
Design Spaces for Link and Structure Versioning

E. James Whitehead, Jr.
University of California, Santa Cruz

E-mail: ejw@soe.ucsc.edu

ABSTRACT

This paper reflects upon existing composite-based hypertext
versioning systems, and presents two high-level design
spaces that capture the range of potential choices in system
data models for versioning links, and versioning hypertext
structure. These two design spaces rest upon a foundation
consisting of a containment model, describing choices for
containment in hypertext systems, and the design space for
persistently recording an object’s revision history, with
applicability to all versioning systems. Two example points
in the structure versioning design space are presented,
corresponding to most existing composite-based hypertext
versioning systems. Using the presented design spaces
allows the data models of existing hypertext versioning
systems to be decomposed and compared in a principled
way, and provides new system designers significant insight
into the design tradeoffs between various link and structure
versioning approaches.

KEYWORDS: Hypertext versioning, link and structure
versioning, containment, configuration management

INTRODUCTION

Consider software engineering. A large software project
consists of many thousands of files, comprising
requirements and design documents, source code, test
cases, build files, bug reports, memos, email, and Web
pages. There are many relationships between these files,
such as a source file that satisfies a requirement stated in
another document, or a test case that examines whether the
code does indeed meet that requirement. Chimera [2] and
DHM [16] are two examples of hypertext systems whose
goal is to capture the relationships between software project
files as hypertext links. Once these relationships are in the
hypertext system, they allow for rapid navigation to related
files, as well as visualization and analysis of the
relationship network. The act of instantiating the
relationships makes concrete the effect that changing a
single software file can have on its network of
relationships, since modifying a file can create new
relationships, and can alter or destroy existing ones.

Software engineering is a domain where best common
practice involves maintaining and composing previous
states of the project, a problem addressed by the discipline
of software configuration management [7]. Hence, the
introduction of hypertext into a version controlled software
project necessarily entails accommodating versioned files,
and project configurations. As a consequence, the fact that
existing hypertext systems for software development do not
version links is a significant factor preventing their wider
use in this domain.

Other domains have the same characteristics of large
amounts of content, with enormous numbers of inter-
relationships, where prior states of the content must be
preserved. Document management is one, since collections
of documents in many contexts, from aerospace
engineering documents [25] to interoperability standards,
have a need to be under configuration control, and possess
a wide range of relationships that could usefully be
captured as hypertext links. Legal documents, comprising
laws, regulations, and tax codes, are an important class of
documents, chock full of interrelationships. It is important
to store and retrieve previous document revisions because
in legal systems that prevent ex-post-facto laws, the version
of a law that affects a case is the one in effect at the time of
an infraction. This is especially relevant for tax codes,
which change frequently. Hypertext support can make it
easy to navigate to related laws, precedents, regulations,
and codes. Audit papers, inter-related information gathered
about a company creating a network of content
substantiation to develop an independent opinion
concerning the accuracy of its financial statements, also can
benefit from the application of hypertext [10]. Due to the
collaborative nature of the task, the need to freeze a state of
the company’s documents for analysis, along with the
emergent understanding of the financial statements made
by the company and the change this implies to inter-
document linkages, the audit working papers, and the final
audit report, hypertext versioning is necessary for the
introduction of hypertext into financial audits.

Across the domains of software engineering, document
management, legal, and audit, the requirement to preserve
the prior states of individual documents necessarily entails
that systems which capture inter-document relationships as
hypertext links must also provide hypertext versioning
support. Over the past fifteen years, there has been a slow
but steady stream of research on hypertext versioning.
Composite-based versioning systems comprise an important
class of hypertext versioning systems, and are characterized
by the use of a container object (a composite) to contain
documents and the hypertext network. Prominent

composite-based systems include Neptune [8,9], CoVer
[17,19,18], HyperPro [28], VerSE [20], HyperProp [33,32]
and Melly’s versioning support for Microcosm [26]. The
Hypermedia Version Control Framework [21], though a
policy-neutral toolkit, also contains composite objects and
thus could be used like other composite-based systems.
These systems can be viewed as having explored single
points in a complex, multi-faceted space of possible design
tradeoffs in accomplishing their goal of versioning
hypertext networks. However, the knowledge generated has
been specific to the data model and system on which the
research was performed, and is difficult to apply to
different systems or problem areas. As a consequence, the
application of hypertext to software engineering, document
management, legal, audit, and other similar domains, is
limited by the absence of systematically organized
knowledge concerning hypertext versioning.

The concerns addressed by hypertext versioning research
include such issues as collaboration support, visualizing
versioned spaces, merging hypertext networks, representing
variants, and navigating through versioned spaces. Though
these issues are important, and must be addressed in any
hypertext versioning system, this paper focuses instead on
the essence of hypertext versioning: how to version
hypertext links, and hypertext structures. The goal of this
paper is to provide a comprehensive description of the key
decisions and tradeoffs involved in the design spaces for
versioning links and structure. This information is
conveyed in a system-independent manner that makes data
modeling decisions explicit. The design spaces for link
versioning, and structure versioning both depend on two
additional design spaces, those of containment, and
persistent storage of revision histories. Hence, these two
design spaces will be presented first, and the link
versioning and structure versioning design spaces will
follow, building upon them.

The main contribution of this work is its systematic
overview of the possible choices involved in containment,
revision history versioning, versioning links and versioning
structure. These design spaces allow existing hypertext
versioning systems functionality to be better understood,
and compared in a principled way using the design spaces
as a comparison framework. The design spaces also
identify approaches that have not yet been tried, and hence
provide several interesting research directions. The
improved understanding of hypertext versioning provided
by these design spaces is expected to lead to greater use of
hypertext versioning capability in domains that require
version-aware hypertext capability.

