
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2011, Article ID 281517, 9 pages
doi:10.1155/2011/281517

Research Article

Multiagent Systems Protection

Antonio Muñoz, Pablo Anton, and Antonio Maña

Escuela Técnica Superior de Ingenieŕıa Informática, Universidad de Málaga, Spain

Correspondence should be addressed to Antonio Muñoz, amunoz@lcc.uma.es

Received 1 December 2010; Revised 14 March 2011; Accepted 9 June 2011

Academic Editor: Kamel Barkaoui

Copyright © 2011 Antonio Muñoz et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Agent-systems can bring important benefits especially in applications scenarios where highly distributed, autonomous,
intelligence, self-organizing, and robust systems are required. Furthermore, the high levels of autonomy and self-organizations
of agent systems provide excellent support for developments of systems in which dependability is essential. Both Ubiquitous
Computing and Ambient Intelligence scenarios belong in this category. Unfortunately, the lack of appropriate security
mechanisms, both their enforcement and usability, is hindering the application of this paradigm in real-world applications.
Security issues play an important role in the development of multiagent systems and are considered to be one of the main issues to
solve before agent technology is ready to be widely used outside the research community. In this paper, we present a software based
solution for the protection of multiagent systems concentrating on the cooperative agents model and the protected computing
approach.

1. Introduction

In the area of information systems, security is one of the
most interesting topics. Recently, with the huge growth in
the number of distributed systems, the number of computing
attacks has increased and therefore so has the number of
protection systems. The first work done on software agents
was in the mid 1970s by Hewitt and Baker [1]. Hewitt created
an agent model (named Actor), which he defined as an
autonomous object that interacts and executes concurrently
with an internal state and communication capability. Since
that initial conception, and due to the work developed in
Distributed Artificial Intelligence (DAI), a new concept has
arisen known as the Multi-Agent System. The main appeal
of these systems is that they allow two or more entities
to join forces to perform a common task, which is very
difficult to complete individually. Nowadays a huge variation
of software agents exists according to their features, abilities,
or properties. Mobile agents are implementations of remote
programs, that is, those programs developed in a computer
and distributed in other computers to continue their execu-
tion [2]. The migration capability provokes different security
risks and makes controlling the following aspects essential:
the protection of hosts against agents and the protection of

agents against the host and authors to define the network
protection.

The firsts MAS applications appeared in the middle
of the 80s. These first systems covered a wide variety
of environments (manufacturing systems, process control,
air traffic control, information management). But most of
them were built upon nonsecure infrastructures [3, 4].
Agent technology developers assumed that the underlying
infrastructure was secure at that time, but evidently it is not
now. Some other examples of agent-based applications that
lacked a secure infrastructure are found in nuclear plants [5]
and aircraft control [6] applications.

Regarding the infrastructures for agent-based systems
development, the situation is quite similar. Some of the
platforms for agents are Aglets http://aglets.sourceforge.net/,
Cougaar http://www.cougaarsoftware.com/agents/agents-1
.htm, the flagship product of the Agent Oriented
Software Group JACK http://www.agentsoftware.co.uk/ pro-
ducts/jack/index.html, the popular JADE (Java Agent
DEvelopment Framework http://jade.tilab.com/, JAVACT
http://www.javact.org/JavAct.html, and Jason for AgentS-
peak(L) http://jason.sourceforge.net/Jason/Jason.html. All
these tools and methodologies share a common negative

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208367276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Advances in Software Engineering

point namely poor security against an attack on the platform
in which the agency is running.

Some of the general software protection mechanisms
can be applied to the agent protection. However, the spe-
cific characteristics of agents make mandatory the use of
tailored solutions. First, agents are most frequently executed
in potentially malicious pieces of software. Therefore, we
cannot simplify the problem as is done in other scenarios by
assuming that some elements of the system can be trusted.
So the security of an agent system can be defined in terms
of many different properties such as confidentiality, nonre-
pudiation, and so forth. but it always depends on ensuring
the correct execution of the agent on agent servers (a.k.a
agencies) within the context of the global environments
provided by the servers.

