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Abstract The Bañados et al. (Phys. Rev. Lett 69:1849,
1992), black hole solution is revamped from the Einstein
field equations in (2 + 1)-dimensional anti-de Sitter space-
time, in a context of noncommutative geometry (Phys. Rev.
D 87:084014, 2013). In this article, we explore the exact
gravastar solutions in three-dimensional anti-de Sitter space
given in the same geometry. As a first step we derive BTZ
solution assuming the source of energy density as point-like
structures in favor of smeared objects, where the particle
mass M, is diffused throughout a region of linear size

√
α

and is described by a Gaussian function of finite width rather
than a Dirac delta function. We matched our interior solution
to an exterior BTZ spacetime at a junction interface situated
outside the event horizon. Furthermore, a stability analysis
is carried out for the specific case when χ < 0.214 under
radial perturbations about the static equilibrium solutions.
To give theoretical support we are also trying to explore their
physical properties and characteristics.

1 Introduction

The recent detection of gravitational waves ([3] and refer-
ences therein) carried implicit evidence for the existence of
black holes since the cataclysmic event generating the wave
carried the expected signature of a coalescing binary black
hole system. Nevertheless, the question of what the final fate
of gravitational collapse is remains open. Black holes are
one possibility but this does not preclude others. The gravas-
tar (gravitational vacuum star) model has been proposed by
Mazur and Mottola [5,6], and it has attracted attention as
an alternative model to the black hole. The general idea is
preventing horizon (and singularity) formation, by stopping
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the collapse of matter at or near where the event horizon is
expected to form i.e., alternative configurations of black holes
could be formed by gravitational collapse of a massive star.
The quasi-normal modes of thin-shell non-rotating gravas-
tars were studied by Pani et al. [4] and they also considered
the gravitational wave signatures when no horizon is present
such as in the case of gravastars. To the best of the knowledge
of the authors no investigations into the wave signature from
coalescing gravastars have been made to date. It has been
speculated that the gravastars and black holes emit the same
gravitational wave signatures.

In the gravastar model, the interior consists of a segment of
the de Sitter geometry, enclosed by a shell of Bose–Einstein
condensate, all of which is surrounded by a Schwarzschild
vacuum but without encountering a horizon. The de Sitter
interior with negative pressure favoring expansion is neces-
sary to provide a mechanism to counterbalance the gravita-
tional collapse of the ultra-compact Bose–Einstein conden-
sate (BEC), which itself is assumed to have the most extreme
equation of state permissible by causality – that of stiff mat-
ter (p = ρ). Therefore the gravastar is a multilayered struc-
ture consisting of three different regions with three different
equations of state (EOS):

(I) an internal core (de Sitter) with an EOS: p + ρ = 0,
(II) a thin shell of ultra-stiff matter (BEC) with an EOS:

p = +ρ,
(III) an outer vacuum Schwarzschild solution with EOS: p =

ρ = 0,

In practice, the Mazur–Mottola model is a static spherically
symmetric model with a five-layer solution of the Einstein
equations including two infinitesimally thin shells endowed
with surface densities σ± and surface pressure p±.

Motivated by the work Visser and Wiltshire [7], one ana-
lyzed the dynamic stability against spherically symmetric
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perturbations using the Israel thin-shell formalism while
Carter in [8] has extended gravastar stability with general-
ized exteriors (Reissner–Nordstrom). In Ref. [9] gravastar
solutions have been studied within the context of nonlinear
electrodynamics. Later some simplifications and important
aspects of the gravastar have been studied in-depth in [10–
14]. Moreover, the limits on gravastars and how an external
observer can distinguish it from a black hole have been stud-
ied in [15,16].