The remainder of the paper is organized as follows.
Definitions of common terms are given in the next section.
This is followed by, in order, descriptions of the design
spaces for containment, persistent storage of revision
histories, link versioning, and structure versioning. A brief
related work section completes the paper.
DEFINITIONS

This section contains definitions of terms that will be used
in the description of the four design spaces explained in this
paper. We begin with definitions of the basic hypertext

abstractions, the work, anchor, link, and link structure.

Work: An artifact intended to create a communicative
experience, such as a document, image, or song.

Anchor: A handle for a specific set of symbols within a
work.

Link: An association among a set of works, a set of
anchors, or their combination.

Link structure: A set of links. Structure is used in an
evocative sense, to describe the graph created by this link
set.

Objects persistently represent the basic hypertext
abstractions.

Object: A single or aggregate data item that represents an
abstraction. Objects represent abstractions such as works,
anchors, links, and link structures.

The following terms are used to characterize the versioning
state of an object, and the object used to capture its revision
history.

Unversioned object: An object that has only one state, the
current state, and modifications overwrite it.

Revision: A snapshot of an instant in the evolution of an
object.

Versioned-object: An object that signifies a specific
abstraction, independent of any specific revision, or instant
in time. A versioned-object contains revisions of the object
it signifies.

Revision selection rule: An expression that is evaluated
over the members of a revision history to select one (and
sometimes multiple) members of that history.
CONTAINMENT DESIGN SPACE

Containment is one of the most common relationships
found in the data models of hypertext versioning systems,
since static links, versioned objects, workspaces, compound
documents, and user-defined collections can all be viewed
as types of containers. As a result, understanding the
relationships between entities in hypertext versioning
systems requires an understanding of the different
permutations of containment.

In its basic form, a container models a set where each
element is an entity (an abstraction). The container is an
entity that holds the set.

There are two main aspects to the containment design
space:

• Abstract properties of the container: Qualities of the
container that are mathematic set properties, rather than
properties of a specific computer representation, these
being:

• Containment: For a given entity, the number of
containers that can hold it. Choices are: (a) single
containment, an entity belongs to just one containment
set, or (b) multiple containment, an entity belongs to
multiple containment sets,

• Membership: For a given container, the number of
times can it contain a given entity. Choices are: (a)
single membership, an entity can belong to a

containment set only once, or (b) multiple membership,
an entity can belong to a containment set multiple
times, in which case the containment set is a bag, or
multiset,

• Ordering: The persistent ordering of a container.
Choices are: (a) ordered, the entities within the
containment set have a fixed successive arrangement,
or (b) unordered, the entities have no prescribed
arrangement, (c) indexed, the arrangement is
determined by a specification based on entity values or
metadata, (d) grouped, subsets of members are ordered,
but between subsets there is no ordering.

• Containment type: How containment relationships are
represented: (a) inclusion, or (b) referential (both
described below).

Broadly, there are two ways to represent that a container
contains a particular entity. The container can physically
include the contained item, or it can use an identifier as a
reference to its members. The former case is known as
inclusion containment; the latter, referential. Whenever two
entities have a containment relationship between them, this
relationship can be represented using references, following
the permutations of identifier storage. The identifier can be
stored on the container, on the containee, or on both.
Additionally, identifier storage can be delegated to a
separate entity, a first-class relationship. However, since the
first-class relationship is itself a container, the same
permutations of identifier storage apply between the
container and one endpoint of the relationship, and between
the containee and the other endpoint. Typically the first-
class relationship holds identifiers for both the container
and containee.
PERSISTENT STORAGE OF REVISION HISTORIES

Objects are used to represent such abstractions as works,
anchors, links, containers, workspaces, etc., within the
computer. This section presents the revision history design

space, describing several different techniques for recording
the revision history of objects. The revision history design
space is foundational, since it describes the basic
techniques for recording the evolution over time of works,
anchors, links, containers, and workspaces. These
approaches create an archive of past revisions, and add the
dimension of time where there was previously only the
current time. The design space of structure versioning
directly builds on this design space, since it depends on
exactly how works, anchors, and links are versioned.

Limiting the inquiry just to state-based versioning
approaches (i.e., not considering change-based systems
such as PIE [15], where changes are the primary objects
instead of revisions), there are several approaches for
recording the revision history of an object: these are the
versioned-object, within-object, and predecessor/successor
relationship only approaches, described below.
Versioned objects:

In this approach, each revision is a separate object that is
referentially contained within a versioned object, a
container that holds all revisions of the object (shown in
Figures 1b and 1c). Links or relationships record the
predecessors and successors of revision objects. The
containment relationship between the revision objects and
the versioned object must be a reference type, typically a
containment relationship on the container object, i.e., where
the container holds the containee’s identifier. An advantage
of this approach is the ability to record metadata both on
the versioned object and on the individual revisions.

There is also a range of choices for how to represent the
predecessor/successor relationships. Since each revision
can be viewed as having a set of predecessors, and a set of
successors, the containment design space is applicable.
Since the versioned object approach requires each revision
to be a separate object, an individual revision cannot use
inclusion containment for its predecessors and successors.
However, all of the referential containment types could be

b) A versioned object, V-O, referentially
contains two revisions and a first-class
successor relationship.

V-O

r1 r2 successor

r1 r2

a) A linear revision history
containing two revisions, r1, and r2.
Revision r2 is the successor of r1.

successor

c) A versioned object, V-O, referentially
contains two revisions. Revision r1
referentially contains its successor, r2.

r1 r2 successor

r1 r2

d) A versioned object, V-O, inclusively
contains revisions r1 and r2, and the
successor relationship.

r1 r2 successor

e) Revisions r1 and r2 are independent objects,
connected by a first-class link that represents
the successor relationship.