The main approach presented in this paper is based on
the “protected computing” technique, which is based on the
partitioning of the software elements into two or more parts.
The basic idea is to divide the application code into two or
more mutually dependent parts. Some of these parts (which
we will call private parts) are executed in a secure processor,
while others (public parts) are executed in any processor
even if it is not trusted. The main appeal of the solution
presented in this paper is that users define the rules to make
this division of code by means of an easy to use front end.
Thus users can select those variables or those parts of code
that are critical and must be protected. Additionally a batch
protection tool is included that allows the protection of a
portion of code or data.

We apply the protected computing model in order to
protect agent societies in a multiagent setting, where several
agents are sent to different (untrusted) agencies in order
to perform some collaborative task. Because agents run in
potentially malicious hosts, the goal in this scenario is to
protect agents from the attacks of malicious hosts. The
basic idea is to make agents collaborate, not only in the
specific tasks they are designed to perform, but also in the
protection of other agents. In this way, each agent acts as
secure coprocessor for other agents.

Therefore, using the protected computing model, the
code of each agent is divided into public and private parts.
For the sake of simplicity, and without loss of generality, we
will consider the simplest case where the code of each agent
is divided in two parts: a public one and a protected one.
From this description, it is easy to derive the possibilities
of the division of the code into more parts. In particular,
the inclusion of multiple private parts, which could even be
designed to execute in different coprocessors, is especially
relevant for the scenarios that we are considering. Usually,
the private part, of each agent, has to be executed by another
agent in another host. This scheme is suitable for protecting
a set of several mutually dependent agents. Consequently, in
this case, a conspiracy of all hosts is necessary in order to
attack the system.

This paper focuses on multiagent systems and the
security within them. More specifically, our work deals
with static mutual security schemes [7] and is organized
as follows: in Section 2 we review related publications and
we introduce the MAS (multiagent system), mobile agents,

JADE platform, and security schemes. Section 3 presents
the application of the protected computing approach in the
agent protection. Section 4 presents the main approach of
this paper; the automatic generation of a MAS making use
of the mutual static strategy. In Section 5, we describe the
features and architecture of the tools developed, and finally
we present our conclusion and future work.

2. Related Work

The purpose of this section is to provide a view on the main
agent-based systems and agent-oriented tools, focusing on
their security mechanisms. This paper covers a wide range
of works from the first approaches to the more recent ones.

Several mechanisms for secure execution of agents
have been proposed in the literature with the objective of
providing security in the execution of agents. Most of these
mechanisms are designed to provide some type of protection
or some specific security property in a generic way. In
this section, we will focus on solutions that are specifically
tailored or especially well-suited for agent scenarios. Some
protection mechanisms are oriented to the protection of
the host system against malicious agents. Among these,
SandBoxing is a popular technique that is based on the
creation of a secure execution environment for nontrusted
software. In the agent world, a sandbox is a container that
limits, or reduces, the level of access its agents have and
provides mechanisms to control the interaction between
them.

Another technique, called proof-carrying code, is a
general mechanism for verifying that the agent code can be
executed in the host system in a secure way [8]. For this
purpose, every code fragment includes a detailed proof that
can be used to determine whether the security policy of the
host is satisfied by the agent. Therefore, hosts just need to
verify that the proof is correct (i.e., it corresponds to the
code) and that it is compatible with the local security policy.
This technique shares some similarities with the constraint
programming technique; they are based on explicitly declar-
ing what operations the software can or cannot perform.
One of the most important issues of these techniques is
the difficulty of identifying which operations (or sequences
of them) can be permitted without compromising the local
security policy.

Other mechanisms are oriented towards protecting
agents against malicious servers. Sanctuaries [9] are execu-
tion environments where a mobile agent can be securely
executed. Most of these proposals are built with the assump-
tion that the platform where the sanctuary is implemented
is secure. Unfortunately, this assumption is not applicable
in our scenario. Several techniques can be applied to an
agent in order to verify self-integrity in order to avoid
the code or the data of the agent being inadvertently
manipulated. Antitamper techniques, such as encryption,
checksumming, antidebugging, antiemulation among others
[10, 11] share the same goal, but they are also orientated
towards the prevention of the analysis of the function that the
agent implements. Additionally, some protection schemes
are based on self-modifying code, and code obfuscation [12].

Advances in Software Engineering 3

In agent systems, these techniques exploit the reduced
execution time of the agent in each platform.