After the theoretical discovery of radiating black holes by
Hawking [17,18], based on quantum field theory, the ther-
modynamical properties of black holes have been studied
extensively. Since this theoretical effort first disclosed the
mysteries of quantum gravity, considerable interest in this
problem has developed in theoretical physics. It is generally
believed that spacetime as a manifold of points breaks down
at very short distances of the order of the Planck length.
In these circumstances noncommutative geometry [19,20]
plays a key attribute in unraveling the properties of nature
at the Planck scale. From the fundamental point of view
of noncommutative geometry there is an interesting inter-
play between mathematics, high energy physics as well as
cosmology and astrophysics. In a noncommutative space-
time the coordinate operators on a D-brane [20,21] can be
encoded by the commutator [x̂μ, x̂ν] = iϑμν , where x̂ and
iϑμν are the coordinate operators and an antisymmetric ten-
sor of dimension (length)2, which determines the fundamen-
tal cell discretization of spacetime. As Smailagic et al. have
shown [22] that noncommutativity replaces point-like struc-
tures by smeared objects in flat spacetime. Thus it is reason-
able to believe that noncommutativity could eliminate the
divergences that normally appear in general relativity that
appears in various form. As discussed in Ref. [23] the smear-
ing effect is mathematically implemented as a substitution
rule: position Dirac delta function is substituted everywhere
using a Gaussian distribution of minimal length

√
α.

In the same spirit, Nicolini et al. [23–25] have investigated
the behavior of a noncommutative radiating Schwarzschild
black hole. There is a lot of noncommutative effects have
been performed to extend the solution for higher dimensional
black hole [26], charged black hole solutions [27,28] and
charged rotating black hole solution [29,30]. A number of
studies have been performed in these directions where space-
time is commutative [31–34]. In the same context wormhole
solutions have been studied in [35–37]. Recently, Lobo and
Garattini [38] showed that a noncommutative geometry back-
ground is able to account for exact gravastar solutions and
studied the linearized stability. Gravastar solutions in lower
dimensional gravity have been studied in [39,40] in an anti-
de Sitter background spacetime.

It is well known that general relativity and its modified
counterparts are highly non-trivial systems to investigate in
the physically realistic four spacetime dimensions. It is there-

fore interesting to reduce the number of spatial dimensions
by 1 and to study general relativity in the simpler context
of (2 + 1) dimensions in the hope that it has the potential
to generate non-trivial and valuable insight into some of the
conceptual issues that arise in the (3 + 1) dimensional case,
especially in regard to the question of quantizing gravity.
Seminal contributions in this regard were made by Witten
[41–43] who showed an equivalence between (2+1) gravity
theory and Chern–Simons theory. The usefulness of (2 + 1)-
dimensional gravity motivated us to show that neutral gravas-
tars solutions do exist to avoid the event horizon formation,
which may be considered as an alternative to BTZ in the
context of noncommutative geometry.

The motivation for this investigation is clear from the
above summary on the aspect of an exact gravastar solu-
tion in the context of NC in (2 + 1)-dimension. Our paper is
organized as follows. In Sect. 2 we construct BTZ black hole
solution from an exact solution of the Einstein field equa-
tions in the context of noncommutative geometry and spec-
ifying the mass function we present the structural equations
of gravastar. In Sect. 3 we discuss the matching conditions
at the junction interface and determine the surface stresses.
In Sects. 4 and 5 we investigate the linearized stability of
gravastars and determine the stability regions of the transi-
tion layer. Finally, in Sect. 6 we draw the conclusions.

2 Interior geometry

We will be concerned here the interior spacetime described
by the line element for a static spherically symmetry and time
independent metric in (2 + 1) dimensions in the following
form:

ds2 = −e2Φ(r)dt2 + dr2

1 − 2m(r)/r
+ r2dθ2, (1)

where Φ(r) and m(r) are arbitrary functions of the radial
coordinate, r . Here the “gravity profile” factor Φ(r) is related
with the relationship A =

√
1 − m(r)/rΦ ′(r), which rep-

resents the locally measured acceleration due to gravity
[44,45]. The convention used is that Φ ′(r) is positive or neg-
ative for an inwardly gravitational attraction or an outward
gravitational repulsion and m(r) can be interpreted as the
mass function.