V-O

V-O

Figure 1 – State based design choices for representing an object’s revision history.

employed. It is possible for each revision to store the
predecessor/successor relationships on the revision. It is
also possible for revisions to hold only the predecessor
relationships, wherein the predecessor relationships on
child revisions do double duty as the successor
relationships for its parent. First class relationship objects,
or hypertext links, can also be used (see Figure 1b), and
have the advantage that the revision objects do not need to
store predecessor/successor information, and could
potentially participate in multiple version histories. First
class relationship objects must themselves be contained
within the versioned object, and any reference containment
type can be used for this.

When revisions are contained using referential
containment, the revisions can belong to containers other
than the versioned object, such as user-created containers
(e.g., folders or directories), workspaces, and
configurations. When the container contents themselves are
versioned, referential containment allows revisions to be
reused across revisions of these versioned containers, thus
resulting in fewer objects than would occur if this reuse
wasn’t possible, and the revisions needed to be copied to
belong to each container revision.

Systems that contain revisions inside versioned objects
using reference containment include HyperPro [28], CoVer
[18], HyperProp [32], HyperForm [37], HyperDisco [38]
and the Hypermedia Version Control Framework [21].
Within-object versioning

In this scheme, the versioned object uses inclusion
containment to hold revisions, and hence all revisions are
within the versioned object. Thus, within-object versioning
differs from the versioned object approach in the type of
containment used, within-object versioning employing
inclusion, and versioned object using referential types.
Within-object versioning is shown in Figure 1d. Examples
include the “,v” files of RCS [34] and the “.s” files of
SCCS [30], the versioning capability of some word
processors (e.g., Microsoft Word), along with Palimpsest
[11], VTML [36,4], EH [13], P-Edit [23], MVPE [31],
Historian [1], VE [3], Timewarp [12], and Delta [6]. While
these systems all share the quality of inclusively containing
all revisions, their concrete representations vary
significantly.

The advantage of this technique is that all revisions are
stored within a single object, and it is possible to guarantee
the stability of references within these objects, since the
current location of an endpoint can always be computed.
When changes are recorded down to the keystroke level,
within-object versioning can support remote collaborative
authoring where all collaborators simultaneously work on
the document, since all operations by all collaborators are
recorded. Recording all revisions can be a drawback, since
a publicly accessible document might not want to reveal all
of its prior revisions.

Within-object versioning has the drawback that revisions
cannot participate in other containment structures, unless a
replica of a specific revision is made and then placed into
the container. Alternately, it is possible to use referential
containment to hold the entire versioned object, and its

included revisions, within multiple containers.

Two significant design choices for within-object revision
are the size of the minimum length content chunk, and the
range of attributes that can be set on each chunk. In contrast
to the attributes settable on whole objects, attributes set on
content chunks have much finer granularity, since they are
applied to subparts of the entire object. Chunk size varies,
with the largest minimum chunk size being a programming
language function [1], but with other choices being a single
line (e.g., C preprocessor), a programming language token
[6], all the way on down to a single character [11,36].
Settable attributes always include the person who made a
change and the time when the change was made. Other
common attributes include the revision number of the
change, and a rationale/comment field. Most systems limit
settable attributes to those that are predefined by the
system, however some provide the ability to set arbitrary
attributes, and retrieve them using predicates. Arbitrarily
settable attributes allow within-object versioning systems to
also handle within-object variant representation tasks.
Predecessor/successor relationships only

Each revision is stored in a separate object, but no container
object represents a particular versioned object (see Figure
1e). Predecessor and successor relationships exist between
revisions in a version history. Typically a repository, or
super-container holds all revisions of all objects, as well as
all relationships between them, in a large pool of objects.
The only information available to determine that a subset of
the object pool comprises a version history is the
predecessor and successor relationships between
object/revisions.

The advantage of this approach is that it can support
versioning without using container objects. In conjunction
with a decentralized name or addressing scheme, it can
model revision histories that span organizational and
machine boundaries, since it avoids the issue of which
machine hosts the collection representing a versioned
object. However, when revision histories span
organizational boundaries, referential integrity is a potential
problem, as communication and coordination between the
machines storing the individual revisions cannot be
guaranteed. Disadvantages of the approach include
inefficient revision selection, hence inefficient creation of
arbitrary configurations, and inefficient setting of metadata
that must be unique across the version history of an object,
such as labels. Examples of this approach include Xanadu
[27], and the NTT Labs. versioning proposal [29].
LINK VERSIONING DESIGN SPACE

Using the design space for persistent storage of revision
histories, it is now possible to concisely characterize the
design space for link versioning. The representation of links
typically takes one of two forms: either the link is an
independent object, or the link is contained within an object
representing a work. Independent links have the entire
object versioning design space available for representing
the revision history of a link. When the link is contained
within an object representing a work, it has greater
constraints on how it can be versioned; typically link
versioning is a side effect of work versioning.

Independent links

As an independent system object, a link’s history can be
recorded using any of the techniques for recording the
revision history of objects. That is, the versioned object,
within-object versioning, and predecessor/successor
relationship approaches (shown in Figure 1) could
potentially be used.

For links, the versioned object approach is typically used,
wherein a container object referentially contains all
revisions of the link. The versioned object approach has the
advantage that it permits the creation of composites
containing a consistent set of documents and links, such as
the most recent revision as of a specific time, or a specific
snapshot in the development of the composite. By-reference
containment also allows the creation of containers that
model a link structure by containing a single revision of
multiple links, in this way capturing a link structure [21].