Software watermarking techniques [13] are also interest-
ing. In this case, the purpose of protection is not to avoid the
analysis or modification but to enable the detection of such
modification. The relationship between all these techniques
is strong. In fact, it has been demonstrated that neither
perfect obfuscation nor perfect watermarking exists [9]. All
of these techniques share the fact that they only provide
short-term protection.

Many proposals are based on checks. In these systems,
the software includes software and hardware-based “checks”
to test whether certain conditions are met. However, because
the validation function is included in the software, it can be
discovered using reverse engineering and other techniques.
This is particularly relevant in the case of agents. Theoretic
approaches to the problem have demonstrated that self-
protection of the software is unfeasible [14]. In some
scenarios, the protection required is limited to some parts
of the software (code or data). In this way, the function
performed by the software, or the data processed, must be
hidden from the host where the software is running. Some of
these techniques require an external offline processing step
in order to obtain the desired results. Among these schemes,
function hiding techniques allow the evaluation of encrypted
functions [15]. This technique focuses on protecting the
data processed and the function performed, thus it is an
appropriate technique for protecting agents. However, it can
only be applied to the protection of polynomial functions.

The case of online collaboration schemes is also interest-
ing. In these schemes, part of the functionality of the software
is executed in one or more external computer. The security
of this approach depends on the impossibility for a part to
identify the function performed by the others. This approach
is very appropriate for distributed computing architectures
such as agent-based systems or grid computing, but has the
important disadvantage of the impossibility of its application
to off-line environments.

Additionally, there are techniques that create a two-way
protection. Some of these are hardware-based, such as the
Trusted Computing Platform. With the recent appearance
of ubiquitous computing, the need for a secure platform
has become more evident. Therefore, this approach adds a
trusted component to the computing platform, usually built-
in hardware used to create a foundation of trust for software
processes [16].

The protected computing concept [17] at the core of
the strategy presented in this paper. This approach is based
on the idea of dividing the code in two or more mutually
dependent parts that will be executed in a trusted processor,
while remaining parts can be executed in any other processor,
whether trusted or not. In the application of this strategy
for the security of multiagent systems, we have achieved a
model in which each agent collaborates with one or more
remote agents that are executed in different agencies, trusted
or not. The approach presented in this paper is based on
the collaboration feature of multiagent systems. However
contrary to the online collaboration schemes in which the
selection of those parts of the functionality of the software to

execute in external computers, in our approach the difficult
task of selecting those parts is carried out by the developer of
the multiagent system that although is not a security expert
can decide which are the most critical parts of his software.

Thus a unique successful attack requires the cooperation
of every agency in the system, which, in practice, does
not make sense. In mutual protection, we can differentiate
between two schemes.

(i) Static mutual protection: This solution is the simplest
and is fully implemented and described in this
paper, which is fundamentally for restricted systems
in which the number of agents in the system is
previously fixed.

(ii) Dynamic mutual protection: this approach consists
of an evolved solution from the static mutual
approach, which is more flexible. This approach is
applicable for any real multiagent system.

3. Protected Computing Approach Applied to
Agent Protection

The Protected Computing approach is based on the division
of code in two or more parts. Some of these parts will be exe-
cuted in a trusted processor, but the others will be executed
in a regular processor. These divisions are performed in such
a way that the execution of the application is not possible
without the collaboration of the trusted processor. One of the
most important aspects of this technique is the way in which
the code is divided. This might be carried out in mutually
dependent parts, but it is essential that

(i) the public part of code will not be able to be used to
get information from the private one;

(ii) a communication trace is not possible between each
part to get information from the private part.

The Protected Computing scheme can be applied in order
to protect a society of collaborating agents by making every
agent collaborate with one or more remote agents running
in different hosts. These agents act as secure coprocessors for
the first one. We call Mutual Protection to the application of
Protected Computing to MAS.

In Figure 1, we show how every agent interacts with one
or more remote agent, and these are executed in different
agencies. Then the agents protect each other one by one. A
possible attack of this scheme would need the collaboration
of every agency to hack the system, but this case is beyond the
scope of this paper due to its irrelevance in real applications.

Mutual Protection strategy presents two different
schemes according to the requirements of the system.
In the first scheme, called Static Mutual Protection, the
collaboration among agents is predefined. This means that
each agent has the private code of at least one agent in the
collaboration. Secondly, Dynamic Mutual Protection offers
the possibility that every agent in the system pretends to be
a trusted processor for the remaining agents. In which case,
the interaction among agents is not predefined.