We take the matter distribution to be anisotropic in nature
and therefore the stress-energy tensor for an anisotropic mat-
ter distribution is provided by

Ti j = (ρ + p⊥)uiu j + p⊥gi j + (pr − p⊥)XiX j , (2)

where ui is the 3-velocity of the fluid andXi is the unit space-
like vector in the radial direction. ρ(r), pr (r), and p⊥(r)
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represent the energy density, radial pressure and tangential
pressure, respectively.

The Einstein field equations Gμν + 
 gμν = 8πTμν , for
the spacetime given in Eq. (1) together with the energy-
momentum tensor given in Eq. (2), rendering G = c = 1,
provides the following relationships:

8πρ + 
 = rm′ − m

r3 , (3)

8πpr − 
 = Φ
′

r

(
1 − 2m

r

)
, (4)

8πp⊥ − 
 =
(

1 − 2m

r

) (
Φ

′2 + Φ
′′ − Φ

′ (rm′ − m)

r2

)
,

(5)

In addition, we have the conservation equation in (2 + 1)
dimensions:

(ρ + pr )Φ ′ + p′
r + 1

r
(pr − p⊥) = 0, (6)

where 
 is the cosmological constant and Φ are arbitrary
functions of the radial coordinate r. Here ′ denotes differen-
tiation with respect to the radial parameter r. Although we
shall not invoke isotropic particle pressure, it is interesting
to note that the isotropy Eq. (4) = (5)

Φ ′′ + Φ ′2 − Φ ′

r2

(
r(m′ − 1) − m

) = 0, (7)

ostensibly nonlinear in Φ, may be reduced to the linear form

y′′ − 1

r2

(
r(m′ − 1) − m

)
y′ = 0 (8)

by making the change of variables e2Φ(r) = y2(r). Equation
(8) may be solved explicitly by

y = c1

∫
exp

(∫ (
m′ − 1

r
− m

r2

)
dr

)
+ c2 (9)

where c1 and c2 are integration constants that may be settled
by considering the boundary conditions. For stellar distribu-
tions 
 is ignored and so (9) provides an algorithm to detect
all static isotropic perfect fluid solutions in (2 + 1) dimen-
sions. Once a suitable form for m(r) is selected, Φ can be
determined (theoretically) and hence the density and pres-
sure may be obtained to complete the model. But we shall
not pursue these ideas here as we shall require anisotropic
particle pressure for our model.

We are going to solve the resulting Einstein’s equations,
for static spherically symmetric perfect fluids in (2 + 1)
dimensions, with a maximally localized source of energy

having the minimal width, Gaussian, mass/energy distribu-
tion

ρ = M

4πα
exp

(
− r2

4α

)
, (10)

where M is the total mass of the source. This is due to
the coordinate coherent states approach to noncommuta-
tive geometry with the noncommutative parameter θ being a
small (∼Planck length2) positive number.

By solving the Einstein equations with an EOS pr = −ρ,
as a matter source, we have the following relationship (see
Ref. [2]):

e2Φ = −A + 2Me− r2
4α − 
r2, (11)

where A is an integration constant. In the limit r√
α

→ ∞,
Eq. (11) is reduced to the BTZ black hole where the constant
term A plays the role of the mass of the BTZ black hole, i.e.,
A = M .

In order to proceed with our investigation, we choose a
specific mass function m(r), for closing the system. For this
purpose, we are now interested in the noncommutative geom-
etry inspired mass function (see Refs. [46,47]) in the follow-
ing form:

m = M

π(m̃−2)/2
γ

[
m̃

2
, χ2

( r

2M

)2
]

, (12)

where χ2 = M2/α and γ
( a
b ; x) is the Euler lower Gamma

function defined by

γ
(a
b
; x

)
≡

∫ x

0
ua/be−u du

u
. (13)

For a BTZ black hole, m̃ = 2, we obtain the following expres-
sion for the mass function:

m(r) = M
∫ r2/4θ

0
e−tdt = M

[
1 − exp

(
− r2

4α

)]
. (14)

At the origin,m(0) = 0, which is consistent with the solution
of Eq. (12) and we notice that the parameter χ plays a critical
role in determining the horizons.