Within-object versioning has the advantage of only needing
one object to record all revisions of a single link. It has the
drawback of making composite creation more difficult,
since either the entire versioned object would need to be
contained, or the individual revisions would need to be
copied out of the versioned object and placed into the
container. An important design choice for within-object
versioning is the size of the minimum length content chunk.
This is less important for link versioning. Fine-grain change
tracking, as provided by VTML [36] and Palimpsest [11],
typically does not provide much value for links, since they
have minimal content beyond the link endpoints, and hence
do not justify the added complexity of such change
tracking. However, if a link has significant chunks of
metadata, such as an annotation, fine-grain change tracking
of these textual metadata items could be valuable.

Using only predecessor and successor relationships to
capture the revision history of links is also possible. This
would eliminate the need for a container object representing
all revisions of the link, and would permit link revisions to
more easily span control boundaries. It has the drawback
that it is difficult to efficiently evaluate revision selection
rules. No existing hypertext system versions its links in this
way.
Links as a dependent part of works

In some hypertext systems, links are contained within, and
hence dependent upon, the objects representing linked
works. Links can be embedded within that portion of the
work object representing the content of the work, as is the
case with HTML links on the Web. Alternately, links can
be contained as metadata about the work object content, as
is the case with the source link in WebDAV [14].

When links are contained within a work object’s content,
their history is the same as the content, and hence when the
work object content has a new revision made, so too do the
links in the content. The versioning of links is completely
subsidiary to the versioning of the content. When links are
contained as metadata, there are two choices. First, if the
metadata is versioned along with the rest of the object, then
link versioning is again subsidiary to versioning of the
object. However, it is conceivable that metadata could be

versioned separately from the main object, with each item
of metadata possessing its own revision history. This has
the advantage that metadata items, like links, can
conceptually be part of the object, but still have
independent version histories. The drawback is that this
makes the object substantially more complex, since each
item of metadata can contain multiple revisions. No
existing hypertext system provides metadata versioning
services.
STRUCTURE VERSIONING DESIGN SPACE

Abstractly, structure versioning is the act of maintaining the
revision history of a link set. Since a set is represented
within the computer by a container, the essence of structure
versioning is placing a set of links into a container, termed
the structure container, and then versioning the structure
container. This premise underlies the structure versioning
design space. The existence of the structure container
means the containment design space will be brought to
bear, and the need to version the structure container brings
in the versioning design space as well. The structure
versioning design space thus depends on the existence of
these other two design spaces for the terms used to describe
its own design choices.
Two criteria determine whether a particular structure
versioning design choice is complete. The symbolic
rendition criterion asserts that there must be sufficient
information to create a symbolic rendition (i.e., a view,
such as a screen display of a document and its link
endpoints) of each work, including rendition of anchors or
link endpoints. So, if the structure container does not
include works, then the links, anchors, collections, and
revision selection rules held by the structure container must
possess enough information to connect links to the works.
If works are part of the structure container, then among the
works, links, anchors, and revision selection rules, there
must be enough information to connect a specific link
revision to a specific work and/or anchor revision.

The link traversal criterion asserts there must be sufficient
information to perform a link traversal from an anchor. If
anchors are not part of the system’s data model, then there
must be sufficient information to traverse a link from the
symbolic depiction of a link endpoint (e.g., some symbol
that represents the endpoint of a link that connects entire
works).

The primary elements of the structure design space are:
What does the structure container hold?

While the structure container must, at minimum, contain
links, it is by no means limited to them. The structure
container may also hold works, anchors, and other
container objects. If the structure container only contains
links, it is capable only of representing a link structure. If
the structure container also holds works and anchors, it can
represent not only the link structure, but also a consistent
slice through a hypertext, holding not just the links, but also
the linked works, along with the anchor points within those
works. It is also possible that the structure container will
only hold works, if links are a dependent part of works.
While this approach similarly permits versioning of a

consistent slice through a hypertext, it has the significant
drawback of not versioning the structure independent of the
content. This, in turn, makes it substantially more difficult
to maintain multiple versioned structures over a set of
works.

If the goal is just to version structure, then the structure
container need only contain sufficient information to satisfy
both completeness criteria. So, if a link endpoint specifies
an anchor revision, and an anchor revision specifies a work
revision, then the structure container need only contain
links, since it is possible, given a link revision, to determine
the information needed to create a symbolic rendition, and
to perform a link traversal. If, however, a link endpoint
only specifies a versioned object, either the structure
container or the containment relationship between the link
and its containees (works or anchors) must hold a revision
selection rule (discussed further below) that selects a
specific revision, and hence satisfies the completeness
criteria.

Since a link in conjunction with a revision selection rule
contains sufficient information to satisfy the two
completeness criteria, these criteria alone do not provide
any motivation for adding works, anchors, or other
container objects (e.g., collections, composites) into the
structure container. However, most composite-based
hypertext versioning systems do include works and links
within composites, which act as structure containers. Here
the motivation is to make the composite do dual duty, as
both the structure container and as a workspace.
Workspaces provide the benefit of maintaining an
internally consistent subset of the entire object space.

This point in the structure versioning design space is fully
specified by giving a complete list of the entities contained
by the structure container.
Versioning design space choice for structure container
and its containees.

For the structure container, and all of its containees, one of
the choices of the versioning design space—versioned
object, within-object versioning, predecessor and successor
relationships—must be made. While it is mandatory for the
structure container to be versioned in order to provide
structure versioning, versioning for containees is optional.
For example, both HyperPro [28] and HyperProp [32,33]
do not version links individually, and version structure by
placing the links inside containers that are versioned, and
therefore each revision of the container records a specific
revision of the link structure.

This point in the structure versioning design space is fully
specified by listing, for the structure container and each of
its contained entities, the choice of versioning mechanism
employed to record the revision history of the entity. If the
entity is not versioned at all, that is noted instead.
Containment design space choice for all pairs of
containers and containees.

