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Based on the complex network theory, a new topological evolving model is proposed. In the
evolution of the topology of sensor networks, the energy-aware mechanism is taken into account,
and the phenomenon of change of the link and node in the network is discussed. Theoretical
analysis and numerical simulation are conducted to explore the topology characteristics and
network performance with different node energy distribution. We find that node energy
distribution has the weak effect on the degree distribution P(k) that evolves into the scale-
free state, nodes with more energy carry more connections, and degree correlation is nontrivial
disassortative. Moreover, the results show that, when nodes energy is more heterogeneous, the
network is better clustered and enjoys higher performance in terms of the network efficiency and
the average path length for transmitting data.

1. Introduction

Recently, complex networks have attracted considerable intention to investigate various real-
world dynamic networks, such as scientific collaboration, the Internet, worldwide web,
social networks, biological networks, transportation networks, e-mail networks, software
engineering, and ad hoc networks; see [1–9] and the references therein. In the original
theoretical description of these findings, the Watts-Strogatz (WS) model [10] provided a
simple way to generate networks with the “small-world” properties. Barabási and Albert [11]
proposed a “scale-free” network with a power-law degree distribution. Further studies show
that real networked systems may undergo the more complex evolution process governed
by multiple mechanisms on which the occurrence of network structures depends [12–15].
Therefore, to get a better understanding of the real-world system, it is necessary to describe
such evolution processes of complex network in more detailed and realistic manner.



2 Mathematical Problems in Engineering

The motivation for considering dynamic networks comes, in part, from the recent
interest in designing wireless sensor networks as a prime example. Sensor networks have
recently received increasing interests due to their extensive application in areas such as
information collection, environmental monitoring, industrial automation, health tracking,
and military surveillance [16, 17]. Consequently, many critical techniques in sensor network
have gained much research efforts [18–22]. The motivations of this work is to continue such
efforts aimed at discovering new mechanism to construct optimal network structures and
that might be useful in designing engineered senor networks.

Well-known examples of such dynamical network models are proposed including
preferential attachment and its variants [11, 23, 24]. Very recently, Zhu et al. [25] have
proposed two scale-free networks-based models for wireless sensor networks, named energy-
aware evolution model (EAEM) and energy-balanced evolution model (EBEM) which can
organize the networks in an energy-efficient way. Chen et al. [26] have proposed a topology
control of wireless sensor networks under an average degree constraint. Actually, the
above evolving models have considered energy efficiency of WSNs using by energy-aware
mechanism. These mechanisms, however, model the dynamics WSN as a monotonously
growing network, where the effect of node deletion is not considered to be significant.
Sensor networks experience significant rates of links and nodes deletion for several kinds
of cases as follows and beyond. Nodes join and depart from sensor networks in a random
and rapid manner for artificial mobility. The links and nodes are probably removed for many
factors such as environment deteriorated, hostile attack because the sensor nodes are usually
deployed over some inaccessible and dangerous geographical area. Usually the energy of
sensor node is limited and nonrecharged and would be exhausted after working for a period
of time. Hence, developing a network dynamic model for the real-world sensor networks
with a significant deletion component is necessary.

Several recently proposed models have addressed the link and node deletion process
for dynamical sensor network. Kong and Roychowdhury [27] proposed an ad hoc network
with node addition and removal, focusing on the compensatory process for node removal
to preserve true scale-free state. Sarshar and Roychowdhury [28] investigated stable ad hoc
network where nodes deletion is dominated by preferential survival mechanism. A local-
world heterogeneous model of wireless sensor networks with node and link diversity was
proposed in [29]. Unfortunately, those works have not considered the node energy problem
in the network. Energy efficiency is a critical factor for prolonging the life of the network
system. If the topology is constructed based on the node energy, then the traffic load is
properly adjusted, that is, nodes with more energy carry more connections and the node with
less energy will carry few connections. The energy consumption is balanced in the whole
network, and the network lifetime will be effectively extended.

