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We give divisibility properties of the generalized Fibonacci sequence by matrix methods. We also present new recursive identities
for the generalized Fibonacci and Lucas sequences.

1. Introduction

The generalized Fibonacci sequence {𝑈
𝑛
} and the generalized

Lucas sequence {𝑉
𝑛
} are defined for 𝑛 > 1, by,

𝑈
𝑛
= 𝑝𝑈
𝑛−1

+ 𝑈
𝑛−2

,

𝑉
𝑛
= 𝑝𝑉
𝑛−1

+ 𝑉
𝑛−2

,
(1)

where 𝑈
0
= 0, 𝑈

1
= 1 and 𝑉

0
= 2, 𝑉

1
= 𝑝, respectively.

Let 𝛼 and 𝛽 be the roots of the equation 𝑥2 − 𝑝𝑥 − 1 = 0.
Then the Binet formulas of the sequences {𝑈

𝑛
} and {𝑉

𝑛
} are

given by

𝑈
𝑛
=
𝛼
𝑛

− 𝛽
𝑛

𝛼 − 𝛽
, 𝑉

𝑛
= 𝛼
𝑛

+ 𝛽
𝑛

. (2)

If 𝑝 = 1, then 𝑈
𝑛
= 𝐹
𝑛
(𝑛th Fibonacci number) and 𝑉

𝑛
= 𝐿
𝑛

(𝑛th Lucas number).
It is a well-known fact that

gcd (𝐹
𝑛
, 𝐹
𝑚
) = 𝐹gcd(𝑛,𝑚). (3)

It is also known that 𝐹
𝑘𝑛

is a multiple of 𝐹
𝑛
, for all integers

𝑘 and 𝑛. In [1], the author showed that, for 𝑛 > 2, the
Fibonacci number 𝐹

𝑚
is a multiplication of 𝐹2

𝑛
if and only if

𝑚 is multiplication of 𝑛𝐹
𝑛
(for more details see [2]). Also, in

[3], the author obtained the following divisibility properties:

(i) 𝐹
𝑘𝑛−1

− 𝐹
𝑘

𝑛−1
is divisible by 𝐹2

𝑛
;

(ii) 𝐹
𝑘𝑛−2

− (−1)
𝑘+1

𝐹
𝑘

𝑛−2
is divisible by 𝐹2

𝑛
,

where 𝑛, 𝑘 ≥ 1. Kiliç [4] generalized these results for a general
second-order linear recursion {𝑈

𝑛
} as follows:

𝑈
𝑘−1

𝑟
𝑈
𝑘𝑛−𝑟

− (−1)
(𝑟−1)(𝑘+1)

𝑈
𝑘

𝑛−𝑟
is divisible by𝑈2

𝑛
. (4)

In this paper, we investigate divisibility properties of the
generalized Fibonacci numbers by 𝑈𝑙

𝑛
, where 𝑙 ≥ 3. For 𝑙 = 3,

we show that

𝑈
𝑘−2

2
𝑈
𝑘𝑛−3

− 𝑈
𝑘−2

2
𝑈
𝑘

𝑛−1
+ (−1)

𝑘−1

𝑈
𝑘

𝑛−2
is divisible by𝑈3

𝑛
. (5)

We use matrix methods to prove the claim. We recall that
matrix methods are useful tools for deriving some properties
of linear recurrences (see [4–9]). We consider the quotient

𝑈
𝑘−2

2
𝑈
𝑘𝑛−3

− 𝑈
𝑘−2

2
𝑈
𝑘

𝑛−1
+ (−1)

𝑘−1

𝑈
𝑘

𝑛−2

𝑈3
𝑛

(6)

for all positive integers 𝑛 and 𝑘. We define a generating
matrix for this quotient for fixed 𝑛 and increasing values of
𝑘. Then we give an explicit statement for the quotient. Also,
by considering this explicit statement, we find new recursive
identities for the general second-order linear recurrences.
Finally, we give divisibility properties of the generalized Fibo-
nacci numbers in the case 𝑙 > 3. Thus we obtain a gene-
ralization of the results given in [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208368705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Discrete Dynamics in Nature and Society

2. Main Results

We denote the quotient (𝑈
𝑘−2

2
𝑈
𝑘𝑛−3

− 𝑈
𝑘−2

2
𝑈
𝑘

𝑛−1
+

(−1)
𝑘−1

𝑈
𝑘

𝑛−2
)/𝑈
3

𝑛
by 𝑠(𝑛, 𝑘).