For each container/containee pair involved in structure
versioning, their containment relationship needs to be
specified by choosing a point in the containment design
space. This applies not just to every object contained by the

structure container, but also to the endpoints of links (since
links are modeled as containers), and to the containment
relationship between anchors and their work objects.
Furthermore, for each container/containee pair, if the
containee is versioned using either the versioned object or
within-object approach, it is necessary to determine
whether the versioned object, or an individual revision, is
contained.

Of the many choices inherent in each containment
relationship, whether the containment type is inclusion or
referential has the greatest impact on structure versioning,
since inclusion containment implies that versioning of the
contained item is dependent on versioning of the container.
Referential containment leaves the containee free to have a
revision history that is independent of the revision history
of its container.

If the structure container only allows single containment of
its objects, this leads to significant object duplication
during the evolution of the structure, since every revision of
the structure container constitutes a separate container, and
singly contained objects can only belong to one. As a result,
new structure container revisions that employ single
containment must replicate all contained objects when a
new revision, or working copy is made. For example, this is
the case with Neptune [9].

When the structure container holds the link and a single
revision of its endpoint objects (anchor, work, or both), and
the revision selection rule is located on the structure
collection, an additional dynamic containment choice
becomes available. Typically, a link referentially contains
its endpoints, selecting a specific revision of endpoint
objects using the revision selection rule. The structure
container also evaluates the revision selection rule to select
an individual revision of each endpoint object (anchor or
work). Thus, the revision selection step is duplicated by the
link and the structure collection. To avoid this duplication,
the link could employ indirect referential containment,
where the link endpoint is the revision selected by the
structure container. That is, the link endpoint is a binding
point that is filled-in by the revision selection rule
evaluation of the structure collection.
Location and scope of revision selection rule.

Dynamic containment using a revision selection rule is
often used in structure versioning, providing several
benefits. Revision selection rules may be located either in
the structure container, or on a specific containment
relationship. When located on the structure container, the
scope of the rule is all containment relationships where the
containee is a versioned object (i.e., the container used in
either the versioned object or within-object versioning
approaches). When located on a single containment
relationship, its scope is that relationship. The advantage of
having the revision selection rule on the structure container
is evaluation efficiency, and ease of maintenance. The
advantage of having revision selection rules on each
containment arc is flexibility, with each containment arc
permitting a separate revision selection rule.

Revision selection rules bring several benefits. They allow
more expressive selection of revisions than just explicit

selection by revision identifier, permitting selection such as
“most recent revision,” or “most recent as of a specific
time,” or, in combination with a human-readable label, “the
revision with label Beta_Release_2”.

Revision selection rules also allow a single unversioned
link to refer to different revisions over time. This trick is
accomplished by having the link endpoint be a versioned
object, and then using the revision selection rule to select a
specific revision. Since the rule is stored separate from the
link, the rule, and hence the selected revision, can change
without modifying the link. If the holder of the revision
selection rule is versioned, the link then has the appearance
of being versioned, since the selected revisions change over
time with the revision selection rule. Example 1, below,
describes this approach in more detail.

Finally, revision selection rules on the structure container
provide a single modification point for changing its
contained revisions, a useful trait when performing time-
based revision selection or label-based revision selection.
Label-based revision selection has the additional benefit of
creating internally consistent hypertext structures, assuming
the hypertext was consistent when the labels were applied.

This point in the structure versioning design space is
complete when, for each container/containee pair (including
the structure container and its containees, as well as links
and their contained endpoints), where the ultimate containee
is a revision, a decision is made whether a revision selection
rule on the structure collection, or on the particular
containment relationship, determines the revision endpoint
of the containment arc. Alternately, if no revision selection
rule is employed, meaning a specific revision is explicitly
selected, this is noted as well.

STRUCTURE VERSIONING EXAMPLES

The following sections provide two examples that highlight
use of the structure versioning design space.
Example 1: Versioned Structure with Unversioned Links

In this example, the following choices were made within
the structure versioning design space:

• Abstractions present: structure collection, works, links.
No anchors are present, links join whole works.

• Structure container contains: links, work versioned
objects

• Versioning design space choices:

• Structure containers are versioned, using versioned
object approach

• Links are unversioned

• Works are versioned, using versioned object approach

• Containment design choices:

• Structure container � link, work versioned object:
referential, multiple containment, single membership,
unordered, containment relationship on structure
container

• Link � work versioned object: referential, multiple
containment, single membership, successively
ordered, containment relationship on link (container)

• Revision selection rule: stored on collection, affects all
link endpoints, provides selection of specific work
revision from work versioned object.

A containment diagram showing these design choices is
shown in Figure 2a. An instance of this containment
structure is shown in Figure 2b. In the figure, the structure
container, C, referentially contains two versioned work
objects, A and B. By using the versioned work object as the
link endpoint, and then letting the revision selection rule
choose the specific revision, the need to duplicate link L to
point to newly created revisions is eliminated. Including
time in the revision selection rules allows prior link
endpoints to be recovered when reverting to a prior
container revision. This approach achieves structure
versioning using unversioned links. Essentially, this
approach stores separate revisions of links without
explicitly recording their predecessor and successor
relationships. Instead, the predecessor and successor
relationships for the links are implicitly recorded by the
structure container’s revision history, since the unversioned

��

$�

�� ��

��

%�

��

/

&���

��

$�

�� ��

��

%�

��

/

&���

��

��

5HYLVLRQ�

VHOHFWLRQ��

ODWHVW�UHYLVLRQ��
WLPH�≤�W��

5HYLVLRQ�

VHOHFWLRQ��

ODWHVW�UHYLVLRQ��
WLPH�≤�W��

W�� W��

b)

Figure 2(a) shows a containment diagram for example 1, versioned structure with unversioned links. The structure collection
revision contains a revision selection rule (RSR). Figure 2(b) shows an unversioned link, L, between two versioned works, A,
and B, in a versioned structure collection C.

versioned object for
structure collection

structure collection
revision (RSR)

versioned object for
works

work revision

link (unversioned)

Containment (by reference, on
container) Multiple containment,
single membership, unordered,
containment relationship on container

Containment (by reference, on
container, ordered) Multiple
containment, single membership,
ordered, containment relationship
on container

a)

links are contained by the structure container. As a result,
each revision of the structure container records a specific
revision of the link structure. This approach has the
drawback that it is not possible to efficiently evaluate
revision selection rules across the revisions of a specific
link. This approach is used by both HyperPro [28] and
HyperProp [32,33], because they focus on recording the
history of link structure, not individual links.