Motivated by the above analysis, in this paper, we aim to investigate the topological
evolving model for wireless sensor network, which is combined energy-aware mechanism
with both addition and removal of link and node based on complex network theory. To
the best of the authors’ knowledge, the proposed mechanism has not yet been addressed
for WSNs. The main contributions of this paper are summarized as follows. (1) a new
evolution model is proposed to describe dynamical sensor network. (2) a combination of
two important mechanisms of energy preferential attachment for link and node addition
and energy antipreferential attachment for link and deletion contributes to investigating
the complexity of WSNs. (3) Degree distribution P(k) is solved by utilizing mean-field
analysis and shows how the network evolves into the scale-free state. Numerical simulations
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of several critical topology characteristics are used to demonstrate the effectiveness of the
proposed model in this paper.

The rest of this paper is organized as follows. In Section 2, we present our new energy-
aware topology evolving model for wireless sensor networks. In Section 3, we give the
numerical analysis and simulations experiments discussion about the network characteristics
under the effect of different node energy distribution. Its effectiveness is analytically
investigated by its topology properties, such as degree distribution, node degree, and the
average degree of neighboring node, the average clustering coefficient, the average path
length, and the network efficiency. The results are validated through numerical calculations
and simulations. Finally in Section 4, we conclude the investigation and point out the further
research direction.

2. The Proposed Model for WSNs

In this section, we present the following model to capture the particular features of such
WSNs evolving networks. In the initial state, the network has a small number n0 of connected
nodes and small number e0 of edges. Then, the iterative algorithm during the evolving
process is outlined as follows.

(1) Preferential Attachment

At each time step, a new node is added to the system. And m (0 < m ≤ n0) new links from
the new node are connected to m existing nodes. We assume that the preferential probability
Π(ki) of a new node will be connected to node i depending on the connectivity ki and energy
(Ei) of that node. In this paper, we use the definition of the function f(Ei) to present the
relationship between the energy of a node and its ability to be linked just as in [25]. Then

Π(ki) =
f(Ei)ki
∑

j f
(
Ej
)
kj
. (2.1)

In real wireless sensor network, the node which has more connetivities will carry more
traffic load and consume its energy more quickly. For the balance the energy consumption,
we assume the more energy a node has, the strong ability it will have of being connected to
the new coming nodes. Therefore, f(Ei) must be an increasing function here, and the form
may be as βEi, βE2

i and so on. Here β is the coefficient. In this paper, we just set f(Ei) = Ei,
where β = 1. And the form of Π(ki) is expressed as

Π(ki) =
Eiki
∑

j Ejkj
. (2.2)

(2) Links Deletion

At each time step, with probability p (0 ≤ p < 1),m∗p old links are removed. So the parameter
p denotes the deletion rate, which is defined as the rate of links removed divided by the rate
of links addition. We first select a node i as an end of a deleted link with the antipreferential
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probability as (2.2). The less energy the node has, the more probability it will have for being
deleted:

Π∗(ki) =
(kiEi)

−1

∑
i (kiEi)

−1
. (2.3)

Then node j is then chosen from the linked neighborhood of node i (denoted by
Oi) with probability Ki

−1Π∗(kj), where Ki =
∑

j∈Oi
Π∗(kj). Then the link connecting nodes

i and j is removed; this process is repeated m ∗ p times. Once an isolated node appears,
it should be removed from the network to maintain the connectivity of networks. The
antipreferential removal mechanism is more reasonable for deleting links that are parallel
with the preferential connection. It is consistent with the real wireless sensor networks
environment. The wireless links that have not been active may be removed from the
network when the energy of the connecting nodes falls down to a certain level. The
particular antipreferential removal phenomenon is also reasonable for many real networks.
For example, users’ e-mail networks can be constructed by considering user address books
as nodes and addresses in the address books as links. Some old addresses that have become
inactive below the threshold may be deleted in the evolving e-mail network [8]. Furthermore,
in the evolving words network, there will be link and node removals over time because some
old expressions and sentences are no longer used and some words may become obsolete [12].