Define a second-order linear sequence {𝐴
𝑛
}, for 𝑛 > 1,

𝐴
𝑛
= 𝑝𝐴
𝑛−1

+ 𝐴
𝑛−2

(7)

with initial conditions 𝐴
0
= 𝑝
2

− 1 and 𝐴
1
= 𝑝
3

+ 3𝑝.
By the definitions of {𝑈

𝑛
} and {𝐴

𝑛
}, we have

𝐴
𝑛
= 𝑈
2
𝑉
𝑛+1

+ 𝑈
2
𝑈
𝑛
− 𝑈
𝑛−1

. (8)

Define a matrix𝐻(𝑛) by

𝐻(𝑛) =
[
[
[

[

𝐴
𝑛−1

𝐵
𝑛
𝐶
𝑛
(−1)
𝑛

𝑈
3

2
𝑈
𝑛−1

𝑈
𝑛−2

1 0 0 0

0 1 0 0

0 0 1 0

]
]
]

]

, (9)

where

𝐵
𝑛
= (𝑈
2
𝑈
𝑛−2

− 𝑈
2

2
𝑈
𝑛−1

)𝑉
𝑛
+ 𝑈
2

𝑛−1
− 𝑈
2

𝑛−2
+ (−1)

𝑛+1

𝑈
3
,

𝐶
𝑛
= −𝑈
2

2
𝑈
𝑛−1

𝑈
𝑛−2

𝑉
𝑛
+ (−1)

𝑛+1

𝑈
2

2
𝑈
𝑛−2

+ (−1)
𝑛

𝑈
3

2
𝑈
𝑛−1

.

(10)

We next define a matrix 𝐺(𝑛, 𝑘) of order 4 as follows:

𝐺 (𝑛, 𝑘) =

[
[
[
[
[
[
[

[

𝑠 (𝑛, 𝑘 + 3) 𝑡 (𝑛, 𝑘 + 3) 𝑦 (𝑛, 𝑘 + 3) (−1)
𝑛

𝑈
3

2
𝑈
𝑛−1

𝑈
𝑛−2

𝑠 (𝑛, 𝑘 + 2)

𝑠 (𝑛, 𝑘 + 2) 𝑡 (𝑛, 𝑘 + 2) 𝑦 (𝑛, 𝑘 + 2) (−1)
𝑛

𝑈
3

2
𝑈
𝑛−1

𝑈
𝑛−2

𝑠 (𝑛, 𝑘 + 1)

𝑠 (𝑛, 𝑘 + 1) 𝑡 (𝑛, 𝑘 + 1) 𝑦 (𝑛, 𝑘 + 1) (−1)
𝑛

𝑈
3

2
𝑈
𝑛−1

𝑈
𝑛−2

𝑠 (𝑛, 𝑘)

𝑠 (𝑛, 𝑘) 𝑡 (𝑛, 𝑘) 𝑦 (𝑛, 𝑘) (−1)
𝑛

𝑈
3

2
𝑈
𝑛−1

𝑈
𝑛−2

𝑠 (𝑛, 𝑘 − 1)

]
]
]
]
]
]
]

]

. (11)

𝑡(𝑛, 𝑘) and 𝑦(𝑛, 𝑘) are given by

𝑡 (𝑛, 𝑘) = [−𝑈
𝑘−2

2
𝑈
𝑛−1

𝑈
𝑛−2

𝛿
𝑛
𝑈
𝑘𝑛

+ (−1)
𝑛+1

𝑈
𝑘−2

2
(𝑈
2
𝑈
𝑛−1

𝛿
𝑛
+ 𝑈
2

𝑛−2
)𝑈
𝑛(𝑘−1)

+ (−1)
3𝑛

𝑈
𝑘

2
𝑈
𝑛(𝑘−3)

+ 𝑈
𝑘−2

2
𝑈
2

𝑛
(2(−1)

𝑛

𝑈
−𝑛+2

+ 𝑈
𝑛+2

) 𝑈
𝑘

𝑛−1

+(−1)
𝑘

𝑈
2
𝑈
2

𝑛
(2(−1)

𝑛

𝑈
−𝑛+1

+ 𝑈
𝑛+1

) 𝑈
𝑘

𝑛−2
]