To split the code into parts, the developer has to use
the Automatic Tool for Code Partitioning (CPT). Since the

4 Advances in Software Engineering

Public code of agent A

Public code of agent C

Cd agent society

1: Agency 2: Agency

B: Agent D: Agent

A: Agent C: Agent

3: Agency 4: Agency

Protects

Runs in

Runs in

A: Agent

Protects

Runs in

Runs in

Protects

Protects

Figure 1: An agent society with mutual protection.

code partition is a difficult task, and specialised expertise is
required to carry it out, this tool makes code partitioning
easier (creating the public and private parts) according to
a set of rules that we call Protection Profile. The result of
the operation of this tool is a set of public parts and a
set of private parts. These parts will be used in a different
way depending on the Mutual Protection scheme applied
(static or dynamic). Figure 2 shows two different protection
schemes as two different ways. A detailed description of these
approaches can be found in the subsequent subsections.

3.1. Static Mutual Protection. The Static Mutual Protection
strategy can be successfully applied to many different scenar-
ios. However, there will be scenarios where it will not possible
to predict the possible interactions between the agents, where
the agents will be generated by different parts, when that
will involve very dynamic multihop agents. In these cases,
the Static Mutual Protection strategy will be difficult or
impossible to apply. Therefore, we propose a new strategy
named Dynamic Protection where each agent will be able to
execute arbitrary code sections on behalf of other agents in
the society. The work presented in this paper is based on this
static scheme. In this case, private parts of the agent must be
included in the agent or in the protector’s agents before the
execution starts.

The main appeal of this scheme is the increased perfor-
mance of the system since a split of code between private and
public parts is done. Code parts are distributed before system
start replacing those parts of private code by their associated
call.

Therefore, the efficiency of the system is hardly influ-
enced. Nevertheless, the system is very restricted and the
previous setting of the system is mandatory, and agents are
protected before their execution.

An example of the possible applications of this scheme
is that of a competitive bidding. In this scenario, a client
requests bids from several contractors to provide goods
services. It is important that the bidding takes place simul-
taneously, so that none of the contractors can access the offer
from the others, because this would give them an advantage
over the others. The client can use several single-hop agents
to collect the offers from the contractors. Each agent will
be protected, using the Static Protection strategy, by other
agents. This is possible since the client generates the set of
agents, which is static and known a priori. We can also safely
assume that a coalition of all contractors will not happen. In
fact, no technological solution can prevent all contractors to
reach an external agreement. Because each agent is protected
by other agents running in the hosts of the competitors, and
because the protected computing model ensures that it is
neither possible to discover nor to alter the function that the
agents perform and it is also impossible to impersonate the
agents, we know that all agents will be able to safely collect
the bids, guaranteeing the fairness of the process.

A different example is given by a monitoring system
based on agents of a power plant control software. In this
system, each agent controls a parameter and the fact that
the value of this is in a specific range beyond which is risky.
Evidently the number of agents in this system is deterministic
but the global system requires a high level of security. Static
mutual protection strategy fits in the requirements of this
scenario.

Advances in Software Engineering 5

Id component model

Developer

Create

Create

Use

These agents are
ready to run

Static protection scheme

C: Agent

B: Agent

A: Agent

Assemble

Dynamic protection scheme

Public
parts

Private
parts

B: Agent

A: Agent

Assemble

These agents are
ready to run

Public parts of the code
of each agent

Private parts of the code
of each agent

�XML file�
Protection profile

�Component�
Code of agent A

�Component�
Code partition

tool (CPT)

�Component�
Public code of

agent A

�Component�
Private code of

agent A

�Component�
Public code of agent A

�Component�
Private code of agent C

�Component�
Dynamic

protection
tool (DPT)

�Component�
Static

protection
tool (SPT)

�Component�
Code of
agent A

�Component�
Virtual

machine

Processed by

Used by

Used by

Used by

Used by

Figure 2: Mutual protection of agents process.

3.2. Dynamic Mutual Protection. The Static Mutual Pro-
tection strategy can be successfully applied to different
scenarios. However, there are many real-world scenarios
where it is not possible to foresee the potential interactions
between the agents due to the agents being generated by
different parts, or it involves very dynamic multihop agents.
In these cases, the Static Mutual Protection strategy is not
suitable. The Dynamic Protection Strategy is able to execute
arbitrary code sections on behalf of other agents in the
society. As shown at the top of Figure 3, each agent includes
a public part, an encrypted private part and a specific virtual
machine similar to the one described in [18]. This virtual
machine allows agents to execute on-the-fly code sections
(corresponding to the private parts) received from other
agents.