The symbolic rendition completion criteria is met, since
each revision of the structure container holds a versioned
object for each work, a revision selection rule that selects
the revision to display, and all links. Thus, for each work,
all information is present that is needed to create a symbolic
rendition. The link traversal criteria is also met, since the
link endpoints, work versioned objects, are also present in
each revision of the structure collection, and the revision
selection rule chooses the specific work revision for each
endpoint.

Variants of this unversioned link approach are possible, but
have not been explored in the existing literature. For works,
it is possible that within-object versioning could be used,
since the structure container holds the entire versioned
object, and it permits efficient evaluation of revision
selection rules. Use of the predecessor and successor
relationships approach for versioning works is not
compatible, since links require efficient evaluation of
revision selection rules.

There is really only one place where the revision selection
rule can be stored, and that is the structure container. The
link cannot store the rule, since that would entail creating a
new link for every revision of the structure container in
order to preserve its selected revision at the time the
container was frozen. If the work versioned objects store the
rule, it is impossible to freeze the rule when a new structure
container revision is made, since a new revision of the
structure container does not imply a new revision of its
contained versioned objects, since they are unversioned.

Example 2: Versioned Structure with Versioned Links

In this example, the following choices were made within
the structure versioning design space:

• Abstractions present: structure collection, works, links.
No anchors are present, links join whole works.

• Structure container contains: link revisions, work
revisions

• Versioning design space choices:

• Structure containers, links, and works are versioned,
using versioned object approach

• Containment design choices:

• Structure container � link revision, work revision
Link � work revision: referential, multiple
containment, single membership, successively ordered,
containment relationship on link (container), dynamic
containment via revision selection rule over work
versioned object.

• Revision selection rule: stored on containment arc
between structure container and its containees, providing
selection of link revisions from link versioned objects
and selection of specific work revisions from work
versioned objects.

Figure 3a shows the containment diagram for these
structure versioning design choices. The distinguishing
element of this example is its use of versioned links, and
the use of revision selection rules on all containment arcs of
the structure collection revisions, and link revisions. An
example instance of this structure versioning approach is
shown in Figure 3b. In essence, this is the structure
versioning approach used by CoVer [17,18], and VerSE
[20].

While the placement of revision selection rules on
containment arcs yields excellent revision selection
flexibility, it also has two drawbacks. First, evaluation of
individual revision selection rules is less efficient than

1 2 3

A

1 2
B

L,2

current time = t2

C,1 A,2

B,2

1 2
L

(RSR1)

(RSR6)

(RSR3)

(RSR4)
(RSR2)

(RSR5)

(RSR7)

Revision Selection Rules
RSR1, RSR2: latest, time ≤ t0
RSR3, RSR6: latest, time ≤ t1
RSR4, RSR5, RSR7: latest, time ≤ t2

b)

Figure 3a shows the containment diagram for example 2, versioned structure with versioned links. Figure 3b is an example of
this containment structure, with a structure container C holding revision 2 of link L, and works A and B.

versioned object for
structure collection

structure collection
revision

versioned object for
works

work revision link revision

Containment (by reference, on
container) Multiple containment,
single membership, ordered,
containment relationship on
container

Containment (by reference, on
container, selection using RSR)
Multiple containment, single
membership, ordered, containment
relationship on container, dynamic
containment selects revision from
versioned object using RSR.

1

N

1

N

M

N

(RSR)

M

link versioned object

1

N

M

N

(RSR)

(RSR)

a)

evaluation of one rule for all containment arcs. Second, it
increases the work that must be performed to ensure the
structure container holds a consistent hypertext. In Figure
3b, consider if RSR3 were changed to be “latest, time ≤ t2”
and hence L,2 selected A,3 instead of A,2. A link traversal
across L,2 starting from its other endpoint, B,2, would result
in the display of A,3 even though the structure container
currently holds A,2. A user might perceive this as
inconsistent.

RELATED WORK

Within hypertext versioning Fabio Vitali has written the
only published survey, a short paper that belongs to a
special issue of ACM Computing Surveys on hypertext
[35]. This paper provides a good overview of hypertext
versioning, presenting its advantages for history recording,
work accountability, collaboration, and reference
permanence. Despite being a good introduction to the
hypertext versioning literature, this paper does not contain a
detailed survey of versioning data models or design spaces.
Of course, that was not its objective.

The Hypermedia Version Control Framework by Hicks et
al. presents the HURL data model, and a conceptual
architecture for hypertext versioning in open hypertext
systems [21]. HURL comprehensively describes the data
modeling issues inherent in hypertext versioning, and, like
this paper, is based on an analysis of existing hypertext
versioning systems. HURL extends the SP3/HB3 [24] data
model with versioning capabilities. With judicious
specialization (via subtyping) of HURL concepts, it has
equivalent expressive power to the model presented in this
paper. While the current paper emphasizes design choices
as a means to characterize design spaces, [21] presents this
information as a series of issues. An additional difference is
the HURL model has been validated by implementation in
a running system.