× (𝑈
5

𝑛
)
−1

,

𝑦 (𝑛, 𝑘) = [−𝑈
𝑘−1

2
𝑈
2

𝑛−1
𝑈
2

𝑛−2
𝑈
𝑘𝑛

+ 𝑈
𝑘−1

2
(𝑈
2
𝑈
𝑛−1

𝛿
𝑛
+ 𝑈
2

𝑛−2
)𝑈
𝑛(𝑘−2)

+ (−1)
3𝑛+1

𝑈
𝑘

2
𝛿
𝑛
𝑈
𝑛(𝑘−3)

+ 𝑈
2

𝑛
(2(−1)

𝑛+1

𝑈
2
+ 𝑈
2𝑛−2

)𝑈
𝑘

𝑛−1

+(−1)
𝑘

𝑈
2

2
𝑈
2

𝑛
(2(−1)

𝑛+1

− 𝑈
2𝑛−1

)𝑈
𝑘

𝑛−2
]

× (𝑈
5

𝑛
)
−1

,

(12)

where

𝛿
𝑛
= 𝑈
2
𝑈
𝑛−1

− 𝑈
𝑛−2

. (13)

Thus we give our first main result.

Theorem 1. For 𝑛 ≥ 1,

𝐻(𝑛)
𝑘

= 𝐺 (𝑛, 𝑘) . (14)

Proof. We will use induction on 𝑘. The result is clear for
𝑘 = 1. Now assume that 𝐻(𝑛)𝑘−1 = 𝐺(𝑛, 𝑘 − 1). Then, by
the definitions of 𝑠(𝑛, 𝑘), 𝑡(𝑛, 𝑘), and 𝑦(𝑛, 𝑘), we have

𝐴
𝑛−1

𝑠 (𝑛, 𝑘 + 2) + 𝑡 (𝑛, 𝑘 + 2) = 𝑠 (𝑛, 𝑘 + 3) ,

𝐵
𝑛
𝑠 (𝑛, 𝑘 + 2) + 𝑦 (𝑛, 𝑘 + 2) = 𝑡 (𝑛, 𝑘 + 3) ,

𝐶
𝑛
𝑠 (𝑛, 𝑘 + 2) + (−1)

𝑛

𝑈
3

2
𝑈
𝑛−1

𝑈
𝑛−2

𝑠 (𝑛, 𝑘 + 1)

= 𝑦 (𝑛, 𝑘 + 3) .

(15)

Thus the proof is complete.

As a consequence of this theorem, we can see that
matrix 𝐻(𝑛) generates 𝑠(𝑛, 𝑘). Since the elements of 𝐻(𝑛)
are integers, the quotient 𝑠(𝑛, 𝑘) are integers for all positive
integers 𝑛 and 𝑘.

Lemma 2. For 𝑛 ≥ 1, the eigenvalues of 𝐻(𝑛) are 𝑈
2
𝛼
𝑛,

𝑈
2
𝛽
𝑛

, 𝑈
2
𝑈
𝑛−1

, and −𝑈
𝑛−2

.

Proof. The characteristic polynomial of𝐻(𝑛) is

𝑥
4

− 𝐴
𝑛−1

𝑥
3

− 𝐵
𝑛
𝑥
2

− 𝐶
𝑛
𝑥

+ (−1)
𝑛+1

𝑈
3

2
𝑈
𝑛−1

𝑈
𝑛−2

= 0,

(16)

and it is factorized as

(𝑥 − 𝑈
2
𝛼
𝑛

) (𝑥 − 𝑈
2
𝛽
𝑛

) (𝑥 − 𝑈
2
𝑈
𝑛−1

) (𝑥 + 𝑈
𝑛−2

) = 0, (17)

which completes the proof.

As another main result, we have the following theorem.
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Theorem 3. For 𝑛, 𝑘 ≥ 1,

(𝐺 (𝑛, 𝑘))
4,1

= 𝑠 (𝑛, 𝑘)

= (𝑈
𝑘−2

2
𝑈
𝑛−1

𝑈
𝑛−2

𝑈
𝑘𝑛
+ (−1)

𝑛

𝑈
𝑘−2

2
𝛿
𝑛
𝑈
𝑛(𝑘−1)

− 𝑈
𝑘−1

2
𝑈
𝑛(𝑘−2)

− 𝑈
𝑘−2

2
𝑈
2

𝑛
𝑈
𝑘

𝑛−1

+(−1)
𝑘−1

𝑈
2

𝑛
𝑈
𝑘

𝑛−2
) × (𝑈

5

𝑛
)
−1

,

(18)

where 𝛿
𝑛
is defined as shown previously.

