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ABSTRACT  

This paper reflects upon existing composite-based hypertext 
versioning systems, and presents two high-level design 
spaces that capture the range of potential choices in system 
data models for versioning links, and versioning hypertext 
structure. These two design spaces rest upon a foundation 
consisting of a containment model, describing choices for 
containment in hypertext systems, and the design space for 
persistently recording an object’s revision history, with 
applicability to all versioning systems. Two example points 
in the structure versioning design space are presented, 
corresponding to most existing composite-based hypertext 
versioning systems. Using the presented design spaces 
allows the data models of existing hypertext versioning 
systems to be decomposed and compared in a principled 
way, and provides new system designers significant insight 
into the design tradeoffs between various link and structure 
versioning approaches. 
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INTRODUCTION 

Consider software engineering. A large software project 
consists of many thousands of files, comprising 
requirements and design documents, source code, test 
cases, build files, bug reports, memos, email, and Web 
pages. There are many relationships between these files, 
such as a source file that satisfies a requirement stated in 
another document, or a test case that examines whether the 
code does indeed meet that requirement. Chimera [2] and 
DHM [16] are two examples of hypertext systems whose 
goal is to capture the relationships between software project 
files as hypertext links. Once these relationships are in the 
hypertext system, they allow for rapid navigation to related 
files, as well as visualization and analysis of the 
relationship network. The act of instantiating the 
relationships makes concrete the effect that changing a 
single software file can have on its network of 
relationships, since modifying a file can create new 
relationships, and can alter or destroy existing ones.  

Software engineering is a domain where best common 
practice involves maintaining and composing previous 
states of the project, a problem addressed by the discipline 
of software configuration management [7]. Hence, the 
introduction of hypertext into a version controlled software 
project necessarily entails accommodating versioned files, 
and project configurations. As a consequence, the fact that 
existing hypertext systems for software development do not 
version links is a significant factor preventing their wider 
use in this domain. 

Other domains have the same characteristics of large 
amounts of content, with enormous numbers of inter-
relationships, where prior states of the content must be 
preserved. Document management is one, since collections 
of documents in many contexts, from aerospace 
engineering documents [25] to interoperability standards, 
have a need to be under configuration control, and possess 
a wide range of relationships that could usefully be 
captured as hypertext links. Legal documents, comprising 
laws, regulations, and tax codes, are an important class of 
documents, chock full of interrelationships. It is important 
to store and retrieve previous document revisions because 
in legal systems that prevent ex-post-facto laws, the version 
of a law that affects a case is the one in effect at the time of 
an infraction. This is especially relevant for tax codes, 
which change frequently. Hypertext support can make it 
easy to navigate to related laws, precedents, regulations, 
and codes. Audit papers, inter-related information gathered 
about a company creating a network of content 
substantiation to develop an independent opinion 
concerning the accuracy of its financial statements, also can 
benefit from the application of hypertext [10]. Due to the 
collaborative nature of the task, the need to freeze a state of 
the company’s documents for analysis, along with the 
emergent understanding of the financial statements made 
by the company and the change this implies to inter-
document linkages, the audit working papers, and the final 
audit report, hypertext versioning is necessary for the 
introduction of hypertext into financial audits.  

Across the domains of software engineering, document 
management, legal, and audit, the requirement to preserve 
the prior states of individual documents necessarily entails 
that systems which capture inter-document relationships as 
hypertext links must also provide hypertext versioning 
support. Over the past fifteen years, there has been a slow 
but steady stream of research on hypertext versioning. 
Composite-based versioning systems comprise an important 
class of hypertext versioning systems, and are characterized 
by the use of a container object (a composite) to contain 
documents and the hypertext network. Prominent 



composite-based systems include Neptune [8,9], CoVer 
[17,19,18], HyperPro [28], VerSE [20], HyperProp [33,32] 
and Melly’s versioning support for Microcosm [26]. The 
Hypermedia Version Control Framework [21], though a 
policy-neutral toolkit, also contains composite objects and 
thus could be used like other composite-based systems.  
These systems can be viewed as having explored single 
points in a complex, multi-faceted space of possible design 
tradeoffs in accomplishing their goal of versioning 
hypertext networks. However, the knowledge generated has 
been specific to the data model and system on which the 
research was performed, and is difficult to apply to 
different systems or problem areas. As a consequence, the 
application of hypertext to software engineering, document 
management, legal, audit, and other similar domains, is 
limited by the absence of systematically organized 
knowledge concerning hypertext versioning. 