3. Network Analysis

Topological characterization is of great importance for network structure in reality. To have a
better understanding of the complex dynamics in the considered model and of the influence
of ρ(E), in this section we give theoretical analysis and numerical simulation of these
statistical properties parameters—the degree distribution P(k), node degree (kE), the average
nearest-neighbor connectivity (knn(k)), the average clustering coefficient (C), the average
path length (L), and the network efficiency (E).

3.1. Degree Distribution

The degree distribution P(k), which indicates the probability that a randomly selected node
has k connections, is very important statistical character of large-scale complex network. In
fact, P(k) has been suggested to be used as the first criterion to classify real-world networks.
Now we adopt the mean field theory [30] to give a qualitative analysis of P(k) for our energy-
aware evolving model with link and node deletions.

By the mean-field theory, let ki(t) be the degree of the ith node at time t, then in the
limit of large t, the increasing rate of ki(t) satisfies the following dynamical equation:

∂ki
∂t

= mΠ(ki) −mp

⎡

⎣Π∗(ki) +
∑

j ∈ linked(i)

Π∗
(
kj
)
Ki
−1Π∗(ki)

⎤

⎦. (3.1)

It is easy to know that the first term in (3.1) accounts for the increasing number of
links of the ith node by the preferential attachment due to the newly added node. The second
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term in (3.1) explains the losing of links by antipreferential attachment during the evolving
process.

From the mean-field sense, we have

∑

j

Ejkj =N(t) ∗ E ∗ 〈k(t)〉, (3.2)

where E is the expected value of the node energy in the whole network; N(t) is the number
of the nodes at time step t; 〈k(t)〉 is the average degree of the network at time t. For large t,
N(t) = n0 + t ≈ t; 〈k(t)〉 = (2m(1 − p)t + e0)/(m0 + t) ≈ 2m(1 − p) with e0 being the number
of edges that were initially linked to n0 nodes. Moreover we can have

∑
j∈O(i)Ki

−1Π∗(ki) ≈ 1.
Then, at time step t, Π∗(ki) ≈ 1/N(t) ≈ 1/t, which indicates that link deletion with the
antipreferential probability is equivalent to deleting links with equal probability by mean-
field sense. This phenomenon is also observed in [12].

Supposing that sensor networks which undergo a large number of time steps t have
sufficiently large scale, we obtain

∂ki
∂t
≈ m Eiki

2m
(
1 − p

)
Et
−

2mp
t

. (3.3)

It is obvious that, at every time step t, 0 ≤ p < 1. Since p = 1, the network cannot
grow. We then consider two cases in the above proposed evolving network model: p = 0 and
0 < p < 1, which are further discussed below.

Case A (p = 0). In this case, there are only link and node additions without link and node
deletions in the evolving process as in [25]. It is usually fit for topology discovery state of
WSNs in which the all nodes have enough power in the ideal environment. So ki(t) satisfies

∂ki
∂t

= m
Eiki

NE〈k(t)〉
=

Eiki

2(n0 + t)E
≈ Eiki

2tE
. (3.4)

With the initial condition ki(ti) = m, then we can get

ki(t) = m
Ei

2E

(
t

ti

)1/2

. (3.5)

The probability that a node has a connectivity which satisfy ki(t) < k is

P(ki(t) < k) = P

(

ti >
1
2

(
mEi

2E

)2 t

k2

)

. (3.6)

Assuming that we add the node to the network at equal time intervals in evolving
process for WSNs, the probability density at the time ti is P(ti) = 1/(n0 + t). Therefore, we get

P(ki(t) < k) = 1 − 1
2

(
mEi

2E

)2 t

k2

1
n0 + t

. (3.7)
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The probability density function of the degree of a node with energy E is

P(kE) =
∂P(ki(t) < k)

∂k
=

2
n0 + t

(
mE

2E

)2 t

k3
. (3.8)