Proof. Since the eigenvalues of 𝐻(𝑛) are distinct, 𝐻(𝑛) is
diagonalizable as

𝑉
−1

𝐻(𝑛)𝑉 = 𝐷, (19)

where

𝑉 =

[
[
[
[
[
[
[

[

𝑈
3

2
𝛼
3𝑛

𝑈
3

2
𝛽
3𝑛

𝑈
3

2
𝑈
3

𝑛−1
−𝑈
3

𝑛−2

𝑈
2

2
𝛼
2𝑛

𝑈
2

2
𝛽
2𝑛

𝑈
2

2
𝑈
2

𝑛−1
𝑈
2

𝑛−2

𝑈
2
𝛼
𝑛

𝑈
2
𝛽
𝑛

𝑈
2
𝑈
𝑛−1

−𝑈
𝑛−2

1 1 1 1

]
]
]
]
]
]
]

]

(20)

and 𝐷 = diag(𝑈
2
𝛼
𝑛

, 𝑈
2
𝛽
𝑛

, 𝑈
2
𝑈
𝑛−1

, −𝑈
𝑛−2

). Therefore,
we obtain 𝑉

−1

𝐻(𝑛)
𝑘

𝑉 = 𝐷
𝑘. By Theorem 1, we write

𝑉
−1

𝐺(𝑛, 𝑘)𝑉 = 𝐷
𝑘. Then we have the following linear equa-

tion system:

𝑔
𝑖1
𝑈
3

2
𝛼
3𝑛

+ 𝑔
𝑖2
𝑈
2

2
𝛼
2𝑛

+ 𝑔
𝑖3
𝑈
2
𝛼
𝑛

+ 𝑔
𝑖4

= 𝑈
𝑘−𝑖+4

2
𝛼
(𝑘−𝑖+4)𝑛

,

𝑔
𝑖1
𝑈
3

2
𝛽
3𝑛

+ 𝑔
𝑖2
𝑈
2

2
𝛽
2𝑛

+ 𝑔
𝑖3
𝑈
2
𝛽
𝑛

+ 𝑔
𝑖4

= 𝑈
𝑘−𝑖+4

2
𝛽
(𝑘−𝑖+4)𝑛

,

𝑔
𝑖1
𝑈
3

2
𝑈
3

𝑛−1
+ 𝑔
𝑖2
𝑈
2

2
𝑈
2

𝑛−1
+ 𝑔
𝑖3
𝑈
2
𝑈
𝑛−1

+ 𝑔
𝑖4

= 𝑈
𝑘−𝑖+4

2
𝑈
𝑘−𝑖+4

𝑛−1
,

− 𝑔
𝑖1
𝑈
3

𝑛−2
+ 𝑔
𝑖2
𝑈
2

𝑛−2
− 𝑔
𝑖3
𝑈
𝑛−2

+ 𝑔
𝑖4

= (−1)
𝑘−𝑖+4

𝑈
𝑘−𝑖+4

𝑛−2
.

(21)

The solution of the above linear equation system gives the
claimed result.

By considering the definition of 𝑠(𝑛, 𝑘), we have the
following consequence of Theorem 3.

Corollary 4. For 𝑛, 𝑘 ≥ 1,

𝑈
𝑛−1

𝑈
𝑛−2

𝑈
𝑘𝑛

= 𝑈
2

𝑛
𝑈
𝑘𝑛−3

+ (−1)
𝑛+1

𝛿
𝑛
𝑈
𝑛(𝑘−1)

+ 𝑈
2
𝑈
𝑛(𝑘−2)

.
(22)

Thenext results generalize the result given byCorollary 4.

Theorem 5. For all integers 𝑟,

𝑈
𝑛−𝑟
𝑈
𝑛−𝑟−1

𝑈
𝑘𝑛
= 𝑈
2

𝑛
𝑈
𝑘𝑛−2𝑟−1

+ (−1)
𝑛+𝑟

(𝑈
𝑟+1
𝑈
𝑛−𝑟

− 𝑈
𝑟
𝑈
𝑛−𝑟−1

) 𝑈
𝑛(𝑘−1)

+ 𝑈
𝑟
𝑈
𝑟+1
𝑈
𝑛(𝑘−2)

,

𝑈
𝑛−𝑟
𝑈
𝑛−𝑟−1

𝑉
𝑘𝑛
= 𝑈
2

𝑛
𝑉
𝑘𝑛−2𝑟−1

+ (−1)
𝑛+𝑟

(𝑈
𝑟+1
𝑈
𝑛−𝑟

− 𝑈
𝑟
𝑈
𝑛−𝑟−1

) 𝑉
𝑛(𝑘−1)

+ 𝑈
𝑟
𝑈
𝑟+1
𝑉
𝑛(𝑘−2)

.