The concerns addressed by hypertext versioning research 
include such issues as collaboration support, visualizing 
versioned spaces, merging hypertext networks, representing 
variants, and navigating through versioned spaces. Though 
these issues are important, and must be addressed in any 
hypertext versioning system, this paper focuses instead on 
the essence of hypertext versioning: how to version 
hypertext links, and hypertext structures. The goal of this 
paper is to provide a comprehensive description of the key 
decisions and tradeoffs involved in the design spaces for 
versioning links and structure. This information is 
conveyed in a system-independent manner that makes data 
modeling decisions explicit. The design spaces for link 
versioning, and structure versioning both depend on two 
additional design spaces, those of containment, and 
persistent storage of revision histories. Hence, these two 
design spaces will be presented first, and the link 
versioning and structure versioning design spaces will 
follow, building upon them. 

The main contribution of this work is its systematic 
overview of the possible choices involved in containment, 
revision history versioning, versioning links and versioning 
structure. These design spaces allow existing hypertext 
versioning systems functionality to be better understood, 
and compared in a principled way using the design spaces 
as a comparison framework. The design spaces also 
identify approaches that have not yet been tried, and hence 
provide several interesting research directions. The 
improved understanding of hypertext versioning provided 
by these design spaces is expected to lead to greater use of 
hypertext versioning capability in domains that require 
version-aware hypertext capability. 

The remainder of the paper is organized as follows.  
Definitions of common terms are given in the next section. 
This is followed by, in order, descriptions of the design 
spaces for containment, persistent storage of revision 
histories, link versioning, and structure versioning. A brief 
related work section completes the paper. 
DEFINITIONS 

This section contains definitions of terms that will be used 
in the description of the four design spaces explained in this 
paper. We begin with definitions of the basic hypertext 

abstractions, the work, anchor, link, and link structure. 

Work: An artifact intended to create a communicative 
experience, such as a document, image, or song. 

Anchor: A handle for a specific set of symbols within a 
work. 

Link: An association among a set of works, a set of 
anchors, or their combination. 

Link structure: A set of links. Structure is used in an 
evocative sense, to describe the graph created by this link 
set. 

Objects persistently represent the basic hypertext 
abstractions. 

Object: A single or aggregate data item that represents an 
abstraction. Objects represent abstractions such as works, 
anchors, links, and link structures. 

The following terms are used to characterize the versioning 
state of an object, and the object used to capture its revision 
history. 

Unversioned object: An object that has only one state, the 
current state, and modifications overwrite it. 

Revision: A snapshot of an instant in the evolution of an 
object. 

Versioned-object: An object that signifies a specific 
abstraction, independent of any specific revision, or instant 
in time. A versioned-object contains revisions of the object 
it signifies. 

Revision selection rule: An expression that is evaluated 
over the members of a revision history to select one (and 
sometimes multiple) members of that history. 
CONTAINMENT DESIGN SPACE 

Containment is one of the most common relationships 
found in the data models of hypertext versioning systems, 
since static links, versioned objects, workspaces, compound 
documents, and user-defined collections can all be viewed 
as types of containers. As a result, understanding the 
relationships between entities in hypertext versioning 
systems requires an understanding of the different 
permutations of containment. 

In its basic form, a container models a set where each 
element is an entity (an abstraction). The container is an 
entity that holds the set. 

There are two main aspects to the containment design 
space: 

• Abstract properties of the container: Qualities of the 
container that are mathematic set properties, rather than 
properties of a specific computer representation, these 
being: 

• Containment: For a given entity, the number of 
containers that can hold it. Choices are: (a) single 
containment, an entity belongs to just one containment 
set, or (b) multiple containment, an entity belongs to 
multiple containment sets, 

• Membership: For a given container, the number of 
times can it contain a given entity.  Choices are: (a) 
single membership, an entity can belong to a 



containment set only once, or (b) multiple membership, 
an entity can belong to a containment set multiple 
times, in which case the containment set is a bag, or 
multiset, 

• Ordering: The persistent ordering of a container. 
Choices are: (a) ordered, the entities within the 
containment set have a fixed successive arrangement, 
or (b) unordered, the entities have no prescribed 
arrangement, (c) indexed, the arrangement is 
determined by a specification based on entity values or 
metadata, (d) grouped, subsets of members are ordered, 
but between subsets there is no ordering. 

• Containment type: How containment relationships are 
represented: (a) inclusion, or (b) referential (both 
described below). 

