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This paper presents an economics-based approach for studying the problem of resource allocation among software development
phases. Our approach is structured along two parallel axes: theoretical and empirical. We developed a general economic model for
analyzing the allocation problem as a constrained profit maximization problem. The model, based on a novel concept of software
production function, considers the effects of different allocations of development resources on output measures of the resulting
software product. An empirical environment for evaluating and refining the model is presented, and a first exploratory study for
characterizing the model’s components and developers’ resource allocation decisions is described. The findings illustrate how the
model can be applied and validate its underlying assumptions and usability. Future quantitative empirical studies can refine and
substantiate various aspects of the proposed model and ultimately improve the productivity of software development processes.

1. Introduction

Fundamental disagreements often arise with regard to the
“correct” allocation of resources to various software develop-
ment phases (SDPs). For example, persuasive arguments are
made for devoting substantial effort to requirements analysis
and design, in order to avoid the costly consequences of
modifications in later development stages [1–4]. However,
the pressure to provide an executable product, which can be
tested and presented to the customer sooner rather than
later, can sometimes constitute a consideration for shifting
resource allocation to implementation instead. Yet another
approach can be seen in Test-Driven Development methods
[5, 6], where much emphasis is placed on testing, both before
and after implementation.

These tradeoffs are relevant when analyzing graphs show-
ing the cost of detecting and correcting a fault as a function

of the phase in which it is detected. Such graphs—prevalent
in the literature—demonstrate the dramatic increase in cost
when defects are detected later in the development process
[7–9]. This observation is often used to support the claim
that more resources should be allocated to early SDPs. Obvi-
ously, this claim can be pursued ad absurdum: dedicating
all (or almost all) resources to the requirements and design
phases would leave insufficient resources for implementa-
tion. Yet developers1 cannot find any guidance as to how
many resources should be allocated to the various SDPs.

Why are such fundamentally different approaches being
advocated for allocating resources to SDPs? Does a correct
allocation for a given software project exist, and can it be
identified?

Misallocating resources among SDPs can have serious
consequences. Tens of billions of dollars are estimated to be
spent annually in the US alone due to software faults or
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aborted projects [7]. Such huge costs may be attributed to
various factors such as lack of understanding of the custom-
er’s domain or inadequate software development tools. The
contention of this paper is that a large portion of these costs
may result from incorrect allocation of software development
resources among SDPs (see also [8]).

The most popular model dealing with economic perspec-
tives of software development is the Constructive Cost Model
(COCOMO) [2], which focuses on cost estimation. While
its goal is not optimizing the allocation of resources among
the SDPs, this model uses empirical data on software devel-
opment costs to estimate the cost of any given project. The
estimate is based on the project’s characteristics and those
of the developing environment. The COQUALMO model
[10], which is based on COCOMO, discusses relationships
between costs, schedule, and quality, but without addressing
the resource allocation problem. Emam [11] emphasizes the
importance of quality for profitability. Some works (e.g.,
[1, 7, 12]) present ex-post surveys of the actual resource allo-
cation in different software projects. Heijstek and Chaudron
[13] measure effort distribution among the SDPs according
to the Rational Unified Process (RUP) hump chart. While
much can be learned through hindsight from such cases,
they do not provide a basis for a comprehensive method
of up-front resource allocation planning. In contrast, Babu
and Suresh [14] suggest how to allocate limited development
resources across M development phases in order to maximize
the average or the minimum of P quality factors, subject to
various constraints. The problem is cast as a static nonlinear
maximization problem, which assumes known functional
forms and parameter values (not based on empirical data),
but ignores crucial factors such as the iterative nature of
modern software development processes, and omits various
quality aspects from the objective function of the problem
analyzed.

Value-Based Software Engineering (VBSE) [15] consid-
ers economic aspects within the entire software development
lifecycle. It can be defined as a software development para-
digm in which business value considerations are engineered
into software processes, best practices, activities and tasks,
management and technology decisions, as well as tools and
techniques used throughout the software lifecycle.

Biffl et al. [15] surveyed different methods for solving
multicriteria decision problems, presented them as con-
strained optimization models, and discussed their applica-
bility to decisions in software engineering by analyzing, for
example, whether a specific requirement should be included
in a specific project/release. However, we did not find in the
literature any empirically based decision making model that
concretizes these generic optimization models to the specific
problem of resource allocation across SDPs.

Some VBSE-related works address subproblems of the
one we focus on. For example, Huang and Boehm [16]
present a value-based approach for determining how much
software assurance is enough before release. Jalote and Vishal
[8] address the problem of allocating resources to different
quality control stages, in order to minimize the (scalar) meas-
ure of the numbers of bugs to be removed during quality
control.

To address the absence of guidelines on how to allocate
resources to various SDPs, we propose here a conceptual
framework for studying the problem of resource allocations
among SDPs. While there are several types of resources,
we refer here to the time invested by developers as a basic
resource. Basing such a framework on scientifically sound
principles while making it practical at the same time is a real
challenge. In fact, well-known sources [17, 18] suggest that
there are no silver bullet solutions to such essential software
engineering problems.2 Moreover, even if a solution does
exist, it is likely to depend on specific product and developer
characteristics and thus lack generality. Finally, studying
this problem empirically poses many difficulties associated
with defining, identifying, and measuring the variables. For
example, how should we define and measure the output of
the software development process, a necessary metric for
comparing the consequences of alternative allocations of
development resources?

The difficulties of the problem do not absolve us from
recognizing its economic importance and should not curb
efforts to resolve it. Our goal in this paper is to suggest an
economics-based approach for studying the problem of re-
source allocation among SDPs.

A note on terminology: there is no common, standard
terminology in the literature for the different activities and
their classification according to what we call phases. For our
purpose, it is important to distinguish between different ac-
tivities, which are concrete instances of development work
that need to be associated with one of the phases they belong
to. Section 4 deals with this topic explicitly.

The rest of this paper is organized as follows. Section 2
provides a detailed overview of our research approach.
Sec-tion 3 presents the economic model of software develop-
ment, which captures the interplay between the allocations
of development resources and resulting output. Section 4
proposes how to define and measure SDPs, and Section 5
proposes how to define and measure the resulting outputs.
Section 6 analyzes the relationships among these variables.
Section 7 illustrates how the model can be used to analyze
incorrect resource allocation decisions when developing soft-
ware in an empirical setting. We conclude and suggest how
this research approach can be further developed in Section 8.

2. An Overview of Our Approach

Developing an appropriate analytical framework for opti-
mizing resource allocations among SDPs should be based
on a suitable formal theoretical model that can be evaluated
empirically, as in other VBSE research [15]. In our case, the
theoretical model should formulate the resource allocation
problem in a manner that captures the consequences of alter-
native feasible allocations of resources among SPDs for given
objectives of the decision maker.

Our approach for studying this problem is structured
along two parallel axes: (1) the theoretical axis consists of for-
mulating the problem as an economic optimization model,
based on characterizing the model components in a precise
and measurable manner; (2) the empirical axis is designed
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as an empirical environment in which case studies are used
to explore and guide the construction of the theoretical
structures and provide an empirical basis for refining the
model and the characterization of its components.

Ultimately, the approach should generate a working
model that can be used to prescribe the allocation of re-
sources to the various SDPs in a manner that efficiently
achieves the objectives of the software developer. This section
provides a bird’s eye view of our approach along these two
axes.

(1) The Theoretical Axis. We present a novel formulation of
an economic optimization model for software development
and make some headway in characterizing its components.
This model, detailed in Section 3, allows us to analyze the
problem of resource allocation among SDPs as a constrained
value maximization problem.

For this conceptual model to be useful, its various
components should be carefully characterized. In particular,
(a) variables representing inputs should correspond to work
performed in different development phases; (b) variables
representing outputs should correspond to artifacts of the
inputs; (c) the software production function (to be defined
in Section 3) should capture the relationships between
inputs and outputs (these components will be analyzed and
discussed in Sections 4–6). Of course, the different variables,
that is, the inputs and outputs of the model, must be mea-
surable, which poses a challenge because software studies are
known to suffer from nonstandardized measurements [19].

(2) The Empirical Axis. We strive to create an empirical
environment which will enable us to identify, quantify, and
verify the key components of the economic model. That
is, we develop an empirical research method and construct
appropriate measurement tools, in order to obtain a quan-
titative representation of the variables in the model and the
relationships among them. We demonstrate the feasibility of
this empirical track and along the way develop solutions to
some of the critical challenges involved in implementation
of our model. For this aim we adopt the qualitative re-
search approach and conduct an exploratory study. When
aiming to explore and understand a phenomenon and its
different aspects, rather than statistically corroborating a
hypothesis or a theory, it is appropriate to use a qualitative
research approach [20]. Qualitative research approaches have
gained recognition in general in empirical research, and
specifically in software engineering research (see [21], e.g.).
These approaches are appropriate when studying software
engineering aspects related to human behavior [21] as indeed
is done in this research.

Employing qualitative research methods (see, e.g., [22]),
we construct the first generation of research tools and il-
lustrate how they can be used in the future for gathering the
empirical data needed to complete the mathematical spec-
ification of the model and evaluate its usefulness. The data
gathered in this study allows us to (a) verify the model’s
utility in interpreting developers’ actual conduct during the

software development process: (b) obtain some initial infor-
mation about the general nature of the functional forms
appearing in the model, and (c) understand the possible rea-
sons for observed deviations in software developers’ conduct
from the model’s prescriptions. Such an exploratory study
is important for guiding further research activities [19] and
towards future quantitative research.

Our approach emphasizes the need to base the precise
specification of the software production function on empirical
observations. Accordingly, as part of this research, we have
developed an environment for empirical observation in which
four subjects, each serving as a case study, worked inde-
pendently on developing a software project, while we moni-
tored and measured their activities during the entire software
development process.