Outside of hypertext versioning, two survey articles are
relevant to hypertext versioning: the Conradi and
Westfechtel survey of versioning data models [5] in
versioning and configuration management systems, and the
Katz survey of versioning in engineering database systems
[22]. In addition to the predominantly state-based
versioning, where each revision has distinct, persistent
identity, which Conradi and Westfechtel term extensional
versioning, they also discuss intensional versioning, where
revisions are constructed from property-based descriptions.
They also provide a more detailed discussion of change-
based versioning, and a taxonomy of versioning data
models. However, their taxonomy is not based on a strong
containment model, and does not clearly differentiate
between versioned-object, within-object, and predecessor/
successor relationships only approaches.

Many of the versioning issues encountered in hypertext
versioning and configuration management are also found in
engineering database systems that support the development
of integrated circuits. Randy Katz performed a substantive
survey of the version data models in engineering database
systems [22]. Similar to this work, Katz’s survey used as
basic modeling primitives derivation (predecessor/

successor), composition (containment), and variant (is-
kind-of) relationships. These were then used to show how
engineering database systems model various versioning and
work scenarios. The survey provides a set of unified
terminology, a unified data model, and a high-level
conceptual architecture. However, containment in the Katz
survey is just a simple “is-part-of” relationship, and does
not involve a distinction between inclusion and reference
containment. Additionally, all relationships in [22] are
predefined, and there is no abstraction that corresponds to
the hypertext link, or link structure.
CONCLUSIONS

Building on the design spaces for containment, persistent
storage of revision histories, and link versioning, the
structure versioning design space concisely describes a
range of techniques for recording the history of hypertext
link structures. The major aspects of this space are a
determination of the objects contained by the structure
container, the versioning design space choice for the
structure container and its containees, the containment
design space choice for all container/containee pairs, and
the location and scope of revision selection rules. Where
previously composite-based hypertext versioning systems
have explored only individual points, the structure
versioning design space teases out their commonality,
providing a map of design possibilities and a coherent
model for describing the structure versioning capabilities of
these systems. The two examples of the structure design
space encompass the design choices of most existing
composite-based hypertext versioning systems, and serve as
validation of the structure design space.

This work’s primary motivation is to enhance the state of
hypertext versioning knowledge so that future engineers
creating systems for use in software engineering, document
management, audits, law, and archives, would be able to
quickly learn what is known about link structure
versioning. This knowledge would allow them to add
hypertext capabilities to systems that otherwise would not,
due to the lack of understanding concerning the interactions
of links and the versioned objects that populate these
systems. Since the difficulty of versioning link structures
has limited the application of hypertext in many domains, it
is hoped this work will extend the utility of hypertext
systems.
ACKNOWLEDGMENTS

I would like to thank my dissertation committee, Richard N.
Taylor (Chair), David S. Rosenblum, and Mark S.
Ackerman, for their feedback on those portions of this paper
that derive from my PhD dissertation. Discussion and
comments from David Hicks dramatically increased my
understanding of the HURL model and helped refine the
paper.

REFERENCES
[1] M. Abu-Shakra and G. L. Fisher, “Multi-Grain Version

Control in the Historian System,” Proc. SCM-8, Brussels,
Belgium, July 20-21, 1998, pp. 46-56.

[2] K. M. Anderson, R. N. Taylor, and E. J. Whitehead, Jr.,
“Chimera: Hypertext for Heterogeneous Software

Environments,” Proc. ECHT’94, Edinburgh, Scotland, Sept.
18-23, 1994, pp. 94-107.

[3] D. L. Atkins, “Version Sensitive Editing: Change History as a
Programming Tool,” Proc. SCM-8, Brussels, Belgium, July
20-21, 1998, pp. 146-157.

[4] L. Bendix and F. Vitali, “VTML for Fine-Grained Change
Tracking in Editing Structured Documents,” Proc. SCM-9,
Toulouse, France, Sept. 5-7, 1999, pp. 139-156.

[5] R. Conradi and B. Westfechtel, “Version Models for Software
Configuration Management,” ACM Computing Surveys, vol.
30, no. 2 (1998), pp. 232-282.

[6] J. O. Coplien, D. L. DeBruler, and M. B. Thompson, “The
Delta System: A Nontraditional Approach to Software
Version Management,” Proc. International Switching
Symposium, Phoenix, Arizona, March, 1987, pp. 181-197.

[7] S. Dart, “Concepts in Configuration Management Systems,”
Proc. Third Int’l Workshop on Software Configuration
Management, Trondheim, Norway, June, 1991, pp. 1-18.

[8] N. Delisle and M. Schwartz, “Neptune: A Hypertext System
for CAD Applications,” Proc. Int’l Conference on the
Management of Data (SIGMOD’86), Washington, DC, May
28-30, 1986, pp. 132-143.

[9] N. M. Delisle and M. D. Schwartz, “Contexts-A Partitioning
Concept for Hypertext,” ACM Transactions on Office
Information Systems, vol. 5, no. 2 (1987), pp. 168-186.

[10] L. DeYoung, “Hypertext Challenges in the Auditing
Domain,” Proc. Hypertext’89, Pittsburgh, PA, Nov. 5-8, 1989,
pp. 169-180.

[11] D. G. Durand, “Palimpsest: Change-Oriented Concurrency
Control for the Support of Collaborative Applications,” Ph.D.
Dissertation. Boston University, Boston, MA, 1999.

[12] W. K. Edwards and E. D. Mynatt, “Timewarp: Techniques for
Autonomous Collaboration,” Proc. CHI’97, Atlanta, GA,
March 22-27, 1997, pp. 218 - 225.