Broadly, there are two ways to represent that a container 
contains a particular entity. The container can physically 
include the contained item, or it can use an identifier as a 
reference to its members. The former case is known as 
inclusion containment; the latter, referential. Whenever two 
entities have a containment relationship between them, this 
relationship can be represented using references, following 
the permutations of identifier storage. The identifier can be 
stored on the container, on the containee, or on both. 
Additionally, identifier storage can be delegated to a 
separate entity, a first-class relationship. However, since the 
first-class relationship is itself a container, the same 
permutations of identifier storage apply between the 
container and one endpoint of the relationship, and between 
the containee and the other endpoint. Typically the first-
class relationship holds identifiers for both the container 
and containee. 
PERSISTENT STORAGE OF REVISION HISTORIES 

Objects are used to represent such abstractions as works, 
anchors, links, containers, workspaces, etc., within the 
computer. This section presents the revision history design 

space, describing several different techniques for recording 
the revision history of objects. The revision history design 
space is foundational, since it describes the basic 
techniques for recording the evolution over time of works, 
anchors, links, containers, and workspaces. These 
approaches create an archive of past revisions, and add the 
dimension of time where there was previously only the 
current time. The design space of structure versioning 
directly builds on this design space, since it depends on 
exactly how works, anchors, and links are versioned. 

Limiting the inquiry just to state-based versioning 
approaches (i.e., not considering change-based systems 
such as PIE [15], where changes are the primary objects 
instead of revisions), there are several approaches for 
recording the revision history of an object: these are the 
versioned-object, within-object, and predecessor/successor 
relationship only approaches, described below. 
Versioned objects:  

In this approach, each revision is a separate object that is 
referentially contained within a versioned object, a 
container that holds all revisions of the object (shown in 
Figures 1b and 1c). Links or relationships record the 
predecessors and successors of revision objects. The 
containment relationship between the revision objects and 
the versioned object must be a reference type, typically a 
containment relationship on the container object, i.e., where 
the container holds the containee’s identifier. An advantage 
of this approach is the ability to record metadata both on 
the versioned object and on the individual revisions.  

There is also a range of choices for how to represent the 
predecessor/successor relationships. Since each revision 
can be viewed as having a set of predecessors, and a set of 
successors, the containment design space is applicable. 
Since the versioned object approach requires each revision 
to be a separate object, an individual revision cannot use 
inclusion containment for its predecessors and successors. 
However, all of the referential containment types could be 

 

b) A versioned object, V-O, referentially 
contains two revisions and a first-class 
successor relationship. 

V-O 

r1 r2 successor 

r1 r2 

a) A linear revision history 
containing two revisions, r1, and r2. 
Revision r2 is the successor of r1. 

successor 

c) A versioned object, V-O, referentially 
contains two revisions. Revision r1 
referentially contains its successor, r2. 

r1 r2 successor 

r1 r2 

d) A versioned object, V-O, inclusively 
contains revisions r1 and r2, and the 
successor relationship. 

r1 r2 successor 

e) Revisions r1 and r2 are independent objects, 
connected by a first-class link that represents 
the successor relationship. 

V-O 

V-O 

Figure 1 – State based design choices for representing an object’s revision history. 



employed. It is possible for each revision to store the 
predecessor/successor relationships on the revision. It is 
also possible for revisions to hold only the predecessor 
relationships, wherein the predecessor relationships on 
child revisions do double duty as the successor 
relationships for its parent. First class relationship objects, 
or hypertext links, can also be used (see Figure 1b), and 
have the advantage that the revision objects do not need to 
store predecessor/successor information, and could 
potentially participate in multiple version histories. First 
class relationship objects must themselves be contained 
within the versioned object, and any reference containment 
type can be used for this.  

When revisions are contained using referential 
containment, the revisions can belong to containers other 
than the versioned object, such as user-created containers 
(e.g., folders or directories), workspaces, and 
configurations. When the container contents themselves are 
versioned, referential containment allows revisions to be 
reused across revisions of these versioned containers, thus 
resulting in fewer objects than would occur if this reuse 
wasn’t possible, and the revisions needed to be copied to 
belong to each container revision. 

Systems that contain revisions inside versioned objects 
using reference containment include HyperPro [28], CoVer 
[18], HyperProp [32], HyperForm [37], HyperDisco [38] 
and the Hypermedia Version Control Framework [21].  
Within-object versioning 

In this scheme, the versioned object uses inclusion 
containment to hold revisions, and hence all revisions are 
within the versioned object. Thus, within-object versioning 
differs from the versioned object approach in the type of 
containment used, within-object versioning employing 
inclusion, and versioned object using referential types. 
Within-object versioning is shown in Figure 1d. Examples 
include the “,v” files of RCS [34] and the “.s” files of 
SCCS [30], the versioning capability of some word 
processors (e.g., Microsoft Word), along with Palimpsest 
[11], VTML [36,4], EH [13], P-Edit [23], MVPE [31], 
Historian [1], VE [3], Timewarp [12], and Delta [6]. While 
these systems all share the quality of inclusively containing 
all revisions, their concrete representations vary 
significantly. 