The participants in this study were undergraduate seniors
in a management information systems (MISs) department,
enrolled in the course “Human Aspects of Software Engi-
neering.” The students individually developed a product,
called the taxi ordering server (TOS), based on identical
requirements and constraints (see Appendix A). We pro-
vided the participating developers an explicit profit objective,
a function of the quality of their finished software product.
We monitored and recorded the time allocated by each
participant to the different development phases. For this
purpose, we developed a tool, called Econometric, which
automatically records the time spent in each development
environment (e.g., SRS document, UML coding CASE tool,
unit testing environment). Econometric also included a
reflection document filled in by the students each time they
moved between phases, explaining what they had accom-
plished in their recent activity, to which phase they planned
to move next, and why. The students submitted intermediate
versions of their work-in-progress every two weeks.

For evaluating the output of the students’ work, we
developed a Quality Checker (QC). The QC calculates several
quality factors of the developed software. Given a prespec-
ified objective function and based on these factors, the QC
graded the students’ projects. This grade was a significant
component of the final course grade, hence served as a value
for the students and provided them an incentive to optimize
their output. Based on these evaluations, we analyzed the
impact of the time allocated to each phase on the quality of
the resulting software product. The economic model and its
components’ characterization were iteratively refined based
on the data obtained during the empirical study. For more
details about the empirical study, see Appendix A and [23].

This environment generated very detailed and multi-
faceted data, which allowed us to study the actual allocations
of work time among SDPs and relate these allocations to
developers’ capabilities and expected personal reward. In
Sections 4, 5, and 6, we present data from this empirical study
and demonstrate how they feed back into the construction of
the model.

While this observational environment is admittedly arti-
ficial, and unlikely to be available in real-life situations, it is
highly informative and useful for constructing this custom-
made research methodology for investigating the problem of
resource allocation among SDPs. We view this study as the
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start of an ongoing effort to formalize the description of soft-
ware development for the purpose of enhancing its produc-
tivity. As we accumulate more empirical data about resource
allocations and their resulting output, the models and their
components will be refined and perhaps customized to dif-
ferent types of software products. This interplay between the-
ory and empirical findings will eventually lead to better uti-
lization and productivity of software development resources.

3. A Value-Based Model for Resource Allocation
among Software Development Phases

In this section we present a theoretical framework for model-
ing allocation of resources among SDPs. The model presents
a desirable allocation of resources as a solution to a value-
maximizing optimization problem, in the spirit of Value
Based Software Engineering (VBSE). VBSE is a relatively
young discipline, which has been successfully applied to
various aspects of software design and management [15].
However, while VBSE has successfully integrated various the-
ories such as utility theory, decision theory, and dependency
theory to address particular software engineering problems,
it has not yet applied elements from economic production
theory, which this paper does. In fact this paper is the first to
apply the VBSE approach to the study of resource allocation
among SDPs.

The following two subsections describe two different
versions of the model; the second one should be viewed as
a dynamic extension of the first.

3.1. Software Development as a Production Process: The Static
Model. We borrow from economic theory the idea that any
production process can be represented as a function which
maps production factors (inputs) into producible output
[24]. However, software development cannot be evaluated by
physical produced units, as is typically done in economics.
Instead, we consider software development output as con-
sisting of a set of features, each with its own quality, and
denote this output by Q. This notion of quality is external
quality [25], as viewed from the customer’s perspective, and
is one of the main drivers of the developer’s value from the
product. For presenting the economic model in its simplest
form in this section we treat Q as a scalar. In fact, this output
has multidimensional structure (see details in Section 5).
However, nothing in the model construction depends on this
scalar representation.

Our model focuses on the case in which the resource is
development time, to be allocated to work on four different
development phases. A basic assumption underlying the
model is that the same output can be developed with dif-
ferent combinations of inputs, albeit with different costs.
Accordingly, we define Q = f (t1, t2, t3, t4) as the software pro-
duction function that maps work time inputs on development
phases into the software development output.

A general concept of software production function was
used in its equivalent dual cost function form by several
sources (e.g., Boehm et al. [2, 3], Hu [26], Pendharkar et al.
[27]). They present the effort needed to develop software as

a function of its size and possibly attributes of the devel-
oping organization. Since our focus is the impact resource
allocation on software development output, we revert to
the traditional economics concept of production function
and extend it in two ways relative to these aforementioned
references. First, we include both size and quality attributes
in our characterization of software development output.
Second, we distinguish between efforts extended on different
development phases as distinct production factors. In order
to capture the flow dynamics of inputs and output in soft-
ware development, Madachy [28] presents a general dynamic
software production function, without distinguishing input
by development phases. The idea that the allocation of
resources across development phases is linked to the quality
of the resulting software was first presented by us in [29].
Heijstek and Chaudron [30] provide empirical evidence on
the effects such allocations have on defect detection during
development.

The inputs (t1, t2, t3, t4), respectively, denote the time
allocated to each of the following four development
phases: Requirements, Design, Implementation, and Testing,
respectively.3 The function f can also depend on additional
developer-specific human and organizational factors. As
explained in [23, Chapter 5.2], such factors can be based on
COCOMO II scale factors and effort multipliers [2]).

The value of the output Q to the developer depends on
how Q is perceived by the relevant stakeholder. The identity
of the stakeholders can vary from customers purchasing the
software to division managers in a large software devel-
opment organization. We assume that the developer is trying
to maximize a value function, denoted by V(Q), which is
increasing in Q. This value function captures all the factors
that constitute the developer’s reward for the developed
product. For instance, V(Q) could be the monetary income
generated by selling a software product with properties rep-
resented by Q. Other factors affecting product demand, such
as advertising and promotion, or deployment of the software
product in the client organization, are currently ignored
in this model, which focuses on the software development
process. Alternatively, V(Q) can be the salaries, bonuses, and
income equivalents of promotion opportunities enjoyed by a
software developer working in a large organization.

The essence of the value-based software development
optimization problem consists of maximizing V(Q) subject
to a budget constraint on the total costs of the inputs chosen
by the developer. While it is always possible to improve the
resulting product along some dimension, the developer will
seek to utilize the budget by choosing a combination of in-
puts that contributes the most to V(Q).

The relationship between the inputs and the resulting
output is at the heart of this approach, and we elaborate
accordingly on how it can be constructed. While the avail-
able resources can be allocated in different ways in the
course of the development process, this will affect both the
development output and its costs. To illustrate how one can
capture the intricate relationship between work on different
development phases and the resulting software product, we
consider an alternative representation of the same software
production function in terms of development phase artifacts.
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Let qi denote the quality of the artifact of phase i, i ∈
{1, 2, 3, 4}, and define the software development output as

Q = ̂f (q1, q2, q3, q4).
These phase qualities correspond to internal quality as

defined by [25] and are further explained in Section 5. Since
the resulting output of each phase depends on the time allo-
cated to that phase and may also be affected by the qualities of
the artifacts of other phases, this alternative representation of
the input-quality relationship is equivalent to the former in
terms of working time on each of the four phases. The depen-
dence among the artifacts of different phases is modeled by
assuming that q1 = h1(t1) and qi = hi(ti, qi−1); i = 2, 3, 4.

This formulation emphasizes the interdependence of the
artifacts from different phases, as well as the fact that the
resulting artifact of each phase depends on the resources
allocated to it. With wi denoting possibly different costs
associated with inputs to different phases, the budget-con-
strained value-maximizing problem is formulated as

Max
t1,t2,t3,t4

⎧

⎨

⎩

V(Q) |
4
∑

i=1

witi = b

⎫

⎬

⎭

, (1)

where Q = ̂f (q1, q2, q3, q4); q1 = h1(t1), qi = hi(ti, qi−1), i =
2, 3, 4, and b is the given budget for the project.

The assumption that the project’s budget will be ex-
hausted holds whenever additional development work has a
positive marginal effect on the product and an unused por-
tion of the budget does not increase the developer’s value.
One can easily convert this constrained optimization de-
scription of the problem to an unconstrained problem, where
no budget constraint is given to the developer and the inputs
are chosen to maximize the value net of development costs.
For such a version of the model, see [23].

The relationships between the different components of
the model are summarized in Figure 1.

The schematic views presented in Figure 1, as well as its
underlying economic model, are abstract and can be cus-
tomized to suit any level of the software developing entity,
by specifying appropriate rewards and cost functions.

For an individual developer or team leader, Q can include
the amount of features under his responsibility and their
quality. The value V(Q) will include the developer’s salary
and bonuses, which are assumed to be influenced by the work
performed. The cost will include the alternative uses of the
developer’s time.

For a software developing firm, V(Q) will typically in-
clude the income generated by a development output Q, and
possibly the indirect market positioning gained by having
such a product available in the market at that time. The cost,
at this level, is the budget devoted by the firm for developing
the given product.

3.2. The Dynamic Economic Model. Capturing the dynamic
nature of software development is important for accommo-
dating current iterative development methodologies, includ-
ing incremental and even lean development such as in agile

methodologies. The production function ̂f presented in the
previous subsection ignores the fact that the software devel-
opment output is also influenced by the dynamic allocation

of resources to different phases, rather than just by the
aggregate amount of resources allocated to each phase. The
richness of the dynamics of software development is explored
in depth by Madachy [28].4 Accordingly, we describe in
this subsection the essence of a dynamic version of that
model, which is presented in full in Appendix B. The
dynamic allocation of resources can be derived by solving a
dynamic programming problem of allocating resources to
development phases.