The Dynamic Protection Strategy process is illustrated in
Figure 3. In the first exchange, ag1 acts as the protected agent,
while ag2 acts as the protecting agent (secure coprocessor)
for the first one. In the exchange, ag1 sends a private
code section to the virtual machine of ag2. This virtual
machine processes the private section and returns some
results (results1). Subsequent exchanges illustrate ag3 acting
as protecting agent for ag2 (in this case the protected agent),
and finally ag1 protecting ag3. The scalability of this scheme
is very good since only a few agents (one in most cases) are
involved in the protection of any other agent.

4. Paper Contribution

The general aim of the work presented here is to allow
the system developers to create secure agent-based systems,
namely, a developer should be able to protect his MAS using

the mutual static libraries producing an equivalent version of
the system. Despite the fact that code distribution tasks imply
the selection and protection of different parts iteratively it is
not difficult, but it is tedious and certainly not efficient if it is
performed manually. We consider the possibility of changing
the security setting, studying results and deciding the most
appropriate settings for our specific MAS to be useful points.
For this reason, Secure Agent Generator tool is focused on
automating the whole process increasing the efficiency.

Results of this contribution are fully integrated in the
JADE platform providing solutions that allow the develop-
ment and execution of securely multiagent systems based on
the mutual static strategy. Figure 4 shows an overview of the
protection process.

Secure Agent Generator tool has as feedback the insecure
MAS, that is, a set of nested agents developed to achieve
certain goals. This solution is composed of a set of agents
defined by Java classes (.class files). Evidently, the output of
this tool is an equivalent MAS in functionality. However, the
new version of the system is secure according to the strategy
used and the parameters set in the protection profile. Secure
Agent Generator tool is made up of several sequential tasks:
read, analyse, modify and create .class files. A “.class” file
has a quite complex and hard to manage internal structure.
A huge number of references and the low level code made
it a hard and tedious task to analyse and create. Different
approaches to handle these files exist, among them we
highlight BCEL [19], Javassist [20], or ASM [21]. We bowed
to use BCEL due to several reasons; it is the most popular
in the community, well documented, fully developed in
Java and deployed in Apache software foundations, which
provides an easier integration.

6 Advances in Software Engineering

SD dynamic mutual protection

A: Agent

Public parts

Private parts

Code of agent A Virtual machine code

Φδσϕ λϕδσπιρυτ λκϕ

Φδλσκπ λφκϕϕoφιδ

Φδσϕ λϕδσπιρυτ λκϕ

Φδλσκπ λφκϕϕoφιδ
Λσϕ .φδσαϕϕφδι φδσ Λσϕ .φδσαϕϕφδι φδσ

ag1: Agent ag1: Agent ag1: Agent

VM execute (ag1. Private agent code)

Execution results (results 1)
VMExecute (ag2. PrivateAgentCode)

Execution Results (results2)

VMExecute (ag3. PrivateAgentCode)

Execution Results (results3)

Figure 3: Structure of an agent with dynamic mutual protection.

Private
code

Public
code

Secure agent
generator

Agents without
security

Secure
agents

Software tool

Private
code

Public
code

Public
code

Private
code

.class

Figure 4: Secure agent generator tool.

This paper presents a methodology to protect agent-
based systems using the protected computing approach. This
methodology is split to two different strategies. The first
approach, namely, the Static Mutual Protection, is based on
the restriction that the number of agents in the system is

fixed and the protection is performed at compiling time.
This approach provides good results in practice because
the efficiency is not really affected. The second approach,
the Dynamic Mutual Protection is based on protection at
runtime. This strategy is more flexible but the efficiency can

Advances in Software Engineering 7

be affected considerably. Static Mutual Protection strategy
is fully implemented and a set of assisting tools are created
to facilitate the protection task. Meanwhile the Dynamic
strategy is fully designed and actually being implementated.