The advantage of this technique is that all revisions are 
stored within a single object, and it is possible to guarantee 
the stability of references within these objects, since the 
current location of an endpoint can always be computed. 
When changes are recorded down to the keystroke level, 
within-object versioning can support remote collaborative 
authoring where all collaborators simultaneously work on 
the document, since all operations by all collaborators are 
recorded. Recording all revisions can be a drawback, since 
a publicly accessible document might not want to reveal all 
of its prior revisions. 

Within-object versioning has the drawback that revisions 
cannot participate in other containment structures, unless a 
replica of a specific revision is made and then placed into 
the container. Alternately, it is possible to use referential 
containment to hold the entire versioned object, and its 

included revisions, within multiple containers. 

Two significant design choices for within-object revision 
are the size of the minimum length content chunk, and the 
range of attributes that can be set on each chunk. In contrast 
to the attributes settable on whole objects, attributes set on 
content chunks have much finer granularity, since they are 
applied to subparts of the entire object. Chunk size varies, 
with the largest minimum chunk size being a programming 
language function [1], but with other choices being a single 
line (e.g., C preprocessor), a programming language token 
[6], all the way on down to a single character [11,36]. 
Settable attributes always include the person who made a 
change and the time when the change was made. Other 
common attributes include the revision number of the 
change, and a rationale/comment field. Most systems limit 
settable attributes to those that are predefined by the 
system, however some provide the ability to set arbitrary 
attributes, and retrieve them using predicates. Arbitrarily 
settable attributes allow within-object versioning systems to 
also handle within-object variant representation tasks.  
Predecessor/successor relationships only 

Each revision is stored in a separate object, but no container 
object represents a particular versioned object (see Figure 
1e). Predecessor and successor relationships exist between 
revisions in a version history. Typically a repository, or 
super-container holds all revisions of all objects, as well as 
all relationships between them, in a large pool of objects. 
The only information available to determine that a subset of 
the object pool comprises a version history is the 
predecessor and successor relationships between 
object/revisions.  

The advantage of this approach is that it can support 
versioning without using container objects. In conjunction 
with a decentralized name or addressing scheme, it can 
model revision histories that span organizational and 
machine boundaries, since it avoids the issue of which 
machine hosts the collection representing a versioned 
object. However, when revision histories span 
organizational boundaries, referential integrity is a potential 
problem, as communication and coordination between the 
machines storing the individual revisions cannot be 
guaranteed. Disadvantages of the approach include 
inefficient revision selection, hence inefficient creation of 
arbitrary configurations, and inefficient setting of metadata 
that must be unique across the version history of an object, 
such as labels. Examples of this approach include Xanadu 
[27], and the NTT Labs. versioning proposal [29]. 
LINK VERSIONING DESIGN SPACE 

Using the design space for persistent storage of revision 
histories, it is now possible to concisely characterize the 
design space for link versioning. The representation of links 
typically takes one of two forms: either the link is an 
independent object, or the link is contained within an object 
representing a work. Independent links have the entire 
object versioning design space available for representing 
the revision history of a link. When the link is contained 
within an object representing a work, it has greater 
constraints on how it can be versioned; typically link 
versioning is a side effect of work versioning. 



Independent links 

As an independent system object, a link’s history can be 
recorded using any of the techniques for recording the 
revision history of objects. That is, the versioned object, 
within-object versioning, and predecessor/successor 
relationship approaches (shown in Figure 1) could 
potentially be used. 

For links, the versioned object approach is typically used, 
wherein a container object referentially contains all 
revisions of the link. The versioned object approach has the 
advantage that it permits the creation of composites 
containing a consistent set of documents and links, such as 
the most recent revision as of a specific time, or a specific 
snapshot in the development of the composite. By-reference 
containment also allows the creation of containers that 
model a link structure by containing a single revision of 
multiple links, in this way capturing a link structure [21]. 

Within-object versioning has the advantage of only needing 
one object to record all revisions of a single link. It has the 
drawback of making composite creation more difficult, 
since either the entire versioned object would need to be 
contained, or the individual revisions would need to be 
copied out of the versioned object and placed into the 
container. An important design choice for within-object 
versioning is the size of the minimum length content chunk.  
This is less important for link versioning. Fine-grain change 
tracking, as provided by VTML [36] and Palimpsest [11], 
typically does not provide much value for links, since they 
have minimal content beyond the link endpoints, and hence 
do not justify the added complexity of such change 
tracking. However, if a link has significant chunks of 
metadata, such as an annotation, fine-grain change tracking 
of these textual metadata items could be valuable. 

Using only predecessor and successor relationships to 
capture the revision history of links is also possible. This 
would eliminate the need for a container object representing 
all revisions of the link, and would permit link revisions to 
more easily span control boundaries. It has the drawback 
that it is difficult to efficiently evaluate revision selection 
rules. No existing hypertext system versions its links in this 
way.  
Links as a dependent part of works 

In some hypertext systems, links are contained within, and 
hence dependent upon, the objects representing linked 
works. Links can be embedded within that portion of the 
work object representing the content of the work, as is the 
case with HTML links on the Web. Alternately, links can 
be contained as metadata about the work object content, as 
is the case with the source link in WebDAV [14]. 