This dynamic allocation is based on an incremental qual-
ity improvement function, which describes the transforma-
tion of an existing software development output Q into its
next state, Q′, as a result of applying the subsequent unit of
development resources to one of the phases,Q′ = Q+g(Q, a).
Here a ∈ {1, 2, 3, 4} indicates to which of the four develop-
ment phases the next resource unit is allocated, and g(Q, a) is
the change in the development output Q resulting from that
allocation. Consequently, the output will be affected by the
order in which subsequent resource units are allocated to the
different phases, not just by the total allocated to each phase.
Moreover, the dynamic allocation of development resources
also allows us to stop the development process at any stage.
As long as there are remaining resources available for further
development, the optimal decision at each stage involves
two choices: (1) to stop further development and release the
product in its current form or continue the development
process, (2) if development continues—to which phase to
allocate the next unit of development time.

This dynamic allocation of resources to different devel-
opment phases can be presented as a decision tree, as in
Figure 2. The allocation of each subsequent unit of develop-
ment resource to one of the phases depends on the current
state of the development process, takes into account the
implications of allocating the next unit to one of the phases,
and recognizes that decisions on allocating subsequent re-
source units will be made in the future. This is the essence
of the dynamic programming approach we propose for the
dynamic model. The formal dynamic model can be viewed
as an optimization formulation of a certain type of System
Dynamics model advocated by [28].

The main advantage of allocating resources dynamically
is that it takes into account, by construction, the path of de-
velopment work on each of the four phases, and not just the
aggregate time spent on each phase. Furthermore, this dy-
namic model can be extended by including random effects
that influence the transition of the development output Q
or changes in available resources or the configuration of
features to be included in the software product. However, in
order to construct this dynamic programming formulation,
one must have a valid description of the incremental quality
improvement function, g, at each possible state of the
software development output index.

4. Characterization of the Software
Development Phases

This section characterizes the SDPs and suggests a procedure
for associating each activity during the software development
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Figure 1: A schematic view of the economics-based approach to allocating software development resources among SDPs.

Decision Point

Testing
ImplementationDesignRequirements

Product release

Figure 2: A schematic view of dynamic allocation of resources among development phases.

process with one of these phases. It further identifies two
properties of the phases, which we assume to have influence
on the process output.

Several well-known sources in the literature have catego-
rized the software development phases in different ways (e.g.,
[2, 9, 31]). First, they have provided somewhat different lists
of the phases participating in the software manufacturing
process. Second, they have provided different definitions
regarding which development activities belong to each
phase. For example, the requirements and design phases are
commonly distinguished based on viewing the requirements
phase as dealing with what the software should do, while
the design phase deals with how it should be done (IEEE
definition, [32]). However, as pointed out by Berry [33],
there are cases where it is not possible to precisely specify
the what without going into the how. In such cases, attempts
to measure work time allocated to each phase require a rule
for determining whether a particular observed development
activity should be considered as Requirements or Design.
This problem is not confined to distinguishing between

these two phases. It holds true as well for the Design and
Implementation (e.g., writing pseudocode), Implementation
and Testing phases (e.g., debugging/unit testing), and Testing
and Requirements (e.g., writing tests prior to development,
such as in XP methodology).

Our approach is based on identifying each atomic devel-
opment activity and classifying it to one of the different de-
velopment phases according to several criteria. To this end,
we need a conclusive definition of the development phases
and the boundaries between them, such that (1) each devel-
opment activity can be classified to exactly one phase, (2)
the time allocation for each phase can be measured, and
(3) the quality of artifacts of each phase can be defined and
measured.

To achieve this objective, each development activity was
classified as belonging to a specific development phase
according to the issue dealt with by the developer. We relied
on the observation that each software development activity
deals with one of the following four possible issues: what is to
be done, how it should be done, carrying out the above how,
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and checking the results. Accordingly, every development
activity can be uniquely mapped to one of the following
phases:

(1) Requirements: the set of activities that result in a
definition of what the software should do;

(2) Design: the set of activities that result in the definition
of how the software should meet its requirements;

(3) Implementation: the set of activities that result in the
computer program which is the physical, executable
artifact that will eventually be delivered to the cus-
tomer;

(4) Testing: the set of activities whose goal is to verify the
implemented artifacts.

Note that activities aimed at validating the requirements
or design, such as requirements review and design review, are
included in the requirements and design phases, respectively.

The definitions aforementioned are based on known
standards [32] and common knowledge.5 However, as ex-
plained previously, it is still difficult to uniquely assign each
activity to one of the phases. Some refinements are necessary
to resolve this fuzziness and sharpen the boundaries between
the phases. In what follows, we propose a direction for such
refinements.

For example, with regard to the boundary between
Design and Implementation, we classify everything that can
be represented in the UML class diagram [9] semantics as
Design, whereas anything more specific is part of the Imple-
mentation. More specifically, definitions of class hierarchy,
method signatures, and class data members are classified as
design, and more detailed code is classified as implemen-
tation. According to this distinction, if a piece of code is
composed of one long method, for example, we assume that
less design has been done than in a case in which the same
functionality is composed of several shorter methods.

Unlike most works in the literature (e.g., [1, 2, 31, 32]),
here we distinguish between coding and implementation. We
see this distinction as the distinction between the working
environments used and the actual phase to which the
development activity belongs. For example, when coding a
method signature, the classification of this activity to the
relevant phase depends on the context. If this signature is
coded according to a design document created earlier, the
developer merely implements what has been defined in
the design; hence this coding would be classified as an
Implementation activity. However, if the developer codes
the signature of a method without predetermining it in the
Design, this activity should be classified as a Design activity.

This classification can be extended in light of Ralph
and Wand [34], who suggest that the working phase is de-
rived from the existing technology that can be used by the
developer. If the developer deals with choosing between
existing technologies, for example, implemented objects, it
is considered Implementation. If the developer deals with
technology that does not yet exist, for example, an object
planned but still not implemented, it is considered Design.
Furthermore, according to [34], we can view the collection
of all the possible things we can do with the technology

primitives as all the possible design alternatives, while the
requirements are a constraint on this collection.

Another difficulty in associating activities with devel-
opment phases stems from the developer’s perspective.
Consider, for example, the boundary between Requirements
and Design. The requirements of a system component are
actually part of the system level design. Similarly, the require-
ments of subcomponents constitute part of the component
design. In the taxi ordering server (TOS) project used in
our empirical study (see Appendix A), for example, when
thinking about how to build the system so it will meet
the requirements, a decision to include a Parser component
might be reasonably considered to be a part of this how,
and hence a Design activity. The parser’s responsibility is to
check if a given text input is syntactically correct and, if it
is, to build a data structure, namely, a logic representation
of the text. Looking at the exact same activity when focusing
on the Parser development leads to view it as requirements
specification, since it deals with the capability required from
this component.

In order to address this concern, we refine the above
phase definitions by distinguishing between the develop-
ments phases with regard to a specific decomposition level of
the system discussed. Decomposition, according to Paulson
and Wand [35], is “the breakdown of a complex system
into smaller, relatively independent units. It is the main tool
available to simplify the construction of complex man-made
systems.” In our context, viewing the system as a whole, as
required by the customer, defines the lowest decomposition
level (level 0). Each successive breakdown, first to the system’s
direct components, then to their subcomponents, and so
forth, defines a higher decomposition level. We define that
each development activity is classified based on the issue it
deals with, with respect to a specific decomposition level.
Accordingly, for a given decomposition level, our defini-
tion resolves the fuzziness between the definition of what
(Requirements) and how (Design). We can similarly use
this decomposition analysis when assigning unit-testing
activities.6 When considering checking of given software unit
from the unit perspective, any test with regard to that unit
is considered as Testing. However, viewing the same activity
from the entire system’s perspective will be considered as
Implementation. This approach is similar to the one pre-
sented in [15, Page 160], where the analysis of project
value requires multiple views that are painted using multiple
measurement models. Each measurement model is like a
lens, where each lens is used by an observer in order to make
inferences about the properties of an object of interest.

After classifying the phases, we further characterize the
development activities according to additional attributes.
While there may be various such attributes, we find the fol-
lowing two to be the most relevant in terms of affecting the
output:

(1) the environment in which the work is conducted. Word
editor, UML tool, programming IDE, and so forth,

(2) latitude: the existence/nonexistence of choice regarding
the next activity. Accordingly each activity can be
described by one of the following:
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(a) process-forced activity: a situation in which
there is only a single choice for the next action at
a given point; Such activities can be described in
the context of our dynamic model (presented
in Section 3) as contemporaneous choices that
avoid obviously inferior outcomes;

(b) strategically chosen activity: the situation where
there is more than one possibility for the next
activity (that will positively affect the product’s
quality).

For example, at the beginning point of a project, the
requirements phase is usually the only choice. This is a
process-forced activity. However, after processing the first
requirement, one has a choice to continue processing the
next requirement or designing/implementing the system to
meet the requirement already processed. A more common
example is making Design/Requirements decisions during
Implementation. This can be a process-forced activity if the
developer gets stuck when writing the code, for example,
when deciding what to write in the else condition of an
if-else statement, or a strategically chosen activity when the
developer decides in advance to leave a certain design de-
cision to be made during Implementation.

In our empirical study, the above described attributes
were identified and various combinations of them were
found. In what follows we present several examples as written
in the students’ reflection documents (additional examples
appear in [23]). Note that the emphasis in the texts was added
by the authors. For each example we indicate the activity
profile in the following template: [<issue>, <work environ-
ment>, <latitude>] according to the explanation above.

In the following example, a requirement activity is exe-
cuted in the code environment, for the purpose of defining
interfaces with an external system (activity profile: require-
ment, code environment, strategically chosen activity):

“I am reviewing the code in order to understand
the system interface and the way it is supposed to
serve the system requirements. This whole time
is part of the requirements analysis. [Reflection
document—John, May 15]”.