[13] C. W. Fraser and E. W. Myers, “An Editor for Revision
Control,” ACM Transactions on Programming Languages
and Systems, vol. 9, no. 2 (1987), pp. 277-295.

[14] Y. Goland, E. J. Whitehead, Jr., A. Faizi, S. Carter, and D.
Jensen, “HTTP Extensions for Distributed Authoring --
WEBDAV,” Microsoft, U.C. Irvine, Netscape, Novell.
Internet Proposed Standard Request for Comments (RFC)
2518, Feburary, 1999.

[15] I. P. Goldstein and D. P. Bobrow, “A Layered Approach to
Software Design,” in Interactive Programming Environments,
D. R. Barstow, H. E. Shrobe, and E. Sandewall, Eds. New
York, NY: McGraw-Hill, 1984, pp. 387-413.

[16] K. Grønbæk, “Composites in a Dexter-Based Hypermedia
Framework,” Proc. ECHT’94, Edinburgh, Scotland, Sept. 18-
23, 1994, pp. 59-69.

[17] A. Haake, “CoVer: A Contextual Version Server for
Hypertext Applications,” Proc. ECHT’92, Milano, Italy, Nov.
30-Dec. 4, 1992, pp. 43-52.

[18] A. Haake, “Under CoVer: The Implementation of a
Contextual Version Server for Hypertext Applications,” Proc.
ECHT’94, Edinburgh, Scotland, Sept. 18-23, 1994, pp. 81-93.

[19] A. Haake and J. Haake, “Take CoVer: Exploiting Version
Support in Cooperative Systems,” Proc. InterCHI’93 - Human
Factors in Computer Systems, Amsterdam, Netherlands,
April, 1993, pp. 406-413.

[20] A. Haake and D. Hicks, “VerSE: Towards Hypertext
Versioning Styles,” Proc. Hypertext ’96, Washington, DC,
March 16-20, 1996, pp. 224-234.

[21] D. L. Hicks, J. J. Leggett, P. J. Nürnberg, and J. L. Schnase,
“A Hypermedia Version Control Framework,” ACM
Transactions on Information Systems, vol. 16, no. 2 (1998),
pp. 127-160.

[22] R. H. Katz, “Toward a Unified Framework for Version
Modeling in Engineering Databases,” ACM Computing
Surveys, vol. 22, no. 4 (1990), pp. 375-408.

[23] V. Kruskal, “Managing Multi-Version Programs with an
Editor,” IBM Journal of Research and Development, vol. 28,
no. 1 (1984), pp. 74-81.

[24] J. J. Leggett and J. L. Schnase, “Viewing Dexter with Open
Eyes,” Communications of the ACM, vol. 37, no. 2 (1994), pp.
76-86.

[25] K. C. Malcolm, S. E. Poltrock, and D. Schuler, “Industrial
Strength Hypermedia: Requirements for a Large Engineering
Enterprise,” Proc. Hypertext’91, San Antonio, Texas, Dec. 15-
18, 1991, pp. 13-24.

[26] M. Melly and W. Hall, “Version Control in Microcosm,”
Proc. Workshop on the Role of Version Control in CSCW
(held with ECSCW’95), Stockholm, Sweden, September,
1995.

[27] T. H. Nelson, Literary Machines, 93.1 ed. Sausalito, CA:
Mindful Press, 1981.

[28] K. Østerbye, “Structural and Cognitive Problems in Providing
Version Control for Hypertext,” Proc. ECHT’92, Milano,
Italy, Nov. 30-Dec. 4, 1992, pp. 33-42.

[29] K. Ota, K. Takahashi, and K. Sekiya, “Version management
with meta-level links via HTTP/1.1,” (1996). Internet-Draft
(expired), accessed Nov., 1999, www.ics.uci.edu/pub/ietf/
webdav/draft-ota-http-version-00.txt.

[30] M. J. Rochkind, “The Source Code Control System,” IEEE
Transactions on Software Engineering, vol. 1, no. 4 (1975),
pp. 364-370.

[31] N. Sarnak, R. Bernstein, and V. Kruskal, “Creation and
Maintenance of Multiple Versions,” Proc. International
Workshop on Software Version and Configuration Control,
Grassau, Germany, 1988, pp. 264-275.

[32] L. F. G. Soares, G. L. d. S. Filho, R. F. Rodrigues, and D.
Muchaluat, “Versioning Support in the HyperProp System,”
Multimedia Tools and Applications, vol. 8, no. 3 (1999), pp.
325-339.

[33] L. F. G. Soares, N. L. R. Rodriguez, and M. A. Casanova,
“Nested Composite Nodes and Version Control in an Open
Hypermedia System,” Int’l Journal on Information Systems,
vol. 20, no. 6 (1995), pp. 501-520.

[34] W. F. Tichy, “RCS - A System for Version Control,”
Software-Practice and Experience, vol. 15, no. 7 (1985), pp.
637-654.

[35] F. Vitali, “Versioning Hypermedia,” ACM Computing Surveys
vol. 31, no. 4 (1999).

[36] F. Vitali and D. G. Durand, “Using Versioning to Support
Collaboration on the WWW,” Proc. WWW4, Boston, MA,
November, 1995, pp. 37-50.

[37] U. K. Wiil and J. J. Leggett, “Hyperform: Using Extensibility
to Develop Dynamic, Open and Distributed Hypertext
Systems,” Proc. ECHT’92, Milano, Italy, Nov. 30-Dec. 4,
1992, pp. 251-261.

[38] U. K. Wiil and J. J. Leggett, “The HyperDisco Approach to
Open Hypermedia Systems,” Proc. Hypertext ’96,
Washington, DC, March 16-20, 1996, pp. 140-148.