An interesting feature of the solution is the horizon. Corre-
sponding to A = M given in Eq. (11), and letting the function
gtt (rh) = 0, gives the event horizon(s) which is depicted in
Fig. 1 for different values of χ . Thus we find three possible
cases [2]:

(i) for M > M0 = 0.214
√

α there are two horizons i.e.,
when χ > 0.214;

(ii) for M = M0 = 0.214
√

α with one degenerate horizon
i.e., when χ = 0.214;
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Fig. 1 The function gtt cuts the r-axis gives the event horizons for
different values of χ = 0.8, χ = 0.214 and χ = 0.1, respectively

(iii) for 0< M < M0 no horizon for χ < 0.214,

where M0 is the existence of a lower bound for a black hole
mass and represents its final state at the end of Hawking
evaporation process. It is also clear from Fig. 1 that below
the minimal mass there is no black hole.

3 Matching at junction interface and surface stresses

For the specific gravastar model we match the interior gravas-
tar geometry, given in Eq. (1), with an exterior geometry
associated with the BTZ solution,

ds2 = − (−M − 
r2) dt2+ (−M − 
r2)−1
dr2 + r2dθ2,

(15)

both interior and exterior matched at the junction surface ,
situated outside the event horizon, a > rh . As the gravastar
solution does not possess a singularity at the origin and has
no event horizon, we are interested in the case χ < 0.214
and there is no event horizon yielding a solution.

Since the outer solutions have a zero stress-energy, while
at the junction surface , both will have a non-zero stress-
energy. The junction hypersurface is a timelike hypersurface
defined by the parametric equation f (xμ(ξ i )) = 0, where ξ i

= (τ, θ ) represents the intrinsic coordinates on the hypersur-
face and τ is the proper time, respectively.

In order to proceed one can write the line element for
intrinsic metric to  as

ds2
 = −dτ 2 + a2dθ2. (16)

For the purpose of this paper we matched our interior geome-
try by the exterior BTZ solution; the three velocity of a piece

of stress energy at the junction surface is given by ξμ(τ, θ)

= (t (τ ), a(τ ), θ)

Uμ
± =

(
dt

dτ
,

da

dτ
, 0

)
=

⎛
⎝

√
1 − 2m±

a + ȧ2

1 − 2m±
a

, ȧ, 0

⎞
⎠ , (17)

where the (±) correspond to the exterior and interior space-
times, with m± defined as interior and exterior mass, respec-
tively.

Also the normal unit vector (n±
μ ) to the boundary can be

defined as (with nμnμ = 1 and Uμnμ = 0)

n±
μ =

⎛
⎝−ȧ,

√
1 − 2m±

a + ȧ2

1 − 2m±
a

, 0

⎞
⎠ . (18)

At the junction surface the components of the extrinsic cur-
vature tensor read

K±
i j = −nν

(
∂2xν

∂ξ i∂ξ j
+ �ν±

αβ

∂xα

∂ξ i

∂xβ

∂ξ j

)
, (19)

where ξ i = (τ, θ ) represent the coordinates on the shell. Here,
in general Ki j is discontinuous at the junction surface, the
discontinuity in the second fundamental forms is defined as

Ki j = K+
i j − K−

i j . (20)

Then using the Lanczos equation the Einstein equations lead
to the following form:

S i
j = − 1

8π

(
Ki

j − δi jKk
k

)
, (21)

where S i
j is the surface stress-energy tensor on , with the

discontinuity of the extrinsic curvature defined by Ki
j .

Now, let us calculate the non-trivial components of the
extrinsic curvature for the interior spacetime (1) and the exte-
rior BTZ solution (15), given by

K τ+
τ = −
a + ä√−M − 
a2 + ȧ2

, (22)

K τ−
τ =

m
a2 − m′

a + ä√
1 − 2m(a)

a + ȧ2
, (23)

and

K θ+
θ = 1

a

√
−M − 
a2 + ȧ2, (24)