5. Architecture

In this section we provide an in-depth description of the
most important features and characteristics of the function-
alities provided by our tool. It is important to highlight the
fact that we are focused on the development of a tool for
the automatic generation of secure MAS, implementing the
mutual static strategy that as input has a set of agents that
compound the nonsecure MAS.

It is important to note that the feedback files, the
set of nonsecure agents, must fulfil a set of restrictions
(preconditions) as described; every file must be precompiled
and stay in “.class” format; every file must represent a class
inherited from jade core Agent. And internal anonymous
classes are not allowed in these files.

Similarly, there are some output conditions to take into
consideration; each of these new agents will have a protector
agent preassigned, which cannot be changed at runtime.
However, our aim is that the output MAS is equivalent to
the input MAS, meaning the behaviour of the new MAS with
the security incorporated will be exactly the same as that of
the input MAS. Another aspect to mention is the fact that
the main architecture of the system follows the model view
controller pattern. However, the view is a simple graphic user
interface to facilitate the use of the assistant tool.

This process has three clearly differentiated phases:
the loading of original agents, security settings that meet
requirements and the final creation of secure agents. Each of
these phases was implemented with a set of classes in charge
of providing a correct execution.

Despite the description, we think that the most appro-
priate way to illustrate the whole process is by means
of a practical example, thus showing the role of every
phase in the process. The code of a nonsecure JADE agent
inherits from Agent class and its execution code is inside the
setup() method. As we have previously stated, it is necessary
that each agent has a protector agent associated, thus the
minimum number of agents for a secure MAS is two. Let us
also suppose that this example contains an empty agent (no
instructions nor data) with the role of protector. The class
that illustrates Figure 5 shows the code of a nonprotected
agent, which is inherited from the Agent class.

Following, every phase of the process is described by
means of a concrete example.

5.1. Phase I: Loading. This is the first phase in the generation
of the secure agents process. The goal of this step is to
load a .class files and analyse their content. To this end, we
have selected the set of nonsecure agents, and then we have
identified and analysed all its elements, that is, methods,
fields, instructions, internal classes, and so forth.

In this class files analysis stage, we have used the static
component of the BCEL libraries. This part of the API

public class Example extends Agent {

// Fields definition
...
protected void setup(){

// Code not to be protected

// Code to be protected

}
}

System.out.println("Not to be..");

System.out.println("To be...");

Figure 5: Example code.

System. .println();

GETSTATIC java/lang/System.out: Ljava/io/PrintStream
LDC "Example"
INVOKEVIRTUAL java/io/PrintStream.println(Ljava/lang/String:)V

out "Example"

Figure 6: Matching.

provides the methods to load a class file and the automatic
generation of the structure of a class file [22]. This process
is repeated until, for each of the elements from the file
class (methods, fields, internal classes, instructions, etc.), a
modelling object is created and is used to handle it.

Each element generated with BCEL component is a read
only one. However, it is important to save information from
each of these elements by means of annotations. In order
to do this, we created classes that inherit directly from
the BCEL classes. In these new classes, we introduce all
the useful information for the next phases. In this analysis
process, we clearly saw the special case of the instructions,
this is a more complex case than the rest of the elements.
Inside these class files, there is a section dedicated to class
methods. Among other elements inside these methods, we
found bytecode instructions. These instructions are useless if
they are executed separately because normally they depend
on the previous one to them and the next one. A relationship
is stated between a java instruction and the set of instructions
in bytecode. For this reason, we decided to group them in sets
corresponding to a java instruction finalised in “;”.

Once all agents are loaded in the system, we progress to
the setting phase. This phase is very important because we
indicate the degree of security and describe the protection
links in it. The information of this phase is very relevant due
to the fact it selects the elements to be protected.

5.2. Phase II: Setting. The setting phase is the simplest of
the three and the easiest to implement. This stage controls
the specification of security parameters for the creation of
the new secure agents. Among the compounding parts of a
JADE agent, there are two elements to be protected instruc-
tions and data (Class fields.). The information needed to

8 Advances in Software Engineering

determine the security degree is indicated in the percentage
of instructions and data to protect. All this information is
modelled with a class called SecureAgentConfiguration. With
regards to how to indicate the security parameters, we have
implemented two separate ways. The first method is needed
in order to specify for each of the loaded agents (first phase)
the security parameters in the system. This fact implies the
selection of every agent and the insertion of the percentage of
instructions and selection of fields to protect. This method is
a bit more tedious due to the number of agents loaded and
the number of testing proofs to perform. For this reason, we
have implemented an option that allows us to apply a security
template to all agents by means of an XML file. We have
developed three basic templates and the possibility to build
a customised template.