(23)

Proof. The proof can be seen by the Binet formulas of the
sequences {𝑈

𝑛
} and {𝑉

𝑛
}.

For 𝑙 = 3, we give the general case of divisibility properties
in the following result.

Corollary 6. For all integers 𝑟,

𝑈
𝑘−2

𝑟
𝑈
𝑘−2

𝑟+1
𝑈
𝑘𝑛−2𝑟−1

− (−1)
𝑘(𝑟−1)

𝑈
𝑘−2

𝑟+1
𝑈
𝑘

𝑛−𝑟

+ (−1)
𝑘𝑟−1

𝑈
𝑘−2

𝑟
𝑈
𝑘

𝑛−𝑟−1

(24)

is divisible by 𝑈3
𝑛
.

3. Generalization of the Divisibility Properties

In this section, for a positive integer 𝑙, we generalize divis-
ibility properties. For this purpose we introduce some new
notations.

Let 𝑟
𝑖
be an integer for 𝑖 = 1, . . . , 𝑙 − 1. Let

𝜉
1
=

{{{

{{{

{

∑
1≤𝑖≤𝑚

𝑟
𝑖
, 𝑚 ≡ 1 (mod 2) ,

∑
1≤𝑖≤𝑚−1

𝑟
𝑖
, 𝑚 ≡ 0 (mod 2) ,

𝜉
2
=

{{{

{{{

{

∑
1≤𝑖≤𝑚−1

𝑟
𝑖
, 𝑚 ≡ 1 (mod 2) ,

∑
1≤𝑖≤𝑚

𝑟
𝑖
, 𝑚 ≡ 0 (mod 2) ,

𝜑 = ∑
1≤𝑖≤𝑙−1

𝑟
𝑖
,

𝛾 = ∏
1≤𝑗<𝑖≤𝑙−1

𝑈
𝑟𝑖−𝑟𝑗

.

(25)

We denote the above product by 𝛾
𝑚
for 𝑖, 𝑗 ̸=𝑚.
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Corollary 7. (a) For an even positive integer 𝑙,

( ∏
1≤𝑖≤𝑙−1

𝑈
𝑟𝑖
)

𝑘−𝑙+1

𝛾𝑈
𝑘𝑛−𝜑

+ ∑
1≤𝑚≤𝑙−1

(−1)
𝑘(𝑟𝑚−1)+𝑚+𝜉1+1𝛾

𝑚
𝑈
𝑘

𝑛−𝑟𝑚

( ∏
1≤𝑖≤𝑙−1

𝑚 ̸= 𝑖

𝑈
𝑟𝑖
)

𝑘−𝑙+1

(26)

is divisible by 𝛾𝑈𝑙
𝑛
.

(b) For an odd positive integer 𝑙,

( ∏
1≤𝑖≤𝑙−1

𝑈
𝑟𝑖
)

𝑘−𝑙+1

𝛾𝑈
𝑘𝑛−𝜑

+ ∑
1≤𝑚≤𝑙−1

(−1)
𝑘(𝑟𝑚−1)+𝑚+𝜉2𝛾

𝑚
𝑈
𝑘

𝑛−𝑟𝑚

( ∏
1≤𝑖≤𝑙−1

𝑚 ̸= 𝑖

𝑈
𝑟𝑖
)

𝑘−𝑙+1 (27)

is divisible by 𝛾𝑈𝑙
𝑛
.

As an example, if we take 𝑙 = 4, 𝑟
1
= 1, 𝑟
2
= 2, 𝑟
3
= 3, and

𝑝 = 1, then

𝐹
𝑘−3

3
𝐹
𝑘𝑛−6

− 𝐹
𝑘−3

3
𝐹
𝑘

𝑛−1
+ (−1)

𝑘

𝐹
𝑘−3

3
𝐹
𝑘

𝑛−2

+ 𝐹
𝑘

𝑛−3
is divisible by𝐹4

𝑛
.

(28)
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