When links are contained within a work object’s content, 
their history is the same as the content, and hence when the 
work object content has a new revision made, so too do the 
links in the content. The versioning of links is completely 
subsidiary to the versioning of the content. When links are 
contained as metadata, there are two choices. First, if the 
metadata is versioned along with the rest of the object, then 
link versioning is again subsidiary to versioning of the 
object. However, it is conceivable that metadata could be 

versioned separately from the main object, with each item 
of metadata possessing its own revision history. This has 
the advantage that metadata items, like links, can 
conceptually be part of the object, but still have 
independent version histories.  The drawback is that this 
makes the object substantially more complex, since each 
item of metadata can contain multiple revisions. No 
existing hypertext system provides metadata versioning 
services. 
STRUCTURE VERSIONING DESIGN SPACE 

Abstractly, structure versioning is the act of maintaining the 
revision history of a link set. Since a set is represented 
within the computer by a container, the essence of structure 
versioning is placing a set of links into a container, termed 
the structure container, and then versioning the structure 
container. This premise underlies the structure versioning 
design space. The existence of the structure container 
means the containment design space will be brought to 
bear, and the need to version the structure container brings 
in the versioning design space as well. The structure 
versioning design space thus depends on the existence of 
these other two design spaces for the terms used to describe 
its own design choices.  
Two criteria determine whether a particular structure 
versioning design choice is complete. The symbolic 
rendition criterion asserts that there must be sufficient 
information to create a symbolic rendition (i.e., a view, 
such as a screen display of a document and its link 
endpoints) of each work, including rendition of anchors or 
link endpoints. So, if the structure container does not 
include works, then the links, anchors, collections, and 
revision selection rules held by the structure container must 
possess enough information to connect links to the works. 
If works are part of the structure container, then among the 
works, links, anchors, and revision selection rules, there 
must be enough information to connect a specific link 
revision to a specific work and/or anchor revision.  

The link traversal criterion asserts there must be sufficient 
information to perform a link traversal from an anchor. If 
anchors are not part of the system’s data model, then there 
must be sufficient information to traverse a link from the 
symbolic depiction of a link endpoint (e.g., some symbol 
that represents the endpoint of a link that connects entire 
works). 

The primary elements of the structure design space are:  
What does the structure container hold?  

While the structure container must, at minimum, contain 
links, it is by no means limited to them. The structure 
container may also hold works, anchors, and other 
container objects. If the structure container only contains 
links, it is capable only of representing a link structure. If 
the structure container also holds works and anchors, it can 
represent not only the link structure, but also a consistent 
slice through a hypertext, holding not just the links, but also 
the linked works, along with the anchor points within those 
works. It is also possible that the structure container will 
only hold works, if links are a dependent part of works. 
While this approach similarly permits versioning of a 



consistent slice through a hypertext, it has the significant 
drawback of not versioning the structure independent of the 
content. This, in turn, makes it substantially more difficult 
to maintain multiple versioned structures over a set of 
works. 

If the goal is just to version structure, then the structure 
container need only contain sufficient information to satisfy 
both completeness criteria. So, if a link endpoint specifies 
an anchor revision, and an anchor revision specifies a work 
revision, then the structure container need only contain 
links, since it is possible, given a link revision, to determine 
the information needed to create a symbolic rendition, and 
to perform a link traversal. If, however, a link endpoint 
only specifies a versioned object, either the structure 
container or the containment relationship between the link 
and its containees (works or anchors) must hold a revision 
selection rule (discussed further below) that selects a 
specific revision, and hence satisfies the completeness 
criteria. 

Since a link in conjunction with a revision selection rule 
contains sufficient information to satisfy the two 
completeness criteria, these criteria alone do not provide 
any motivation for adding works, anchors, or other 
container objects (e.g., collections, composites) into the 
structure container. However, most composite-based 
hypertext versioning systems do include works and links 
within composites, which act as structure containers. Here 
the motivation is to make the composite do dual duty, as 
both the structure container and as a workspace. 
Workspaces provide the benefit of maintaining an 
internally consistent subset of the entire object space. 

This point in the structure versioning design space is fully 
specified by giving a complete list of the entities contained 
by the structure container. 
Versioning design space choice for structure container 
and its containees.  