The overall probability density function is

P(k) =
∫Emax

Emin

ρ(E)P(kE)dE =
∫Emax

Emin

ρ(E)
1

2(n0 + t)

(
mE

E

)2 t

k3
dE

=
∫Emax

Emin

1
2
ρ(E)

(
mE

E

)2 1
k3
dE, t −→ ∞,

(3.9)

where ρ(E) is the probability density distribution of node energy E in the whole network;
Emin and Emax are the bounds of node energy values. Obviously, p(k) ∝ λk−3, where
λ =

∫Emax

Emin
(1/2)ρ(E)(mE/E)2dE. The degree distribution follows the same power law as the

Barabási-Albert scale-free model [11].

Case B (0 < p < 1). In this case, links and nodes in the evolving network model are
not monotonously growing. Instead, links and nodes can be added in some occasion and
removed in other case. We rewrite (3.3) as follows:

∂ki
∂t

= m
Eiki

2m
(
1 − p

)
Et
−

2mp
t

. (3.10)

With the initial condition that node i at its introduction has ki(ti) = m, one can get

ki(t) = B
(
t

ti

)β
− B +m for large t, (3.11)

where the dynamic exponent is

β = β
(
m, p

)
=

mEi
[
2m
(
1 − p

)
+ 1
]
E

(3.12)

and the coefficient is

B = B
(
m, p

)
= m −

m − 2mp
[
2m
(
1 − p

)
+ 1
]

m

E

Ei
. (3.13)

We can get from (3.11) that

P(ki(t) < k) = P

(

ti >

(
B

B −m + k

)1/β

t

)

for k > m. (3.14)
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With the same about the probability density at the time ti, P(ti) = 1/(n0 + t). Hence,

P(ki(t) < k) = 1 −
(

B

B −m + k

)1/β t

n0 + t
. (3.15)

The probability density function of the degree of a node with energy E is

P(kE) =
∂P(ki(t) < k)

∂k
=

t

n0 + t
1
β
B1/β(k + B −m)−(1+1/β). (3.16)

To obtain the overall probability density function

P(k) =
∫Emax

Emin

ρ(E)P(kE)dE =
∫Emax

Emin

ρ(E)
t

n0 + t
1
β
B1/β(k + B −m)−(1+1/β)dE, (3.17)

where ρ(E), Emin, and Emax have the same definition as in (3.9). We compute numerical results
and compare them with simulation as follows.

In this paper, we consider three kinds of node energy distribution ρ(E) in the whole
network within the interval [0J, 1J]: (1) the same node energy with value 0.5J with σ = 0; (2)
uniform distribution (U[0J, 1J]) with σ = 1/12; (3) exponential distribution (exp(−E)) with
σ = 1, where σ is the standard deviation used to indicate the node energy heterogeneity. The
nodes energy in the network becomes more and more heterogeneous as σ increases. So, the
node energy with exponential distribution is the most heterogeneous among the three cases,
while the node energy is homogeneous with σ = 0 for the first case.

In Figure 1, we make the simulations for m = 4 and m = 1, where p = 0. We can
find that the degree distributions P(k) are power law as B-A model. Moreover, it is easy
to understand that the network makes higher connectivity as m increases. We also can see
that the network degree distribution curves obtained by the mathematic method and by
simulation match very well.

In Figures 2, 3(a) and 3(b), we, respectively, give the simulations for p = 0.5, p = 0.75,
and p = 0.25, where m = 4, t = 2000. We observe that the results of P(k) display a horse-
head-like curve, with its middle section showing the expected scale-free state whatever the
value of p is. We can see that the network degree distribution curves obtained by the mean-
field method and by simulation match very well for degree larger than m. The figures also
show that the mean-field solution cannot provide probabilities for degrees smaller than m.
The overall horse-head-like distribution curve has also been observed in [12] by Markov
process. Thus, from Figures 1, 2, and 3, there is little distinction among the plots for three
kinds of nodes energy distribution. So we think the different nodes energy distribution in the
network has the weakest affect on the degree distribution.