In the next example, a strategic decision to design a
specific element during Implementation is made, when more
details are available (Activity profile: design, code environ-
ment, strategically chosen activity):

“I decided to design this [the class Configu-
rationManager] while dealing with the code,
because this way I can think of more possi-
bilities. For example, if I would design this
using Paradigm [UML CASE tool], I would
probably only think of the problems that may
occur in reading the file (if it’s damaged or
empty) or problems in finding the file. Working
with Eclipse I understand I need a class to hold
parameters. There could also be a problem if one
of the parameters is wrong. I didn’t postpone it
[the design] because of laziness; it’s the dealing

with the code that enables me to conclude the
design required here. [Interview—Mary, August
30, regarding her May 29 Reflection]”.

What follows is a different example for strategic work on
Design (Activity profile: design, UML, strategically chosen
activity):

“I am working on a Sequence Diagram for the
process of reading data from file. The design
documents are essential for understanding the
code later. The code is quite complicated; it will
be much easier to understand it using UML. I
stopped coding in order to organize what al-
ready exists and document it in the code and
the design documents. [Reflection document—
Ann, July 2]”.

The following example shows a requirements activity that
is forcibly executed during Implementation, but not in the
code environment (Activity profile: requirements, Software
Requirement Specification document, forced):

“The coding phase of the requirement for order
message processing and canceling, and their le-
gality check according to certain parameters,
obligates me to go back to the requirements
document and understand these requirements
better than I did in the initial stage of the project.
[Reflection document—John, June 29]”.

The importance of the solution presented in this section
lies in reducing the fuzziness of the development phase
definitions as they appear in the literature. We illustrated how
each activity in the development process can be classified into
one of the four phases according to the suggested definitions,
employing a multidecomposition level structure. For a given
decomposition level, activities can be allocated definitively
to a development phase. Accordingly, it is now possible to
produce a clear set of instructions for measuring time al-
located to the different phases. Note that the guidelines pre-
sented in this section are not the only solution possible; their
importance lies in their consistency. Whatever boundaries
are defined to separate the phases, they should be consistent.

In addition, we suggest that the contribution of each time
unit invested in a certain development phase is determined
not merely by the issue dealt with by the developer but also
by the specific profile of related attributes: environment and
latitude. The possible combinations of these attributes may
bring to numerous decision variables. Therefore, identifying
which of these attributes substantially influences the output
is helpful in quantifying the development effort.

5. Characterization of the Software
Development Output

This section proposes an approach towards a measurable
definition of the software development output in a way that
reflects what is produced and what will ultimately be used by
the customer. This approach can be seen in contrast to, for
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example, an output measure based on the number of lines of
code—which is of no interest to the customer.

Following the VBSE approach, note the distinction in
our economic model between the definitions of software
development output and the value derived from that output.
The former is defined in terms of the product’s properties,
whereas the latter is based on how the output is perceived by
the relevant stakeholder. This section deals only with defining
the software development output. The output is a fundamental
concept, whose definition must underlie any formulation
and estimation of production, value, and cost functions.

Finding an appropriate output definition may also con-
tribute to other areas of software engineering management
[36]. Finding a way to measure how much software is pro-
duced will allow analyzing and comparing the productivity
of different manufacturers, projects, development strategies,
and invested resources. It will facilitate project planning, cost
estimations, and so forth.

At the root of the difficulty in defining and measuring
software output is the fact that software engineering deals
with the development of a single prototype rather than mass
production of identical goods. A basic and common ap-
proach for measuring output is the notorious lines of code
(LOC) measure, which does not reflect the essence of the
product, as noted previously. A more advanced approach is
the function points (FPs) measure [2], reflecting the volume
of the software functionality. The problem with this and
similar approaches is that they do not take into account
the quality of the product, as noted by Sommerville [31,
Chapter 26]. Recent approaches that do take quality into
economic consideration (e.g., [8, 10, 11, 30]) deal only with
specific aspects of quality, such as bugs per volume unit (as
measured in LOC or FP terms), and do not deal with the
problem of resource allocation among SDPs to improve this
measure.

The output of the software manufacturer is defined here
as a combination of software features and their qualities.
We use the term feature to denote the software volume
unit(s) that produces a particular functionality (note that
this differs from the IEEE definition). Accordingly, a feature
is an application capability that can be measured and weight-
ed according to its importance for a representative user.
Naturally, a feature may be decomposed into subfea-tures.
Although there are several ways to characterize a feature (vol-
ume unit), for example, the function points methodology
[2], the object points methodology [2], or end-user features
specified informally as “stories,” [6], the characterization of
the feature does not affect our approach to the resource
allocation problem. For the sake of simplicity, we illustrate
our approach for a single feature.

For quality modeling we use the notation of ISO 9126
[25, 37–39], which lists six main quality characteristics:
Functionality, Reliability, Usability, Efficiency, Maintainabil-
ity, and Portability. The quality is first examined from
the customer’s perspective, denoted as external quality. We
assume that the customer combines the software features
and the above six quality characteristics in what we call the
software product matrix (SPM) presented in Figure 3.

Columns in the SPM represent different functional fea-
tures of the software product. Rows correspond to the exter-
nal qualities of the above six characteristics.

Each numeric entry in the SPM represents the measure
of the corresponding row’s quality characteristic for a given
column’s functional feature. Each subfeature and each qual-
ity subcharacteristic can be further decomposed, with appro-
priate weights [37, 38]. Some quality attributes, for example,
Portability, may not be decomposable for all software fea-
tures. Some of the entries may be nonapplicable when a cer-
tain quality factor is irrelevant for a particular feature.

The output of each of the four main development phases
contributes in a different way to the different factors of the
external quality. We formalize these contributions in terms of
phase artifact qualities, which can be presented along a third
dimension of the SPM matrix. This quality definition fits the
ISO 9126 notation of internal quality, which refers to static
properties of software that are considered independently of
its execution (see [25] for more details).

Figure 4 presents a schematic view of the interrelation-
ships between the 2-dimensional SPM and the develop-
ment work along the different phases. This relationship is
presented as a 3-dimensional matrix, called the phase contri-
bution box.

5.1. External Quality Characterization. An external quality of
a given software feature is defined by quality characteristics,
which are used to evaluate the software behavior during
execution from the user’s point of view, with regard to this
feature. The key to correct assessment of the quality factors
is a comprehensive and properly weighted list of scenarios.
This list should represent typical loads or stress tests
under which the product should perform. The tests include
running the software to obtain performance scores as well as
experimenting with, for example, product modifications or
portability to different operating systems.

A quality factor in general is a decomposable entity. It is
composed of subfactors, each having a relative importance
(weight). These subfactors, in turn, can be further decom-
posed. Thus, when discussing quality we refer to two ele-
ments: quality factors and their weighting [37, 38]. Weight-
ing is largely affected by system usage, as illustrated in usage-
based statistical testing techniques such as the Cleanroom
approach [40].

A software developer is usually not explicitly aware of all
the ISO quality characteristics or of their relative importance
in the particular product being developed. However, given
the accepted assumptions of the economics of uncertainty
models, we assume that the developer behaves as if s/he does
know them.

In our empirical study we created an artificial setting
in which a taxi ordering server (TOS) application’s quality
factors and their weightings were explicitly defined to the
students developing it (see Appendix A). The factors and
their weightings were handed to the developers only down
to a certain level, below which they had to “guess” the
relative weightings. Figure 5 illustrates this notion by means
of a directed tree representing the artificial setting of the
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Figure 4: Example of the phase contribution box.

empirical study in terms of quality definitions. The nodes of
the tree represent the quality factors. Descendants of a node
in the tree represent its subfactors. The weightings on the arcs
represent the relative importance of each quality factor.

According to ISO 9126, the quality factor Functionality
consists of the subfactors’ Suitability, Accurateness, Interop-
erability, Compliance, and Security. In our study, only Com-
pliance and Suitability have positive weights (0.96 and 0.04,
resp.). Suitability is defined by ISO 9126 as “Attributes of
software that bear on the presence and appropriateness of a
set of functions for specified tasks” and Compliance is defined
as “attributes of software that make the software adhere to
application-related standards or conventions or regulations
in laws and similar prescriptions” [25].

Using this general definition of Compliance, we divided
the Compliance quality subfactors into two subfactors: C1,
the degree to which the application adheres to related

standards in the case of correct inputs, and C2, a similar
measure of the application’s response to incorrect inputs. We
assigned equal weights to each of these subfactors.

Thus far, we have seen the upper levels of external quality,
explicitly defined for the students. Lower levels are assumed
to have been defined by the students individually within
the general definitions given for the upper levels. That is,
in accordance with economic theory, we assume that the
students make an educated guess regarding these subfactors
and their weights or understand them without necessarily
being aware of it.

Down the tree one can find quality subfactors relating
to a more specific set of requirements. For instance, down
the subtree spread under the subfactor C2, one can find, for
example, a quality factor at the (almost) lowest level, defined
as the ability to adhere to the application-related standards in
case of incorrect syntactic inputs originating from more than
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Figure 5: A directed tree representing the TOS external quality.

one space left between the words (tokens) in the passenger’s
message.

We assume that the relative importance of each of the ex-
ternal quality factors stems from the customer utility func-
tion and that they all “diffuse” into the developer’s mind
via the product demand function. We also assume that a
rational software developer would try to make sure that
his/her weighting evaluation is as accurate as possible. At the
firm level, statistical testing techniques, such as in the
Cleanroom approach [40], might be available. However, the
individual developer tries to understand the importance of
each quality subfactor using available means. This notion is
well illustrated in an e-mail sent by one of the students, John,
when trying to gather information from the “customer”:

“[· · · ] My question: is it critical to check that
there is only a single space character between 2
words or is it less critical and therefore can be
ignored, so I can move to implement other more
critical functionalities? [Email—John, August
1st]”.