This example shows the percentage of instructions and
data, 50 is the value in this case, to protect. We must take
into consideration that there are two different cases in which
the percentage value is different for instructions and data.
Sometimes the static data or the brunch instructions are clear
examples of that. Before progressing to the third phase, we
have to select the protection links, meaning to indicate what
the protection is like among the agents. It is not necessary
to carry out the action manually since there is an option to
automate it in the graphic tool. In example, we only have two
agents, so one protects the other and vice versa.

5.3. Phase III: Creating Secure Agents. Finally, we have the
secure agent creation phase. Thanks to the previous stages,
in this stage we collected all the information needed for this
creation.

For each of the original already gathered, at least two
new classes may be created, one related to the new secure
agent with its public code (data and instructions) and the
other with the private code. In addition to these classes, we
will have as many agents containing the original agent as the
number of new classes created.

To create these new precompiled classes, we make use of
the dynamic component of BCEL. This part of the BCEL
API will facilitate the creation of the skeleton of class files
and, depending on the security parameters set in the previous
phase, the original code is inserted in one part or the other. In
Figure 7, we can see the content of the public part of the new
secure agent based in the example in Figure 8. Nevertheless,
the class code has been modified as indicated in Figure 7

The new class is an inheritance of the SecureAgent class
providing a complete integration in the JADE framework. An
initialization section is added in the setup method to mark
the protector and the protected agent. Any additional code
to perform the protection is needed to be inserted. There will
be as many internal agents containing the original agent as
the number of new classes are created.

For the protected code, a new class is created that
implements the PrivateCode interface, but in this new class
it is essential to insert: protected fields (in our example they
do not exist); The “execute()” method that contains the
protected code divided by sections. The information to know
which section to execute is in the method arguments. In the

public class SecEj extends SecureAgent{

// Init
...

// Not protected instruction
System.out.println("Not to be..");

// Call to remote code
ACLMessage msg = new ACLMessage(.);
msg.setContent("execute-my-..");
myArgs = argument;
msg.addReceiver(this.protectedBy);

}
}

send(msg);

protected void setup() {

Figure 7: Secure agent.

public class Prv implements PrivateCode{
public Object execute(Object o){

// Protected code
System.out.println("To be...");
return null;

}
}

Figure 8: Private code.

example, the code to protect has only one section then this is
directly in the execute() method.

5.4. Phase IV: Validating Secure Agent System. An important
aspect of this approach is the validation of the secure system,
that is, that we can ensure that the generated system is
secure. According to the model proposed by the static mutual
protection strategy a correct execution of the system implies
that every agent complete its goals. If any error occurs during
the execution of the multi-agent system the whole system
halts. Obviously this error can be produced by an attack or
simply a misunderstanding error in the communication (i.e.,
an inconsistency of data due to any fail in the communicating
channel).

6. Conclusion and Ongoing Work

A full methodology to protect multiagents in multi-agent
systems based on the protected computing approach is the
main contribution of this paper. In previous sections, we
have shown some assisting tools to implement the mutual
protection strategy using a friendly interface. A new field is
concerned with performing some analytical and statistical
studies on the kind of protection to implement, according
to the set of requirements of each system.

Methodology proposed in this paper is based on the
partitioning of the code of every agent of a system and a
distribution of these parts. For the sake of efficiency, the
part of code inserted in other agents (private part of code)

Advances in Software Engineering 9

are not too long, according to each specific example. This
distribution of code could decrease in efficiency especially in
those systems composed of a high number of agents but a
balance between security and usability is a traditional issue
to solve in any real world system.

We have highlighted some of the problems (interop-
erability, limit to free competition, lack of owner control,
lack of assurance, etc.) of the Trusted Computing approach,
which make it unacceptable as it is now. Our view is that none
of these problems is without solution. We strongly believe
that the cooperation of the scientific community can help in
solving these problems in the right way.

Obviously the static mutual protection scheme is a
deterministic system, that is, a fixed number of agents at
entry. However, this approach provides excellent results for
those systems in which it fits as shown in the examples
in the paper. In order to improve the dynamism of this
methodology, we are working on the development of tools
to implement the dynamic strategy.