For the structure container, and all of its containees, one of 
the choices of the versioning design space—versioned 
object, within-object versioning, predecessor and successor 
relationships—must be made. While it is mandatory for the 
structure container to be versioned in order to provide 
structure versioning, versioning for containees is optional. 
For example, both HyperPro [28] and HyperProp [32,33] 
do not version links individually, and version structure by 
placing the links inside containers that are versioned, and 
therefore each revision of the container records a specific 
revision of the link structure. 

This point in the structure versioning design space is fully 
specified by listing, for the structure container and each of 
its contained entities, the choice of versioning mechanism 
employed to record the revision history of the entity. If the 
entity is not versioned at all, that is noted instead. 
Containment design space choice for all pairs of  
containers and containees. 

For each container/containee pair involved in structure 
versioning, their containment relationship needs to be 
specified by choosing a point in the containment design 
space. This applies not just to every object contained by the 

structure container, but also to the endpoints of links (since 
links are modeled as containers), and to the containment 
relationship between anchors and their work objects. 
Furthermore, for each container/containee pair, if the 
containee is versioned using either the versioned object or 
within-object approach, it is necessary to determine 
whether the versioned object, or an individual revision, is 
contained.  

Of the many choices inherent in each containment 
relationship, whether the containment type is inclusion or 
referential has the greatest impact on structure versioning, 
since inclusion containment implies that versioning of the 
contained item is dependent on versioning of the container. 
Referential containment leaves the containee free to have a 
revision history that is independent of the revision history 
of its container. 

If the structure container only allows single containment of 
its objects, this leads to significant object duplication 
during the evolution of the structure, since every revision of 
the structure container constitutes a separate container, and 
singly contained objects can only belong to one. As a result, 
new structure container revisions that employ single 
containment must replicate all contained objects when a 
new revision, or working copy is made. For example, this is 
the case with Neptune [9]. 

When the structure container holds the link and a single 
revision of its endpoint objects (anchor, work, or both), and 
the revision selection rule is located on the structure 
collection, an additional dynamic containment choice 
becomes available. Typically, a link referentially contains 
its endpoints, selecting a specific revision of endpoint 
objects using the revision selection rule. The structure 
container also evaluates the revision selection rule to select 
an individual revision of each endpoint object (anchor or 
work). Thus, the revision selection step is duplicated by the 
link and the structure collection. To avoid this duplication, 
the link could employ indirect referential containment, 
where the link endpoint is the revision selected by the 
structure container. That is, the link endpoint is a binding 
point that is filled-in by the revision selection rule 
evaluation of the structure collection. 
Location and scope of revision selection rule. 

Dynamic containment using a revision selection rule is 
often used in structure versioning, providing several 
benefits. Revision selection rules may be located either in 
the structure container, or on a specific containment 
relationship. When located on the structure container, the 
scope of the rule is all containment relationships where the 
containee is a versioned object (i.e., the container used in 
either the versioned object or within-object versioning 
approaches). When located on a single containment 
relationship, its scope is that relationship. The advantage of 
having the revision selection rule on the structure container 
is evaluation efficiency, and ease of maintenance. The 
advantage of having revision selection rules on each 
containment arc is flexibility, with each containment arc 
permitting a separate revision selection rule. 

Revision selection rules bring several benefits. They allow 
more expressive selection of revisions than just explicit 



selection by revision identifier, permitting selection such as 
“most recent revision,” or “most recent as of a specific 
time,” or, in combination with a human-readable label, “the 
revision with label Beta_Release_2”.  

Revision selection rules also allow a single unversioned 
link to refer to different revisions over time. This trick is 
accomplished by having the link endpoint be a versioned 
object, and then using the revision selection rule to select a 
specific revision. Since the rule is stored separate from the 
link, the rule, and hence the selected revision, can change 
without modifying the link. If the holder of the revision 
selection rule is versioned, the link then has the appearance 
of being versioned, since the selected revisions change over 
time with the revision selection rule. Example 1, below, 
describes this approach in more detail. 

Finally, revision selection rules on the structure container 
provide a single modification point for changing its 
contained revisions, a useful trait when performing time-
based revision selection or label-based revision selection. 
Label-based revision selection has the additional benefit of 
creating internally consistent hypertext structures, assuming 
the hypertext was consistent when the labels were applied. 

This point in the structure versioning design space is 
complete when, for each container/containee pair (including 
the structure container and its containees, as well as links 
and their contained endpoints), where the ultimate containee 
is a revision, a decision is made whether a revision selection 
rule on the structure collection, or on the particular 
containment relationship, determines the revision endpoint 
of the containment arc. Alternately, if no revision selection 
rule is employed, meaning a specific revision is explicitly 
selected, this is noted as well. 

STRUCTURE VERSIONING EXAMPLES 

The following sections provide two examples that highlight 
use of the structure versioning design space. 
Example 1: Versioned Structure with Unversioned Links 

In this example, the following choices were made within 
the structure versioning design space: 

• Abstractions present: structure collection, works, links. 
No anchors are present, links join whole works. 