In the above example, we see that John identified an im-
plicit quality subfactor and tried to obtain information
about its importance. That is, he understood that having
more than one space between two tokens in the passenger’s
message is a syntax error; however, as he was very busy,
he justly considered whether he should invest his time
handling this error or continue to work on more important
(i.e., more valuable) tasks. This example is consistent with
our assumption that the software development process is a
rational process of allocating resources for producing max-
imum quality units.

Generally, student behavior was consistent with the
basic assumption that development resources are allocated
primarily to achieve the highest possible quality measures.
All students expressed time and again in their reflection
documents their desire to increase (certain aspects of) quality
when describing their decisions to move between develop-
ment phases. This finding is consistent with [41], reporting

that the external quality of software is the most important
factor in the evaluation models of senior IS managers.

5.2. Internal Quality Characterization. According to the ISO
9126 standard [25], internal quality is measured using inter-
nal metrics, which apply to static properties of software that
are considered independently of its execution. Our approach
associates internal quality with phase artifact quality. Internal
quality measures quantify the artifacts produced by different
development phases.

Our method for evaluating phase artifact quality is to do
it feature by feature. We look at any particular feature and
evaluate the contribution of each of the four development
phase artifacts to each of its six external quality factors. This
is analogous to slicing our phase contribution box along a
fixed feature and extracting a 2-dimensional matrix. We call
it the feature qualities matrix (FQM). A schematic view of this
matrix is presented in Figure 6.

In the upper four rows of the matrix, cell (i, j) contains
the contribution of the artifact quality of the ith phase on
the jth external quality factor. These four rows show artifact
qualities of the four development phases with respect to the
different quality factors. Naturally, for a given quality factor
(column), the different qualities of each of the four phases
are assumed to affect the external quality. The bottom row of
the FQM holds the scores of the feature’s external qualities.

The main challenge here is to devise sensible measures
for each of the FQM internal quality cells, for measuring
the contribution of each phase’s artifact to the external qual-
ity. This will provide a practical means to estimate the
assumed functional relation between the internal qualities

and the external quality (see the definition of the ̂f function
in Section 3). These measures should be consistent with
the phase definitions, so that it will be possible to estimate
the functional relation between the resources allocated to a
certain phase and the quality of this phase’s artifact.

In what follows we illustrate how one can go about filling
in the entries of the FQM. This illustration is based on the
measurements taken in our empirical study [23].

In filling in the phase artifact cells for the Maintainability
column, for example, one should consider how to define
internal metrics for each of the four phases. The litera-
ture suggests many static evaluation methods for software
Maintainability (e.g., [42–46]). Let us consider the effect of
the quality of the Design phase artifact on Maintainability
(the second cell of the Maintainability column in Figure 6).
The metric to be selected should include factors such as
documentation, modularity, and legibility, which will also be
assigned weights.

Lindroos [42] summarizes several static metrics for the
evaluation of Maintainability that seem highly connected
with the external maintainability factor.7 Among the metrics
listed by Lindroos, coupling between objects (CBOs) and
response for a class (RFC) seem to be good candidates to be
included in the evaluation metrics of modularity (via encap-
sulation), which bear high significance in maintainability.

The CBO score of a class is the number of classes to
which the class under consideration is coupled. A high
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Figure 6: A schematic view of the FQM.

coupling measure has a detrimental effect on modularity and
the ability to reuse the class in the future. The higher the
coupling measure, the higher the sensitivity of the design
to changes; that is, more effort is required for modification,
fault removal, or environmental change (all ISO criteria for
the evaluation of Changeability, which is one of the sub-
characteristics of Maintainability). Therefore, the CBO mea-
sure is assumed to affect the external Maintainability score.
In particular, CBO reflects the contribution of the design
phase (as defined in Section 4) to Maintainability, as it re-
fers to issues that can be represented by the class diagram
semantics.8

Other metrics for evaluating the contribution of the
Design artifact to Maintainability may include the documen-
tation of the design, that is, how exhaustive and well-written
the software design document is, to what extent the design
complies with the requirements, and how well the UML
diagrams (if used) reflect the actual design as it appears in
the code.

The cells reflecting the contribution of the three other
phases on Maintainability can be examined in the same way.
For instance, metrics for code modularity and documenta-
tion will probably be among the factors used to evaluate
the effect of the Implementation’s artifact on Maintainability
(the third cell of the Maintainability column in Figure 6).
Metrics such as the popular Maintainability Index (MI)
[47], or metrics included in this index, such as the Halstead
Complexity measures or the McCabe Cyclomatic Complexity
measure, might be appropriate here since the aspects of
Implementation they deal with do influence Maintainability.
For example, a high value for the McCabe Cyclomatic meas-
ure indicates high code complexity, which makes the pro-
gram less maintainable.

The challenge of finding metrics consistent with the
definitions of development phases is indeed difficult to real-
ize. One problem is developing metrics that strictly dif-
ferentiate between Design and Implementation. The MI,
for example, seems to evaluate elements linked to both
Design and Implementation. However, given our suggested
distinction between these two phases—everything that can
be represented in the class diagram semantics is considered
as part of the Design, whereas anything more specific in
that context is part of the Implementation—the CBO indeed

evaluates the quality of the Design, as it measures the
relations among classes. Likewise, the McCabe index indeed
evaluates Implementation. It should be emphasized, how-
ever, that the CBO cannot serve as the only metric for Design
modularity and should be combined with other metrics.

Thus far we have examined the effect of the qualities
of the artifacts of the different phases on Maintainability.
For this purpose, we have not gone into the nuances of
the distinctions between the various subfactors of Maintain-
ability, since it is reasonable to assume a high correlation
between the effect of an internal index on Analyzability,
for instance, and its effect on Changeability or Testability.
However, this is not necessarily the case for the other five ISO
9126 external quality factors. In the case of Functionality, for
example, the distinction between the different subfactors is
very important. For instance, the effect of the phase artifacts’
qualities on Compliance is different from their effect on
Suitability or Accurateness.

Let us consider the effect of the development phase arti-
facts on the Compliance factor. As suggested in the previous
subsection, the external quality of this factor can be mea-
sured by the appropriate response of the software to different
types of input. The metric evaluating external Compliance,
therefore, examines the fulfillment of the external functional
requirements. This examination results in a collection of test
cases. For each of these test cases, the application can be
operated under a quality checker to examine whether the
required functionality has indeed been fulfilled. The external
Compliance score consists of the weighted percentage of the
cases that passed the test.

In order to fill in the four cells representing the effect
of the different phase artifacts on the external Compliance,
we have to statically evaluate the contribution of each phase
to the external Compliance score, that is, to evaluate what
percentage of the tests will pass. This can be done by defining
the collection of required functions of the given feature.

The effect of the Requirements artifact on Compliance
can be measured by examining what percentage of the
required functions have been specified as functional re-
quirements and their quality in terms of consistency, com-
pleteness, and unambiguity. The effect of the Design artifact
on Compliance can be measured in part by examining
what percentage of the required functions have been given
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solutions in the design documents. Similar metrics should be
used for Implementation (by considering what percentage
of the required functioned is actually implemented in the
code) and Testing (by examining functional coverage).

The remaining cells in the FQM can be filled and applied
for each feature of a given software product, gradually filling
the entire phase contribution box for the output evaluation
of the entire software, and thus quantifying the contribution
of each phase to each of the external quality factors.

5.3. Summary. This section characterizes software develop-
ment output as a bundle of features, each of them provided at
a certain quality level. We explained the principle of defining
quality in the scope of a single feature, based on the ISO
9126 quality model. We emphasized the distinction between
phase artifact quality (internal quality) and the quality as
perceived by the customer (external quality). We exemplified
this principle by presenting internal and external quality
metrics for a small subset of ISO 9126 quality characteristics
as measured in our empirical study (see [23]). We presented
a workable framework, called the feature qualities matrix
(FQM), which organizes all quality scores of a given feature.

Each cell in the FQM matrix holds a certain quality
score of the feature, based on predefined heuristic. We
demonstrated how to define measurable metrics for several
cells in the FQM while focusing on Functionality and
Maintainability. The demonstration was based on students’
projects. However, in this specific sense we see no major
difference from real, industrial projects. The practice of
measuring coupling between objects (CBOs) as a metric for
evaluating the effect of the design quality on maintainability
or the Maintainability Index (MI) as a metric for evaluating
the effect of the implementation is independent of the
projects’ scale. Thus we find the external validity intact in this
context.

The evaluation of other cells in the FQM can in practice
be done similarly, based on the presented guidelines. For
example, consider the quality factor of Efficiency, which was
not demonstrated. According to ISO 9126, “time behavior”
is one of the subcharacteristics of Efficiency. In algorithmic
oriented features, the external quality of time behavior
is based on processing and response times. The effect of
Design on time behavior will be measured by means of the
algorithm’s time complexity. The effect of Implementation
will be measured by static code analysis metrics. As a simple
example, consider a C++ metric that counts instances of
function parameters, which are too big and would be better
handled via references.

Having a metrics for all the cells of the FQM is not
required for its practical use. Some software development
teams receive the requirements specification as a mature and
processed document. Such teams can ignore the Require-
ments row of the matrix. Likewise, for some software
projects the Portability or the Usability factors may not be
applicable. Focusing on the internal and external qualities
of the ISO 9126 subfactors that are most relevant for the
feature can make the FQM a practical tool for storing and
organizing quality data. The output evaluation presented in

this section can be extended beyond the scope of a single
feature by incorporating into our framework a methodology
for distinguishing between features and weighting them,
using, for example, the function points methodology [2].
Accordingly, we believe that software development output
can indeed be defined in sensible and measurable units.
Building a CASE tool for handling output evaluation will
undoubtedly help reduce the complexity of this evaluation
process.