3.2. Connectivity Correlation

To clearly understand the influence of ρ(E) on the network connectivity and uncover the
internal complexity of the topological structure, it is worth investigating the connectivity
correlation through kE (the average degree of node with energy E) and knn(k) (the average
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Figure 1: The degree distribution P(k) obtained by simulations as hollow symbol for m = 4; face color
marked symbol for m = 1, with three kinds of ρ(E), by the mean-field method as dashed line, where p = 0,
t = 2000.
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Figure 2: The degree distribution P(k) obtained by simulations with three kinds of ρ(E): same (0.5J),
U[0, 1], exp(−E) and by fitting line as dashed line, by the mean-field method as solid green line, where
m = 4, p = 0.5, t = 2000.

degree of neighboring nodes of a given node with degree k). We find from Figure 4 that the
node which has more energy has a larger degree. The node degree is linearly increased with
node energy when ρ(E) is uniform distribution. But for the exponential distribution, there



Mathematical Problems in Engineering 9

same 0.5J
U[0J, 1J]
Exp(−E)

102101100

k

100

101

102

103

P
(k
)

(a)

same 0.5J
U[0J, 1J]
Exp(−E)

102101100

k

100

101

102

103

104

P
(k
)

(b)

Figure 3: The degree distribution P(k) obtained by simulations for three kinds of node energy distribution
ρ(E) and by fitting line as dashed line; (a) p = 0.25, (b) p = 0.75; where m = 4, t = 2000.
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Figure 4: The relation between node degree and node energy obtained by simulations for two kinds of
node energy distribution ρ(E): U[0, 1], exp(−E), where m = 4, p = 0.5.

is an inward bend at the middle of the data curve that most high energy nodes carry much
more links and a few of them keep relatively less links. It is because we can only perform a
finite number of computation steps, and then possibly some nodes with high energy newly
come into the network. There are a few hubs, that have much more links than the others
nodes, emerging in the evolving process for the energy exponential distribution case. Thus
the connectivity becomes more inhomogeneous when nodes energy is more heterogeneous.
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Figure 5: The average degree of neighboring node knn(k) obtained by simulations for three kinds of node
energy distribution ρ(E), where m = 4, p = 0.5.

Connectivity correlation is also quantified by reporting the numerical value of the
slope of knn(k) as a function of K. We compute knn(k) which is defined as in [31]:

knn(k) =
1
Nk

∑

i∈Ωk

⎛

⎝ 1
k

∑

j∈Oi

kj

⎞

⎠, (3.18)

where Ωk is the set of nodes with degree K of the amount Nk in the evolving WSNs. Oi

is the set of linked neighbors of node i. In Figure 5, it is found that knn(k) is independent
of K for nodes with large degree, that is, nodes with large k show no obvious biases in their
connections. But there is a short disassortative region when k is relatively small, that is, nodes
with low degree are more likely linked with the highly connected ones. Such phenomenon
can be explained by the effect of network growth with energy preferential attachment and
elements removals with antipreferential mechanism.

3.3. Clustering Coefficient

We investigate the effect of node energy distribution on network’s cluster coefficient, which
quantifies the extent to which nodes adjacent to a given node are linked [15, 31]. Let Ei denote
the number of edges among the neighbor nodes of a selected node i with degree ki in the
network;Ci is local clustering coefficient of node i. Then the clustering coefficient of the whole
network is the average of all individual Ci. It is defined as follows:

C =
1
N

∑

i

Ci =
1
N

∑

i

Ei
ki(ki − 1)/2

. (3.19)
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Figure 6: The clustering coefficient obtained by simulations for three kinds of node energy distribution
ρ(E), where m = 4, p = 0.5.

In Figure 6, we give the clustering coefficient (C) changing by network size with three
kinds of node energy distribution. C keeps very small value of 0.005 when node energy is
same in the network. But when ρ(E) is exponential distribution, C keeps large value with the
average value 0.185. The result indicates that nodes energy heterogeneity makes the network
more clustering.