• Structure container contains: links, work versioned 
objects 

• Versioning design space choices: 

• Structure containers are versioned, using versioned 
object approach 

• Links are unversioned 

• Works are versioned, using versioned object approach 

• Containment design choices: 

• Structure container � link, work versioned object: 
referential, multiple containment, single membership, 
unordered, containment relationship on structure 
container 

• Link � work versioned object: referential, multiple 
containment, single membership, successively 
ordered, containment relationship on link (container) 

• Revision selection rule: stored on collection, affects all 
link endpoints, provides selection of specific work 
revision from work versioned object. 

A containment diagram showing these design choices is 
shown in Figure 2a. An instance of this containment 
structure is shown in Figure 2b. In the figure, the structure 
container, C, referentially contains two versioned work 
objects, A and B. By using the versioned work object as the 
link endpoint, and then letting the revision selection rule 
choose the specific revision, the need to duplicate link L to 
point to newly created revisions is eliminated. Including 
time in the revision selection rules allows prior link 
endpoints to be recovered when reverting to a prior 
container revision. This approach achieves structure 
versioning using unversioned links. Essentially, this 
approach stores separate revisions of links without 
explicitly recording their predecessor and successor 
relationships. Instead, the predecessor and successor 
relationships for the links are implicitly recorded by the 
structure container’s revision history, since the unversioned 
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Figure 2(a) shows a containment diagram for example 1, versioned structure with unversioned links.  The structure collection 
revision contains a revision selection rule (RSR). Figure 2(b) shows an unversioned link, L, between two versioned works, A, 
and B, in a versioned structure collection C. 

 
versioned object for  
structure collection 

structure collection 
revision (RSR) 

versioned object for 
works 

work revision 

link (unversioned) 
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containment relationship on container 
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container, ordered) Multiple 
containment, single membership, 
ordered, containment relationship 
on container 

a) 



links are contained by the structure container. As a result, 
each revision of the structure container records a specific 
revision of the link structure. This approach has the 
drawback that it is not possible to efficiently evaluate 
revision selection rules across the revisions of a specific 
link. This approach is used by both HyperPro [28] and 
HyperProp [32,33], because they focus on recording the 
history of link structure, not individual links. 

The symbolic rendition completion criteria is met, since 
each revision of the structure container holds a versioned 
object for each work, a revision selection rule that selects 
the revision to display, and all links. Thus, for each work, 
all information is present that is needed to create a symbolic 
rendition. The link traversal criteria is also met, since the 
link endpoints, work versioned objects, are also present in 
each revision of the structure collection, and the revision 
selection rule chooses the specific work revision for each 
endpoint. 

Variants of this unversioned link approach are possible, but 
have not been explored in the existing literature. For works, 
it is possible that within-object versioning could be used, 
since the structure container holds the entire versioned 
object, and it permits efficient evaluation of revision 
selection rules. Use of the predecessor and successor 
relationships approach for versioning works is not 
compatible, since links require efficient evaluation of 
revision selection rules. 

There is really only one place where the revision selection 
rule can be stored, and that is the structure container. The 
link cannot store the rule, since that would entail creating a 
new link for every revision of the structure container in 
order to preserve its selected revision at the time the 
container was frozen. If the work versioned objects store the 
rule, it is impossible to freeze the rule when a new structure 
container revision is made, since a new revision of the 
structure container does not imply a new revision of its 
contained versioned objects, since they are unversioned. 

Example 2: Versioned Structure with Versioned Links 

In this example, the following choices were made within 
the structure versioning design space: 

• Abstractions present: structure collection, works, links. 
No anchors are present, links join whole works. 

• Structure container contains: link revisions, work 
revisions 

• Versioning design space choices: 

• Structure containers, links, and works are versioned, 
using versioned object approach 

• Containment design choices: 

• Structure container � link revision, work revision 
Link � work revision: referential, multiple 
containment, single membership, successively ordered, 
containment relationship on link (container), dynamic 
containment via revision selection rule over work 
versioned object. 

• Revision selection rule: stored on containment arc 
between structure container and its containees, providing 
selection of link revisions from link versioned objects 
and selection of specific work revisions from work 
versioned objects. 

Figure 3a shows the containment diagram for these 
structure versioning design choices. The distinguishing 
element of this example is its use of versioned links, and 
the use of revision selection rules on all containment arcs of 
the structure collection revisions, and link revisions. An 
example instance of this structure versioning approach is 
shown in Figure 3b. In essence, this is the structure 
versioning approach used by CoVer [17,18], and VerSE 
[20]. 