6. Properties of the Software
Production Function

The previous two sections dealt with the characterization
of the economic model’s variables. This section discusses
the nature of the relationships between the dependent and
independent variables. Since a comprehensive formulation
of production functions should be based on a vast empirical
basis which has yet to be built, this section only illustrates
what can be learned about the theoretical model from empir-
ical studies and how that model can help in interpreting the
developers’ observed conduct in experimental settings.

While the mathematical structures of these production
functions were not fully characterized in this research, we
maintain the assumption that such underlying functions do
exist. The empirical study yielded some inferences about
the functional forms of the relationships between work on
development phases and the resulting development output.
This section presents two key characteristics that emerged
from this study regarding the nature of these functions:
substitutability among development phases and decreasing
marginal product.

6.1. Substitution among Production Factors. The economic
model proposed in Section 3 relies on knowing how different
combinations of inputs, in the form of working hours
invested in the Requirement, Design, Implementation, and
Testing, affect the resulting software. More specifically, it
is assumed that the software developer has the latitude to
increase one of the inputs while decreasing the other or
choose alternative sequences of time allocations among the
phases, without changing the output index score of the
produced software.

The curve in Figure 7 is a schematic picture of all com-
binations of two inputs, (holding the level of other inputs
fixed), that yield the same output, known in economics as
isoquant. Each isoquant is indexed by the constant level of
output it represents, Q1 < Q2, and so forth. The existence of
such a curve reflects the substitutability of production factors.
Its downward slope indicates that if you scale down the use
of one of the input factors, you need to scale up the use of
another factor in order to preserve the same output. This
ability to use alternative combinations of production factors
allows the developer to choose the least costly combination
of inputs that produces the desired output.

In the empirical study, we made two observations with
regard to the nature of this substitution. One was the fact that
developers chose vastly different input combinations and
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Figure 7: Schematic visualization of substitution in software pro-
duction functions.

yet managed to produce similar outputs. This observation
supports the general idea that one can produce a particular
software product by different combinations of inputs. Thus, a
nontrivial decision must be made here, namely, which input
combination yields the highest return to the developer. The
degree of substitution present among SDPs in performing
a particular task depends on the aggregation level of the
task. More elementary tasks allow less substitution among
phases, down to, for instance, multiplying two numbers.
Such a task still requires some requirement analysis, for
example, whether the numbers are real, integers, or complex
numbers, and some design work on alternative ways to carry
out the requirement, with very limited substitution between
them. On the other extreme, a large multifeatured software
product admits a large degree of substitution among phases,
including shifting among phases associated with different
features or different quality characteristics.

Our second observation was that personal attributes of
the developer can influence the degree of substitutability
among the development phases.

Here is an example of how substitution is affected by Java
development experience:

“In the beginning of the project I used to
perform many tests, since I had no confidence
in my programming. Now that I have more
experience working with Java language, I don’t
perform as many tests as I used to; I know
how to conduct Unit Testing more efficiently.
[Interview—Mary, August 30]”.

6.2. Decreasing Marginal Product. Production processes hav-
ing this property exhibit decreasing returns as one of the
inputs is increased while holding other inputs constant.
Such processes usually imply the desirability of an internal
allocation of resources, with some positive amount of each
input. As more and more resources are allocated to the same
input, the improvement obtained becomes smaller, until at
some point it pays off to shift resources to another input.
This is known in economics as decreasing marginal product.
In the context of a dynamic production process, this property
determines when to shift the allocation of resources among
inputs, and how much to allocate to each input.

In static optimization problems, the decreasing marginal
product property is a necessary condition for concavity.
Concave optimization problems can be solved by means of
first order conditions. Moreover, their solutions are typically
continuous functions of the parameters of the problem,
allowing for straight forward sensitivity analysis of the
solution with respect to parameters of the problem. Thus,
to the extent that such functional structure is validated by
empirical studies, the optimization model becomes a handy
tool for extracting the optimal allocation of resources. The
decreasing slope of the isoquants in Figure 7 reflects the
decreasing returns property of each input in isolation.

In fact, availability of analytical solutions to the resource
allocation problem is not essential given the advance of
simulation-based models. Such models can be augmented
by expanding the software production process module (e.g.,
[28, Section 3.3.5]), according to the software production
function proposed in this paper. Thus, the impact of
alternative allocations of resources on various aspects of the
developed output can be traced via simulations, along with
its interactions with other aspects of managing the software
project.

Our observations are consistent with the decreasing mar-
ginal product of working time allocated to each of the phases.
Throughout the development process, the students usually
moved from one phase to another when they felt that the
previous phase’s quality is satisfactory and their resources
will have a higher contribution if applied to a different phase
at that point. This notion is clearly exemplified in Ann’s
report on her shift from Design to Implementation:

“I moved to Implementation after achieving a
reasonable level of the UML documents relative
to the time I have left to complete the project.
[Reflection document—Ann, May 26]”.

In a follow-up clarification Ann was asked to explain
what she meant by “reasonable level of UML documents,”
and this was her response:

“Reasonable level [of UML documents means]:
a description of 2 basic functions and their se-
quence; which class performs which function;
organizing the functionality according to a
logical, sense-making, order. It’s enough for me
to describe the basic functions at this stage in
addition to the main functions and not develop
on paper [that is, in the UML diagrams as op-
posed to the code environment] all the func-
tions, because I don’t have enough time for it.
[Ann, May 26]”.

Ann clearly has a firm perception of what “reasonable
level of design” means. She is also well aware of the time
constraint. It seems that what she had determined as
reasonable level of design is the design construction up to the
point where the marginal product generated by an additional
time-unit of Design is lower than the marginal product
of Implementation. That is, given the current state of her
development, her next working hour will yield higher return
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in Implementation than in Design, because she already made
significant headway in Design.

This phenomenon was observed repeatedly with respect
to all students in the study. Here is another example:

“Completed the Design of methods and param-
eters to be implemented to an adequate level
and moved on to Implementation of methods’
code [Reflection document—John, June 5].”

Nonetheless, we also observed shifts from one phase to
the next, when the developer explicitly acknowledges that the
previous phase is incomplete. For example,

“Due to time limitations I stopped at the stage of
basic definition of the Requirements and did not
go into its depth. I defined major functions and
their respective tasks, and the data structures. If
I had more time, I would have gone into more
detail. [Reflection document—Ann, May 11]”.

The shift from one phase to another despite recognized
imperfections in the former, as opposed to completing one
phase before moving to the next, is consistent with allocating
development resources to activities that yield the highest
marginal contribution.

7. Using the Model to Analyze
Developer Decisions

The model presented in this paper provides a framework
within which we can analyze various developer decisions
made at different points in the development process, identify
the reasons for these decisions, and suggest how to improve
them in future projects. We exemplify these capabilities of
the model by analyzing suboptimal decisions made by the
students developing the software in our empirical setting.

We have identified cases where the time allocation deci-
sions made by the students were clearly not consistent with
the model and indeed led to poor results in which students
received zero scores on Functionality (during interim project
submissions). In order to understand this result and the
developers’ conduct preceding it, we investigated the sources
of the mistaken allocation decisions and arrived at the
following possible reasons for them.

(i) The students failed to allocate sufficient time to
Requirements and Testing. For example, mistakes in
the format of the response message sent by the TOS
to an incoming order request, a common reason for
getting a zero score by the quality checker, could
have been avoided by reading the requirements more
carefully. Likewise, the software developed by some of
the students failed to detect incorrect inputs despite
our explicit instruction to detect them and respond
with appropriate error messages. A main reason for
this failure was that developers neglected to include
appropriate tests of incoming orders.

(ii) Given that the students had been informed that
Functionality would account for 75% of their prod-
uct’s external quality (i.e., a major part of their

course grade), they naturally tended to invest much
effort in it. However, we found that some of them
perceived Functionality improvement as stemming
almost exclusively from time spent on Implemen-
tation, failing to appreciate the contribution of
other development phases to this software quality
factor. Thus, allocating time to Requirements and
Design would have resulted, in their opinion, only
in an increase of the Maintainability factor, which
accounted for only 25% of the external quality.
Moreover, we found that students invested time
in infrastructural activities (e.g., writing a proper
requirements document in the requirements phase,
writing a UML diagram properly describing the
design and other documents laying out the design
rationale, and writing a test plan for the testing
phase), mainly when forced to do so. For example, in
an interview, Mary said “I considered writing a design
document. Since you did not say it’s a must, and I
thought it will take me too much time, I decided not
produce it after all.”

(iii) The students tended to overinvest in the Suitability
aspect of Functionality at the expense of Compliance,
though the latter had been defined as a much more
important component of Functionality. Suitability
was measured by the profits generated by the TOS
scheduler, whereas Compliance was measured by the
percentage of appropriate responses of the software
to correct and incorrect sets of inputs. Not only was
the weight of Compliance 24 times higher than that
of Suitability (96% versus 4% of the Functionality
grade, respectively, as was explicitly explained in the
project description given to the students), but also
the marginal impact of profits on Suitability was
decreasing, thus resulting in very low profit in return
for the time invested. After the development process
was complete, we examined students’ motivations
while attempting to identify what caused such poor
results. Our examination revealed that some students
simply did not understand the quality definitions,
while others did, but knowingly chose to operate
differently. For example, in a follow-up interview
Ann said “I was aware of the weights given to dif-
ferent quality factors, but personally the scheduling
function was the one that challenged and interested
me the most.” This case exemplifies a developer
maximizing her own individual objective function,
which deviates from the objective function given.