K θ−
θ = 1

a

√
1 − 2m(a)

a
+ ȧ2, (25)
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where the prime denotes a derivative with respect to r and a
dot stands for d/dτ . Therefore, the stress-energy tensor (21)
in the most general form of the surface energy density σ and
the surface pressure P is S i

j = diag (−σ,P).
After some algebraic manipulation and using the Lanc-

zos equation, we obtain the energy density and the surface
pressures given by

σ = − 1

8πa

(√
−M − 
a2 + ȧ2 −

√
1 − 2m(a)

a
+ ȧ2

)
,

(26)

P = 1

8πa

⎡
⎣−M − 2
a2 + ȧ2 + ä√−M − 
a2 + ȧ2

−1 − m
a − m′ + ȧ2 + ä√
1 − 2m(a)

a + ȧ2

⎤
⎦ . (27)

Note that by definition the surface tension σ has the oppo-
site sign to the surface pressure P . Now, we shall also use
the conservation identity in the form S i

j |i = [Tμνe
μ
j n

ν]+−,

where [X ]+− represents the discontinuity across the surface
interface. The method is developed in Refs. [44,45]. To study
the stability of the solutions under perturbations we encroach
on the momentum flux term Fμ = TμνU ν in the right hand
side corresponding to the net discontinuity. With the defini-
tions of the conservation identity one can convert this into
conserved energy and momentum of the surface stresses at
the junction interface.

It is useful to introduce the conservation equation in a form
that relates the surface energy and surface pressure with the
work done by the pressure and the energy flux on the shell
given by the equation S i

τ |i = − [
σ̇ + ȧ

a (σ + P)
]
. Then the

conservation identity provides the following relationship:

σ ′ = −1

a
(σ + P) , (28)

where σ ′ = σ̇
ȧ . Now taking into account Eqs. (26) and (27),

Eq. (28) has the form

σ ′= 1

8πa2

⎡
⎣ −M + ȧ2 − ä√−M − 
a2+ȧ2

−1 − 3m
a + m′ + ȧ2 − ä√
1 − 2m

a + ȧ2

⎤
⎦ ,

(29)

and at the static solution a0 it reduces to

σ ′(a0) = 1

8πa2
0

⎡
⎣ −M√

−M − 
a2
0

− 1 − 3m
a0

+ m′(a0)√
1 − 2m

a0

⎤
⎦ ,

(30)

which plays a crucial role in determining the stability regions
as we consider below.

4 Stability analysis

In this section, we investigate the stability of the gravastar
solution in a perturbative treatment of the shell dynamics,
more precisely: by linearized stability of the solutions. For
that we rearrange Eq. (26) to obtain the thin-shell equation
of motion,

ȧ2 + V (a) = 0, (31)

where the potential V (a) is given by

V (a) = G1(a) + G2(a)

2
−

[G1(a) − G2(a)

16πaσ(a)

]2

−[4πaσ(a)]2 ,

(32)

where we have used the notation G1(a) =
√

1 − 2m(a)
a + ȧ2

and G2(a) = √−M − 
a2 + ȧ2, respectively.
Now using the surface mass of the thin shell,ms = 2πaσ ,

allows one to write the potential in the form

V (a) = S −
( T

4ms

)2

− (2ms)
2, (33)

with

S = G1(a) + G2(a)

2
and T = G1(a) − G2(a)

2
. (34)

For the stability analysis of the static solutions at a0 under
the radial perturbations, we consider the Taylor expansion
of the potential function V (a) around a0 up to second order,
given by

V (a) = V (a0) + V ′(a0)(a − a0) + 1

2
V ′′(a0)(a − a0)

2

+ O
[
(a − a0)

3
]
, (35)

where the prime denotes the derivative with respect to a.
The existence and stability of the static solutions depend
upon the inequalities that V (a0) has local minimum at a0

and V ′′(a0) > 0. The first derivative of the potential is given
by

V ′(a) = S ′ − 8msm
′
s − T

8ms

( T
ms

)′
, (36)

using the conditions V ′(a0) = 0, we can write the equilib-
rium relationship as

X ≡ m′
s = 1

8ms

[
S ′ − T

8ms

( T
ms

)′]
. (37)
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Finally, the second derivative of the potential reads

V ′′(a) = S ′′ − 8msm
′′
s − 8m′2

s

−1

8

[( T
ms

) ( T
ms

)′′
+

( T
ms

)′2]
. (38)

To evaluate a static equilibrium configuration as regards
the stability, we rewrite the conservation of the surface stress-
energy tensor as aσ ′ = − (σ + P), and taking into account
the new parameter η = P ′

σ ′ , the surface mass of the thin shell
is given by

m′′
s = 2π

a
(σ + P) η. (39)

Here the parameter η, which is interpreted as the subluminal
speed of sound, has been used to present the stability regions
without using the surface equation of state.

