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

s.t.
𝑛

∑

𝑗=1

𝑥𝑗 = 1, 0 ≤ 𝑥𝑗 ≤ 1, 𝑗 = 1, . . . , 𝑛,

(17)

where 𝑇𝑖 is an integer number (e.g., 𝑇𝑖 is taken to be 𝑛),
𝑟𝑗𝑡𝑖 is generated randomly in the interval [0, 1], and 𝑟𝑗𝑖 =

∑

𝑇𝑖
𝑡=1

𝑟𝑗𝑡𝑖/𝑇𝑖, while 𝑟𝑗𝑡𝑖, 𝑟𝑗𝑖 are corresponding values calculated
by an appropriate factor model [22].

Problem 6. Consider

max
𝑝

∑

𝑖=1

∑

𝑆𝑖
𝑠=1

𝛼𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑛

𝑗=1
𝑛𝑗𝑠𝑖𝑥𝑗 + 𝑛0𝑠𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑇𝑖
𝑡=1

𝛽𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑛

𝑗=1
𝑑𝑗𝑡𝑖𝑥𝑗 + 𝑑0𝑡𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

s.t.
𝑗

∑

𝑖=1

𝑥𝑖 ≤ 𝑗, 𝑗 = 1, 2, . . . , 𝑛; 0 ≤ 𝑥𝑖, 𝑖 = 1, . . . , 𝑛,

(18)

where 𝑇𝑖 and 𝑆𝑖 are integer numbers (e.g., they are taken to
be 𝑛, resp.) and 𝛼𝑠𝑖, 𝛽𝑡𝑖, 𝑛0𝑠𝑖, and 𝑑0𝑡𝑖 are all generated by
using randomnumbers in the intervals [0, 0.1], [0, 0.1], [0, 1],
and [0, 1], respectively. 𝑛𝑗𝑠𝑖 and 𝑑𝑗𝑡𝑖 are randomly generated
according to the normal distribution𝑁(0, 1).

For solving the above test Problems 5 and 6, we utilized
the proposed algorithm, the convergence tolerance param-
eters are set as 𝜀 = 0.01, and the corresponding numerical
results are listed in Tables 1 and 2, respectively. Average
percentages are obtained by running the algorithm for 10
test problems. Tables 1 and 2 show the variation in the
average number of computational results required when 𝑛

was changed in {50, 100, 150, 200} and 𝑝 was changed in
{2, 4, 6}. From Tables 1 and 2 we see that the algorithm works
better for smaller𝑝. So the size of𝑝 is themain factor affecting
the performance of the algorithm. This is mainly because
branching in the subproblem is proportional to 𝑝. Also, the
time increases as 𝑛 increases, but not as sharply as 𝑝.

6. Conclusion

We have presented and validated a branch and bound
algorithm for global sums of ratios problem (P), where each
term in the objective function is a ratio of two functions
which are the sums of the absolute values of affine functions
with coefficients. This problem computes the upper bounds
by solving convex programming problems. These problems
are derived by using the concave envelope of the objective
function. The convergence of the algorithm is proved, and
computational results for several test problems have been
reported to show the feasibility and efficiency of the proposed
algorithm.
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