While the placement of revision selection rules on 
containment arcs yields excellent revision selection 
flexibility, it also has two drawbacks. First, evaluation of 
individual revision selection rules is less efficient than 
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Figure 3a shows the containment diagram for example 2, versioned structure with versioned links. Figure 3b is an example of 
this containment structure, with a structure container C holding revision 2 of link L, and works A and B. 
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evaluation of one rule for all containment arcs. Second, it 
increases the work that must be performed to ensure the 
structure container holds a consistent hypertext. In Figure 
3b, consider if RSR3 were changed to be “latest, time ≤ t2” 
and hence L,2 selected A,3 instead of A,2. A link traversal 
across L,2 starting from its other endpoint, B,2, would result 
in the display of A,3 even though the structure container 
currently holds A,2. A user might perceive this as 
inconsistent.  

RELATED WORK 

Within hypertext versioning Fabio Vitali has written the 
only published survey, a short paper that belongs to a 
special issue of ACM Computing Surveys on hypertext 
[35]. This paper provides a good overview of hypertext 
versioning, presenting its advantages for history recording, 
work accountability, collaboration, and reference 
permanence. Despite being a good introduction to the 
hypertext versioning literature, this paper does not contain a 
detailed survey of versioning data models or design spaces. 
Of course, that was not its objective. 

The Hypermedia Version Control Framework by Hicks et 
al. presents the HURL data model, and a conceptual 
architecture for hypertext versioning in open hypertext 
systems [21]. HURL comprehensively describes the data 
modeling issues inherent in hypertext versioning, and, like 
this paper, is based on an analysis of existing hypertext 
versioning systems. HURL extends the SP3/HB3 [24] data 
model with versioning capabilities. With judicious 
specialization (via subtyping) of HURL concepts, it has 
equivalent expressive power to the model presented in this 
paper. While the current paper emphasizes design choices 
as a means to characterize design spaces, [21] presents this 
information as a series of issues. An additional difference is 
the HURL model has been validated by implementation in 
a running system. 

Outside of hypertext versioning, two survey articles are 
relevant to hypertext versioning: the Conradi and 
Westfechtel survey of versioning data models [5] in 
versioning and configuration management systems, and the 
Katz survey of versioning in engineering database systems 
[22]. In addition to the predominantly state-based 
versioning, where each revision has distinct, persistent 
identity, which Conradi and Westfechtel term extensional 
versioning, they also discuss intensional versioning, where 
revisions are constructed from property-based descriptions. 
They also provide a more detailed discussion of change-
based versioning, and a taxonomy of versioning data 
models. However, their taxonomy is not based on a strong 
containment model, and does not clearly differentiate 
between versioned-object, within-object, and predecessor/ 
successor relationships only approaches. 

Many of the versioning issues encountered in hypertext 
versioning and configuration management are also found in 
engineering database systems that support the development 
of integrated circuits. Randy Katz performed a substantive 
survey of the version data models in engineering database 
systems [22]. Similar to this work, Katz’s survey used as 
basic modeling primitives derivation (predecessor/ 

successor), composition (containment), and variant (is-
kind-of) relationships. These were then used to show how 
engineering database systems model various versioning and 
work scenarios. The survey provides a set of unified 
terminology, a unified data model, and a high-level 
conceptual architecture. However, containment in the Katz 
survey is just a simple “is-part-of” relationship, and does 
not involve a distinction between inclusion and reference 
containment. Additionally, all relationships in [22] are 
predefined, and there is no abstraction that corresponds to 
the hypertext link, or link structure. 
CONCLUSIONS 

Building on the design spaces for containment, persistent 
storage of revision histories, and link versioning, the 
structure versioning design space concisely describes a 
range of techniques for recording the history of hypertext 
link structures. The major aspects of this space are a 
determination of the objects contained by the structure 
container, the versioning design space choice for the 
structure container and its containees, the containment 
design space choice for all container/containee pairs, and 
the location and scope of revision selection rules. Where 
previously composite-based hypertext versioning systems 
have explored only individual points, the structure 
versioning design space teases out their commonality, 
providing a map of design possibilities and a coherent 
model for describing the structure versioning capabilities of 
these systems. The two examples of the structure design 
space encompass the design choices of most existing 
composite-based hypertext versioning systems, and serve as 
validation of the structure design space. 

This work’s primary motivation is to enhance the state of 
hypertext versioning knowledge so that future engineers 
creating systems for use in software engineering, document 
management, audits, law, and archives, would be able to 
quickly learn what is known about link structure 
versioning. This knowledge would allow them to add 
hypertext capabilities to systems that otherwise would not, 
due to the lack of understanding concerning the interactions 
of links and the versioned objects that populate these 
systems. Since the difficulty of versioning link structures 
has limited the application of hypertext in many domains, it 
is hoped this work will extend the utility of hypertext 
systems. 
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