Now, evaluated for a static equilibrium configuration for
the stability and taking into account Eq. (38), with V ′′(a0) >

0, we have

η0
dσ 2

da

∣∣∣
a=a0

> �, (40)

by using Eq. (39), where η0 = η(a0) and �, for notational
simplicity, we define a simply behaving function of the form

� ≡ 1

2π2a0

(
X2 − Y

)
, (41)

where

Y = S ′′

8
− 1

64

[( T
ms

) ( T
ms

)′′
+

( T
ms

)′2]
. (42)

In order to analyze the stable equilibrium regions of the
solution we adopt the following inequalities:

η0 > 	, if
dσ 2

da

∣∣∣
a=a0

> 0, (43)

η0 < 	, if
dσ 2

da

∣∣∣
a=a0

< 0, (44)

with the definition

	 ≡ �

(
dσ 2

da

∣∣∣
a=a0

)−1

. (45)

5 Region of stability

We shall in this section consider the static solution for the
stability analysis and deduce the stability region by consid-
ering the inequalities Eqs. (43) and ( 44). For this purpose we
shall impose a positive surface energy density σ > 0, which
indicates m(a) < M . For the case of m(a) < M and using

the condition χ < 0.214, one can prove that dσ 2/da
∣∣∣
a0

< 0.

Therefore the stability region is constrained by the inequality

Fig. 2 The dimensionless parameter L = dσ 2/da|a0 corresponding to
the value of χ = 0.16 with 


√
α = −0.02. The figure is shown for the

specific case when m(a) < M/2

Fig. 3 The stability region for χ = 0.16 and 

√

α = −0.02. The sta-
bility region is depicted below the surfaces, which is sufficient close to
the event horizon
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(44). To justify our assumption we use a graphical represen-
tation due to the complexity of the expression 	, which is
plotted in Fig. 2 for the specific case of m(a) = M/2 and when
χ = 0.16 with 


√
θ = −0.02. From Fig. 2 it is clear that the

solution does not correspond to any horizon.
In order to study the stability region we use the graphi-

cal representation (Fig. 3) for the case when χ = 0.16. We
have examined the stability of the model based on the speed
of sound which should lie within the limit (0, 1]. Accord-
ing to Fig. 3, the above stability region is sufficiently close
to the event horizon, which decreases for increasing a, and
increases again as a increases.

6 Conclusions

In this paper, we have studied the stability of the gravastar
solution in a (2+1)-dimensional anti-de Sitter space given in
a context of noncommutative geometry. At first we derive
a BTZ solution assuming the source of energy density to
be compared with point-like structures in favor of smeared
objects, where the particle mass is diffused throughout a
region of linear size

√
α and is described by a Gaussian func-

tion of finite width rather than a Dirac delta function. In Fig.
1, it was shown that depending on the values of χ the metric
displays a different causal structure: we have the existence
of two horizons, one horizon or no horizons.

To search for a gravastar solution we matched the inte-
rior geometry for a specific mass function, with an exterior
BTZ solution at a junction interface situated outside the event
horizon. However, to obtain a realistic picture, we explored
the linearized stability analysis of the surface layer, which is
sufficient close to the event horizon. Considering the static
solution to find the stability region we use the graphical repre-
sentation (Fig. 3) based on a speed of sound which lies within
the limit (0, 1]. At this point we would like to mention that
a large stability region exists and is sufficiently close to the
event horizon. Therefore, considering the model one could
state that it is difficult to distinguish the exterior geometry of
the gravastar from a black hole.
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