3.4. Average Shortest Path Length and Network Efficiency

In WSN, the sensor nodes forward the data by multihops. The average path length L is
defined to be the average length of the shortest paths between any two nodes in the network
that is written as in (3.20). Usually we use it to measure the average hops among the nodes for
data processing. Simultaneously we use the network efficiency E to measure how efficiently
the information is exchanged over the network. Let dij denote the length of the shortest path
between node i and node j. The efficiency between node i and j is assumed to be inversely
proportional to the shortest distance: eij = 1/dij . With this definition, when there is no path
between i and j, dij =∞. The global efficiency of the network is defined as the average of the
efficiencies over all couples of nodes. Its calculation can be defined as (3.21):

L =
1

N(N − 1)

∑

i /= j

dij , (3.20)

E =
1

N(N − 1)

∑

i /= j

1
dij

. (3.21)
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Figure 7: The average shortest path length obtained by simulations for three kinds of node energy
distribution ρ(E), where m = 4, p = 0.5.

Since L and E characterize the ability of two nodes to communicate with each other, the
smaller L and the larger E mean fewer hops and less energy consumption for data processing.
In Figures 7 and 8, we plot the average shortest path length (L) and network efficiency
(C) with evolving time step t, which denoted network size, for three kinds of node energy
distribution. We observe that L increases, and E decreases with the network size increasing.
We also find, by the same evolving time step t, that the network obtains the smallest L and the
largest E when ρ(E) is exponential distribution among the three kinds of ρ(E). Conversely,
L is the largest and E is the smallest when node energy is same in the network for the same
network size. The results verify that nodes in energy inhomogeneous networks are more
efficient to communicate with others.

4. Conclusion

In this paper, we have addressed a novel topology evolution model for wireless sensor
networks. A notion of energy-aware mechanism combined with additions and removals
of link and node has been first defined to characterize the evolution model of WSNs.
Subsequently, by using mean-field approach, numerical calculation shows the network
evolving into the scale-free state with a horse-head-like initial section. Finally, experimental
simulations have been employed to demonstrate the effectiveness of the results derived in
this paper. Node energy distribution has a weak effect on the degree distribution P(k) but
it has much effect on the network internal topological characterizations. The node which
has more energy will have more degrees for balancing energy consumption, and the model
exhibits the nontrivial disassortative degree correlation as a natural property of network
evolution. In addition, the connectivity is tighter and the network is higher clustering for
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Figure 8: The network efficiency obtained by simulations for three kinds of node energy distribution ρ(E)
where m = 4, p = 0.5.

the sensor network system in which node energy is more heterogeneous. Then, from the
perspective of the average path length and the network efficiency, we find that, when node
energy distribution is more heterogeneous, the network enjoys better performance in energy
efficiency for transmitting data. The analysis of the robustness against the random failures
and intentional attacks for the proposed model is beyond the scope of the current work and
is left for future investigations.

This model articulates the topology dynamics of the real WSNs and provides some
useful guidelines for constructing WSNs.
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[5] G. González-Parra, L. Acedo, R.-J. V. Micó, and A. J. Arenas, “Modeling the social obesity epidemic
with stochastic networks,” Physica A, vol. 389, no. 17, pp. 3692–3701, 2010.



14 Mathematical Problems in Engineering

[6] V. Colizza, A. Flammini, A. Maritan, and A. Vespignani, “Characterization and modeling of protein-
protein interaction networks,” Physica A, vol. 352, no. 1, pp. 1–27, 2005.

[7] J. R. Banavar, A. Maritan, and A. Rinaldo, “Size and form in efficient transportation networks,” Nature,
vol. 399, no. 6732, pp. 130–132, 1999.

[8] J. Wang and P. De Wilde, “Properties of evolving e-mail networks,” Physical Review E, vol. 70, no. 6,
Article ID 066121, 8 pages, 2004.