Once we have implemented automatic tools for assisting
the deployment of the static mutual protection scheme,
next step is the development of assisting tools for the
implementation of the dynamic mutual protection scheme.
This approach is more complex due to the needed imple-
mentation of a restricted specific virtual machine to execute
remotely parts of code of agents. Currently, this work is
ongoing and it is in its final development stages.

Finally, this paper has demonstrated the existence of
alternatives and add ons to current approaches that the
scientific community should explore in order to guarantee
the best possible solution for the agent protection problem.

References

[1] C. Hewitt and H. Baker, “Actors and continuous functionals,”
1977.

[2] H. S. Nwana, “Software agents: an overview,” The Knowledge
Engineering Review, vol. 11, no. 3, pp. 205–244, 1996.

[3] N. R. Jennings and K. Sycara, “A roadmap of agent research
and development,” 1998.

[4] B. Chaib-draa, “Industrial applications of distributed AI,”
Communications of the ACM, vol. 38, no. 11, p. 4, 1995.

[5] H. Wang and C. Wang, “Intelligent agents in the nuclear
industry,” Computer, vol. 30, no. 11, pp. 28–34, 1997.

[6] U. M. Schwuttke and A. G. Quan, “Enhancing performance
of cooperating agents in real-time diagnostic systems,” in
Proceedings of the 13th international Joint Conference on
Artifical intelligence (IJCAI ’93), pp. 332–337, Chambery,
France, 1993.

[7] A. Maña, A. Muñoz, and D. Serrano, “Towards secure
agent computing for ubiquitous computing and ambient
intelligence,” in Ubiquitous Intelligence and Computing, vol.
4611 of Lecture Notes in Computer Science, pp. 1201–1212,
Springer, New York, NY, USA, 2007.

[8] G. C. Necula, “Proof-carrying code,” in Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’97), pp. 106–119, ACM, New
York, NY, USA, 1997.

[9] B. S. Yee, “Secure Internet programming,” in A Sanctuary for
Mobile Agents, pp. 261–273, Springer, London, UK, 1999.

[10] J. P. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater, “Robust
object watermarking: application to code,” in Proceedings of the
3rd International Workshop on Information Hiding (IH ’99), pp.
368–378, Springer, 2000.

[11] G. Hachez, A comparative study of software protection tools
suited for E-commerce with contributions to software water-
marking and smart cards, Ph.D. thesis, Universite Catholique
de Louvain, March 2003.

[12] C. S. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation—tools for software protection,”
IEEE Transactions on Software Engineering, vol. 28, no. 8, pp.
735–746, 2002.

[13] S. Katzenbeisser and F. A. Petitcolas, Eds., Information Hid-
ing Techniques for Steganography and Digital Watermarking,
Artech House, Norwood, Mass, USA, 1st edition, 2000.

[14] O. Goldreich, “Towards a theory of software protection and
simulation by oblivious rams,” in Proceedings of the 9th Annual
ACM Symposium on Theory of Computing (STOC ’87), pp.
182–194, ACM, 1987.

[15] T. Sander and C. F. Tschudin, “On software protection via
function hiding,” in Information Hiding, D. Aucsmith, Ed.,
vol. 1525 of Lecture Notes in Computer Science, pp. 111–123,
Springer, 1998.

[16] S. Pearson, Trusted Computing Platforms: TCPA Technology
in Context, Prentice Hall PTR, Upper Saddle River, NJ, USA,
2002.

[17] A. Maña and A. Muñoz, “Mutual protection for multiagent
systems,” in Proceedings of the 3rd International Workshop
on Safety and Security in Multiagent Systems, p. 37, Citeseer,
Hakodate, Japan, 2007.

[18] A. Maña, J. Lopez, J. J. Ortega, E. Pimentel, and J. M. Troya,
“A framework for secure execution of software,” International
Journal of Information Security, vol. 3, no. 2, pp. 99–112, 2004.

[19] Apache Software Foundation, BCEL (Byte Code Engineering
Library), 2006.

[20] S. Chiba, Javassist (Java Programming Assistant), Sun Micro-
systems, 2009.

[21] OW2 Consortium. ASM.
[22] T. Lindholm and F. Yellin, The JavaTM Virtual Machine

Specification, Sun Microsystem, 1999.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