(iv) The students tended not to use helpful software tools
with which they were not familiar. It appears that
they ascribe more importance to evident time costs
than to the unknown efficiency gains. Consequently,
they may allocate too much time to developing new
“tools” instead of using available ones, and this
often distorts their decision as to how to allocate
time among the development phases. For example,
in order to apply syntax checking for incoming
messages, some of the students chose to develop
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their own parser rather than use the existing software
package supplied by Java (i.e., the regex package).
This was a clear error, since using regex would have
been more efficient.

(v) Cognitive aspects such as attention span, concentra-
tion ability, memory capacity, and diligence seem to
have significant influence on the chosen allocation
of time resources. For example, in many cases stu-
dents chose their next activity according to how
concentrated/tired they felt at that time or due to a
concern that they might forget to conduct a certain
activity at a later stage.

We believe that the relevance of the value-based under-
pinning of this work extends beyond the scope of the field-
study presented in this paper. It is our working assumption
that each software developer should operate to increase the
product’s external quality, since this is the factor that drives
the demand for the product. Accordingly, development
process decisions should be taken while considering their
consequences in terms of external quality. In cases where
external quality properties are practically not measurable,
we suggest to use internal quality instead. Future research
may estimate the functional relations between internal and
external qualities, to yield proxies of the project’s external
qualities based on simple measurements of internal qualities.

8. Conclusions and Future Work

Optimal allocation of resources among software develop-
ment phases is a complicated problem that has not been
addressed systematically, despite its possible ramifications for
software project quality and cost. The research framework
presents two goals for addressing this problem. The first is to
enhance our understanding of resource allocation decisions,
their complex nature, and their influence on the output. The
second goal, which will be handled in the long-term on the
basis of this and future research, is prescriptive: proposing
how to modify existing resource allocation approaches or
develop new ones, in order to improve the productivity of
the software development processes.

This paper presents an economics-based approach for
studying this problem. The underlying assumptions of our
work have been that it is feasible and useful to treat resource
allocation among SDPs as rational decisions whose aim is to
maximize a well-defined objective, and that these allocation
decisions should be based upon measurable notions of
inputs, outputs, costs, and resulting quality.

Our approach is structured along two axes: theoretical
and empirical, building and refining a theoretical model
based on empirical data. The paper presents the first steps
conducted on these two axes. We have developed an eco-
nomic model for analyzing the resource allocation problem
as a constrained maximization problem and characterized its
main building blocks: input in the form of work performed
in different SDPs, software development output, and the
software production function, which maps inputs into out-
puts. We have constructed an empirical environment for
evaluating and refining the model, and conducted the first

empirical study for examining software developers’ time
allocation decisions and their resulting output.

The empirical study was quite limited in its setting
compared to typical projects in the software industry.
First, our subjects were students rather than professional
software developers, which was a limitation dictated by the
need to let them all develop the same product (according
to an identical set of customer requirements). However,
Kitchenham et al. [19] argue that using students as subjects
instead of software engineers is not a major problem (as long
as the researchers are not specifically interested in experts).
Second, the students worked individually, as 1-person teams,
which is a limited simulation of real development teams
in industry. However, our focus here is on variables and
tradeoffs in decision-making processes at the individual level.
Regardless of these limitations and the simplicity of the
empirical setting, we have learned much about the nature
of the variables and functions of the model as well as its
practical application that could not have been obtained
without the empirical evidence generated by this study.

To validate our approach and the proposed model, the
following questions must be answered.

(1) Can each activity during the development process be
appropriately classified into one of the development
phases?

(2) Can the software development output be defined in
measurable units which capture what the producer
develops and what is consumed by the consumer?

(3) Is there a systematic relationship among the resources
allocated to different SDPs and the resulting output?

We found positive answers to each of these questions,
although more work is needed to refine the specifications
of the model’s components. These answers were spelled out
in Sections 4, 5, and 6, where we characterized the model
components and described the empirical study using the first
version of the measurement tools we have developed.

We regard the work presented here as an illustrative first
step. Its novelty lies in casting the resource allocation among
SDPs as a familiar economic optimization problem, utilizing
standard economic analytical tools, while developing the
underlying concept of the software production function along
with empirical methods for its evaluation. The usefulness
of our approach will increase as we improve measurements
of inputs and outputs and accumulate more reliable infor-
mation about, and estimations of, the mathematical relation-
ships among variables embedded in the software production
function.

Even at this illustrative stage, our work demonstrates the
usefulness of the model as an evaluation tool. For example,
the feature qualities matrix (FQM), or even a subset of it, can
be used as a practical tool for storing and organizing data
regarding comprehensive aspects of the developed software
quality.

The reasoning of the software production function can
also be helpful in practice. Development organizations that
will keep data of inputs and outputs across different versions
of the same product, or across different features from the
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same family, may find systematic relations between them and
improve their analytic capabilities.

We found in the developers’ behavior within our study
support for the underlying assumption of rational process for
maximizing a quality-based goal function (see Sections 5 and
6). On the other hand, we found significant and systematic
deviations between actual allocations of resources among
SDPs and those prescribed by the model and were able to use
the model to identify some of the sources of these deviations.

In addition to indications supporting our model, we
find that the model should be refined in several ways. For
instance, more emphasis should be put on the allocation of
resources to different features in the required application and
on the order in which these features should be developed.
We have observed that decisions regarding time allocation
among features are made together with those regarding
resource allocation among development phases. We can view
each feature as having its own production function, and
extend the model to include combinations of features and
phases. Namely, each decision will refer to both: to which
feature and to which phase to allocate the next time unit.
Future work may use Function Points Analysis for deeper
characterization of the term feature. Recent work such as the
one by Batista et al. [48] can be helpful for this regard.

Our approach can also indirectly contribute to related
fields in software engineering. For instance, phase-sensitive
versions of the cost estimation model [3] will yield sharper
and more accurate project effort and cost estimates, by
adopting the phase characterizations presented in Section 4.
A straightforward extension of our economic models can
be used to model and analyze the optimal output level for
releasing the software, thus contributing to the discipline of
Release Engineering (e.g., [15, Chapter 9], and [49]). Future
work should strive to further sharpen the characterization
of variables in the model and estimate the relationships
embedded in it, paying special attention to the incentive
mechanisms under which software developers operate.

Additional work is needed to further formalize the
characterization of the development phases and combine
it with industrial development methods such as the RUP
model (see [2, 13]). The characterization of the output
should be concretized further by taking into account the
different features embedded in a software product, using
Function Point counting [2], and by developing a method for
measuring and weighing subfeatures and their qualities. This
will facilitate the comparison between different philosophies
underlying alternative resource allocation strategies, even
across different software projects.

Our proposed definition of internal qualities as phase
artifact qualities should be augmented by metrics that cap-
ture the contribution of each development phase to each
of the external quality characteristics. This can be accom-
plished, as illustrated in this work, by filling in more entries
in the FQM, which organizes the quality scores in the context
of a single feature.

We believe that a large part of software development
consists of systematic work along well-defined routes, with
measurable inputs and outputs. Our work demonstrates that

that portion, at least, can be analyzed and improved upon as
done for other production processes.

Appendices

A. The TOS Application Task

The toy-application developed by the students was a Taxi
Ordering Server (TOS). The purpose of the system was to
supply simple taxi ordering services to potential passengers,
within a given country and under the constraint of a given
number of taxi cabs. The TOS should supply the passengers
the following services.

(1) TaxiOrder. The passenger notes his or her location,
destination, required pickup time, and his/her name. In case
of an incorrect request message, the TOS will notify the
passenger. Otherwise, if the TOS succeeds in scheduling a
taxi for this task, it will respond by giving the passenger a
unique Ride-ID number. If it does not succeed, it will send a
rejection message.

(2) OrderCancellation. The passenger cancels an order by
specifying its Ride-ID to the TOS. The TOS has to respond
after checking whether the message is correct.

Given the expected revenue and the costs of the ride
orders, the TOS has to optimize order scheduling, in order
to maximize the taxi company’s profit.

The four development phases created a simulated soft-
ware lifecycle: the students specified the detailed engineering
requirements, then designed, implemented, and tested the
software.

The relative importance (weights) of the various ISO
9126 [25] quality factors of the application to be developed
was given to the students. According to our economic ap-
proach, such weights are needed so that the developer can
decide, given the underlying software production function,
how to allocate time in the most profitable way. Naturally,
the weights were given to a specific collection of ISO quality
factors [37], whereas the developers still had to use their own
judgment in order to decide how to weigh subfactors for
which no specific weights were given.

The quality measure of the TOS application was defined
as an aggregate measure of two key quality factors: Func-
tionality and Maintainability (henceforth F and M, resp.),
whereas other factors included in the ISO definition received
zero weight. (We use the word weight loosely and mean the
elasticity of the score with respect to each quality factor.) The
resulting formula of the TOS quality was Q = F0.75 ·M0.25,
representing the economic tradeoff between these quality
factors.

The Functionality quality factor was divided into two
subfactors: Suitability and Compliance (henceforth S and C,
resp.), while the other ISO subfactors received zero weight
each. The Compliance subfactor was assigned a weight of
96% and the Suitability subfactor was assigned a weight of
4%. The resulting formula for the Functionality factor was
F = C0.96 · S0.04. Note that it was not our intention here
to represent a typical development scenario, but rather to
include in our study environment opportunities to study
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developers’ behavior; hence, suitability was assigned an
extremely low weight.

The company’s profit is calculated on the basis of the
payment received from passengers and the operating costs
per unit of distance driven. In light of the general ISO
definition of Suitability, we define this quality subfactor of
the TOS application as S = e−1000/profit. This measure exhibits
decreasing marginal contribution of profits to Suitability.