[9] L. Wen, R. G. Dromey, and D. Kirk, “Software engineering and scale-free networks,” IEEE Transactions
on Systems, Man, and Cybernetics B, vol. 39, no. 3, pp. 648–657, 2009.

[10] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no.
6684, pp. 440–442, 1998.

[11] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” American Association for the
Advancement of Science, vol. 286, no. 5439, pp. 509–512, 1999.

[12] D. Shi, L. Liu, S. X. Zhu, and H. Zhou, “Degree distributions of evolving networks,” Europhysics
Letters, vol. 76, no. 4, pp. 731–737, 2006.

[13] B. Shen, Z. Wang, and X. Liu, “Bounded H∞ synchronization and state estimation for discrete time-
varying stochastic complex networks over a finite horizon,” IEEE Transactions on Neural Networks, vol.
22, no. 1, pp. 145–157, 2011.

[14] Q. Chen and D. Shi, “The modeling of scale-free networks,” Physica A, vol. 335, no. 1-2, pp. 240–248,
2004.

[15] Y. Gu and J. Sun, “A local-world node deleting evolving network model,” Physics Letters A, vol. 372,
no. 25, pp. 4564–4568, 2008.

[16] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE
Communications Magazine, vol. 40, no. 8, pp. 102–114, 2002.

[17] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation in wireless sensor
networks: a survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537–568, 2009.

[18] B. Shen, Z. Wang, Y. S. Hung, and G. Chesi, “Distributed H∞ filtering for polynomial nonlinear
stochastic systems in sensor networks,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp.
1971–1979, 2011.

[19] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer Networks, vol. 52,
no. 12, pp. 2292–2330, 2008.

[20] H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “Variance-constrained H∞ filtering for a class of
nonlinear time-varying systems with multiple missing measurements: the finite-horizon case,” IEEE
Transactions on Signal Processing, vol. 58, no. 5, pp. 2534–2543, 2010.

[21] B. Shen, Z. Wang, and Y. S. Hung, “Distributed H∞-consensus filtering in sensor networks with
multiple missing measurements: the finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682–1688,
2010.

[22] H. Dong, Z. Wang, and H. Gao, “Robust H∞ filtering for a class of nonlinear networked systems
with multiple stochastic communication delays and packet dropouts,” IEEE Transactions on Signal
Processing, vol. 58, no. 4, pp. 1957–1966, 2010.

[23] A. Vázquez, “Growing network with local rules: preferential attachment, clustering hierarchy, and
degree correlations,” Physical Review E, vol. 67, no. 5, Article ID 056104, 15 pages, 2003.

[24] X. Li and G. Chen, “A local-world evolving network model,” Physica A, vol. 328, no. 1-2, pp. 274–286,
2003.

[25] H. Zhu, H. Luo, H. Peng, L. Li, and Q. Luo, “Complex networks-based energy-efficient evolution
model for wireless sensor networks,” Chaos, Solitons and Fractals, vol. 41, no. 4, pp. 1828–1835, 2009.

[26] L. J. Chen, Y. C. Mao, D. X. Chen, and L. Xie, “Topology control of wireless sensor networks under an
average degree constraint,” Chinese Journal of Computers, vol. 30, no. 9, pp. 1544–1550, 2007.

[27] J. S. Kong and V. P. Roychowdhury, “Preferential survival in models of complex ad hoc networks,”
Physica A, vol. 387, no. 13, pp. 3335–3347, 2008.

[28] N. Sarshar and V. Roychowdhury, “Scale-free and stable structures in complex ad hoc networks,”
Physical Review E, vol. 69, no. 2, Article ID 026101, 6 pages, 2004.

[29] S. Li, L. Li, and Y. Yang, “A local-world heterogeneous model of wireless sensor networks with node
and link diversity,” Physica A, vol. 390, no. 6, pp. 1182–1191, 2011.

[30] A. L. Barabási, R. Albert, and H. Jeong, “Mean-field theory for scale-free random networks,” Physica
A, vol. 272, no. 1, pp. 173–187, 1999.

[31] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: structure and
dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