Based on the ISO general definition of Compliance,
we divided the Compliance quality subfactor in the TOS
application into two subfactors: C1, the degree to which the
application adheres to related standards in the case of correct
inputs, and a similar measure of the application’s response
to incorrect inputs, C2. We assigned equal weights to each
of these components, so that the resulting formula was C =
C0.5

1 · C0.5
2 . Accordingly, the Functionality quality factor is

F = C0.96 · S0.04 = (C0.48
1 · C0.48

2

) ·
(

e−1000/profit
)0.04

. (A.1)

The Maintainability factor was defined in terms of the
subfactor of Changeability only. In the context of the TOS
application, Changeability can be evaluated in terms of how
long it takes a reasonably proficient software engineer to
make a particular change in the original application. The
overall quality measure of the application given to students
was

Q = F0.75 ·M0.25

= (C0.96 · S0.04)0.75 ·M0.25

=
(

C0.36
1 · C0.36

2 ·
(

e−1000/profit
)0.03

)

·M0.25.

(A.2)

The external quality score of Functionality was evaluated
by our QC application.9 The QC calculated the score of each
of the Functionality subfactors and produced a scalar score
according to the formula presented previously.

The C1 and C2 compliance subfactors were calculated by
the QC on the basis of exhaustive and representative test
suites, for correct and incorrect inputs, respectively, where
the application either passed or failed each test. The Suit-
ability score was derived from the C1 test suite (the correct
inputs) according to the resulting profits of the taxi company.
Profits were calculated by adding all payments received for
rides, minus the costs of these rides, which depend on their
length.

The QC yielded a detailed report that included a list of
all test cases run on the TOS, a “Pass” or “Fail” message for
each test case, an indication for the source of the TOS
failure, and finally a summary report for the values of
Compliance, Suitability, and Functionality. The quality of
the product determined the students’ project grades (thus
their incentives). The grade was calculated as follows: 2/3
according to the QC and the other 1/3 according to the
quality of the reflection document.

B. A Dynamic Model of Resource Allocation
among Software Development Phases

In Subsection 3.2 we explained the principles of our dynamic
model for resource allocation among SDPs. This appendix
presents a complete formal version of this model. Suppose
that there are N units of time, or money, which can be used
to develop a software product. These resource units can be
sequentially allocated, one unit after the other, to any of
the four development phases. This dynamic model allows
us to allocate successive units of the resource among the
development phases, taking into account the progress that
has been made so far, and the remaining available resources.

Let Qn be the software development output index after
n of the N units of the resource have been allocated, n =
0, 1, 2, . . . ,N , and let V(Qn) be the value of a software
product with quality index Qn to the software developer. We
are considering a specific product, with a given set of features,
so that only the quality of artifacts can be affected by different
allocations of resources. The (monetary) cost of assigning
any resource unit to a development phase is given by wi,
i = 1, 2, 3, 4. The goal is to find the sequence of assignments
of N available units of development resources to the four
development phases in order to achieve the highest possible
value to the developer. The optimizing sequence should also
allow development to be stopped at any time, thus saving the
unused development resources.

Let ϕn(Q) be the optimal value that can be obtained from
an in-process software project with a current development
output vector Q, after using n out of N units of the resource.
At the heart of this formulation is the incremental improve-
ment function, g(Q, a), describing the change in each
component of the quality state vector Q when the next unit of
resource is allocated to development phase: a, a ∈ {1, 2, 3, 4}.
With this function, the optimal value functions ϕn(Q) are
defined recursively, for n = N ,N − 1,N − 2, . . . , 0, as follows.

For n = N ,

ϕN (Q) = V(Q). (B.1)

For n = N − 1,N − 2, . . . , 0,

ϕn(Q)

= Max

{

V(Q) , Max
an+1∈{1,2,3,4}

{

wan+1 + ϕn+1
(

Q + g(Q, an+1)
)}

}

(B.2)

The term V(Q) on the RHS represents the option to stop
development, release the project in its current state Q, and
receive the value associated with Q. Alternatively, if further
development is to be undertaken, then the assignment of the
next unit of the resource an+1 must be determined, taking
into account its cost wan+1 , and the fact that subsequent devel-
opment decisions will also be made in this optimal fashion.

This recursive system of equations is solved backwards.
When all N available units of the resource have been used up,
there is no option but to stop development, so that ϕN (Q) =
V(Q). When only the last unit of the resource remains to be
assigned, the optimal value function corresponding to that
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case and the optimal phase assignment of the last unit of the
resource are given by

ϕN−1(Q)

= Max

{

V(Q) , Max
aN∈{1,2,3,4}

{

waN + V
(

Q + g(Q, aN )
)}

}

.

(B.3)

Here we use the fact that the next optimal value function
ϕN (Q) is V(Q).

Once the function ϕN−1(·) is found for every possible Q,
the optimal value function when two units of the resource
remain to be assigned, ϕN−2(·), is found in a similar manner,
and so on. Starting with an initial development output Q0,
(e.g., Q0 = 0), one finds the value of optimally allocating the
N available resource units among the phases as ϕ0(Q0). Note
that this optimal value takes into account the option to stop
development before all resources have been used up.

Note that while the model in this appendix uses exter-
nal quality Q as the state variable, an equivalent model-
ing in terms of phase artifact (internal) qualities q =
(q1, q2, q3, q4, ) can be obtained, by using the relationship

Q = ̂f (q) from Section 3, and an appropriately defined
incremental improvement function ĝ(q, a).

The dynamic programming formulation solves for the
value-maximizing (net of costs) sequence of resource alloca-
tion, taking into account both the cumulative and complex
influence of that sequence on resulting quality, and the cost
of assigning different resource units to different development
phases. This approach can be easily extended to reflect ran-
dom disturbances in the development process, provided
that one can specify a probability structure governing this
stochastic development process. Alternatively, the implica-
tions of different sequences of resource allocations can be
explored using simulation-based models, as in [28].
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Endnotes

1. Throughout the paper we use the generic term “devel-
oper” for all hierarchical levels in the software organi-
zation: from the entire software house to the individual
engineer.

2. Yiftachel and Hadar [36] explain the link between the
problems of defining and measuring software devel-
opment output, which is a critical component of the
resource allocation problem, and what Brooks [17]
defines as an essential problem.

3. From here on the 4 phases will be noted with capital ini-
tials to indicate that the phase is discussed. For example,
when we note “Design”, we mean “the design phase”.

4. Reference [28] proposes various System Dynamics mod-
els to effectively manage such processes and demon-
strates their capabilities. However, it does not deal
specifically with allocation of resources across software
development phases, except to illustrate the concept of
product peer inspection in Section 5.3.2.

5. The literature suggests additional phases omitted from
this paper. Specifically, planning and management are
not considered at all in this model, being orthogonal
to the development phases we refer to. Integration
and maintenance are considered within the existing
phases (e.g., each maintenance process can be viewed as
comprised of several activities, each associated with one
of the four phases).

6. Unit testing is viewed by many as part of the implemen-
tation (e.g. [31]), although it is a checking operation.

7. We refer in our examples to measures related to the
object-oriented paradigms. Of course, when using other
development paradigms, the choice of measures needs
to be done accordingly.

8. CBO is a simple metric for evaluating the Design arti-
fact quality in the sense of modularity. The literature
suggests more complicated metrics; for the sake of
simplicity we illustrate our approach using CBO.

9. In this study we did not measure the external maintain-
ability factor. However, we evaluated the effects of design
(q2) and implementation (q3) on maintainability. For
details see [23].

References

[1] S. R. Schach, Object-Oriented and Classical Software Engineer-
ing, McGraw-Hill, New York, NY, USA, 5th edition, 2002.

[2] B. W. Boehm, C. Abts, A. W. Brown et al., Software Cost Esti-
mation with COCOMO II, Prentice-Hall, Englewood Cliffs,
NJ, USA, 2000.

[3] B. W. Boehm, Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1981.

[4] G. Smith and L. Wildman, “Model checking Z specifications
using SAL,” in the International Conference of Z and B Users
(ZB ’05), H. Treharne, S. King, M. Henson, and S. Schneider,
Eds., pp. 87–105, Springer, 2005.

[5] K. Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, Boston, Mass, USA, 2000.

[6] H. Erdogmus, M. Morisio, and M. Torchiano, “On the
effectiveness of the test-first approach to programming,” IEEE
Transactions on Software Engineering, vol. 31, no. 3, pp. 226–
237, 2005.

[7] G. Tassey, The Economic Impacts of Inadequate Infrastructure
for Software Testing, National Institute of Standards and
Technology, 2002.

[8] P. Jalote and B. Vishal, “Optimal resource allocation for the
quality control process,” in Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering, Denver,
Colo, USA, November 2003.



20 Advances in Software Engineering

[9] S. R. Schach, Introduction to Object-Related Analysis and
Design, McGraw-Hill, New York, NY, USA, 2004.

[10] B. Steece, S. Chulani, and B. Boehm, “Determining software
quality using COQUALMO,” in Case Studies in Reliability and
Maintenance, W Blischke and D Murthy, Eds., Wiley, Sidney,
Australia, 2002.

[11] E. K. Emam, The ROI from Software Quality, Auerbach Pub-
lications, Boston, Mass, USA, 2005.

[12] Y. Yang, M. He, M. Li, Q. Wang, and B. Boehm, “Phase
distribution of software development effort,” in Proceedings of
the 2nd ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, pp. 61–69, Kaiserslautern,
Germany, 2008.

[13] W. Heijstek and M. R. V. Chaudron, “Effort distribution in
model-based development,” in the 2nd Workshop on Model
Size Metrics, and the 10th International Conference on Model
Driven Engineering Languages and Systems, Nashville, Tenn,
USA, 2007.

[14] AJG Babu and N. Suresh, “Modelling and optimizing software
quality,” International Journal of Quality and Reliability Man-
agement, vol. 13, no. 3, pp. 95–103, 1996.

[15] lS Biffl, A Aurum, BW Boehm, H Erdogmus, and P.
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