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Introduction

The collection and chemical analysis of sedimentary 
porewater is central to many marine studies. Porewater alka-
linity, dissolved inorganic carbon (DIC), sulfate, nitrate, and 
other dissolved ions are used to identify and determine rates 
of geochemical reactions and microbial respiration pathways, 
such as sulfate reduction and denitrification (Froelich et al., 
1979; Berner, 1980; Gieskes et al., 1986; D’Hondt et al., 2004; 
Schulz, 2006; Martin and Sayles, 2007). Ammonium is criti-
cal for understanding microbial respiration and the nitrogen 
cycle (Blackburn, 1988). Chloride is used to reconstruct 
ocean salinity variations, constrain flow rates, and estimate 
gas hydrate concentrations (Paull et al., 1996; Adkins et al., 
2002; Spivack et al., 2002). Each of these studies requires the 
recovery of porewater that is not compromised by sampling 
artifacts.

A number of methods are used to extract fluids from sedi-
ments. Here we report our experimental comparison of two 
methods used by the Integrated Ocean Drilling Program 
(IODP): extraction with Rhizon samplers and sediment 
squeezing (Seeberg-Elverfeldt et al., 2005; Manheim and 
Sayles, 1974). 

Rhizon samplers are inserted directly into an intact 
sediment core; they collect porewater by vacuum filtration 
through a thin porous tube attached to a syringe 
(Seeberg-Elverfeldt et al., 2005; Dickens et al., 2007). 
Rhizons allow for high-resolution sampling because they 
may be spaced as closely as 2–3 cm apart. They also only 
minimally mechanically disturb the sediment and are typi-
cally time efficient. Porewater and soil moisture studies 
report that Rhizon sampling produces accurate results for 
dissolved ammonium, sulfate, chloride, and iron (Gribsholt 
and Kristensen, 2002; Song et al., 2003; Seeberg-Elverfeldt 
et al., 2005; Backman et al., 2006; Dickens et al., 2007).  
A disadvantage of Rhizon sampling is that it is often restric-
ted to the upper portion of the sediment column (tens of 
meters, depending on lithology), where sediment is not too 
compacted. Also, the partial vacuum may lead to significant 
sampling artifacts for certain chemical species. 

Whole round squeezing mechanically pressurizes a sedi-
ment sample, forcing the porewater through a sampling port. 
Squeezing has been shown to effectively collect porewater to 
depths of ~1600 m below seafloor (Saffer et al., 2010). Whole 
round squeezing also minimizes the contact of porewater 
with air. The disadvantages of squeezing include 
pressure-related additions through the destruction of parti-
culate detritus or microbial cells (Bollinger et al., 1992), oxy-

gen contamination (Robbins and Gustinis, 
1976), and temperature artifacts (Bischoff 
et al., 1970; Fanning and Pilson, 1971). 
Many of these have been studied, however, 
and were deemed minimal (Gieskes, 1974). 
Dickens et al. (2007) compared Rhizon and 
squeezing methods for a suite of dissolved 
chemicals and concluded that the chemical 
concentrations did not vary significantly 
between methods. 

We evaluated the use of Rhizon sampling 
and whole round squeezing for analyzing 
alkalinity, DIC, ammonium, sulfate, chlo-
ride, and nitrate in porewater from equato-
rial and South Pacific sites. In these experi-
ments we directly compared the dissolved 
species collected by both methods in the 
same core and/or location and used these 
data to interpret potential sampling artif-
acts.

Figure 1. Alkalinity profiles at [A] SPG-9 and [B] EQP-9, and [C] DIC profile from EQP-9. 
Data from squeezing (open circles) and Rhizons (black triangles). Note differences in scales 
between sites. 0.5% error bars on alkalinity profiles are smaller than symbols. 1% error bars 
on DIC.
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In contrast to these findings, measured concentrations of 
ammonium, sulfate, and chloride are all within the error of 
the analytical methods, for both squeezing and Rhizon 
extraction at EQP-1, and EQP-6 and -6A (Fig. 3). This is con-
sistent with results from Dickens et al. (2007) and Backman 
et al. (2006). 

While neither the squeezing nor the Rhizon method for 
porewater extraction showed measurable sampling artifacts 
for ammonium, sulfate, and chloride, during the equatorial 
Pacific expedition we found repeated evidence that the 
squeezing method introduced nitrate contamination on the 
scale of tens of micromoles. We suspect that the Whatman  
#1 paper filters used inside the squeezer contained trace 
amounts of nitrate that were not removed even after soaking 
the filters in 18 MOhm water for ~24 hours and allowing 
them to dry. We filtered 18 MOhm water through the 
squeezer and found that a nitrate blank was present. 
Pressure-related destruction of cells may also have 
contributed to nitrate contamination during squeezing. 
Risgaard-Petersen et al. (2006) showed that there are consi-
derable amounts of nitrate stored in foraminifera. These con-
centrations (~60 nmol cm-3 sediment) may not fully explain 
the contamination but may contribute to the erroneous 
nitrate values. 

Discussion

Vacuum filtration is commonly used for fluid degassing. 
During Rhizon sampling into a low pressure headspace, sub-
atmospheric pressure creates a pressure differential that 
forces the porewater through the filter. The filter creates a 
flow disturbance, causing minute bubbles of entrained gas to 
coalesce or to break the fluid into small droplets to provide a 
large surface-to-volume ratio for enhancing the effect of the 
vacuum degassing the fluid (Chambers et al., 1998). 

Materials and Procedures

We collected porewater from five sites in 
the Pacific Ocean with variable amounts of 
clay and biogenic ooze. At Site SPG-9 in the 
South Pacific Gyre we compared the Rhizon 
and squeezing method for alkalinity from 
sediment retrieved by a multi-core system, 
and we compared the porewater extraction 
methods for alkalinity and DIC from a grav-
ity core at the Pacific Site EQP-9 (Fig. 1). 

DIC, alkalinity, ammonium, sulfate, and 
chloride were measured from gravity cores 
at EQP-1, EQP-6, and EQP-6A (Fig. 2). 
Ammonium concentrations were compared 
for both extraction methods from samples 
at EQP-1. Two separate gravity cores at 
EQP-6 and -6A were retrieved at nearly the 
same location, and they have nearly identi-
cal lithologies. We compared both porewater extraction 
methods for sulfate and chloride at these two sites. 

For SPG and EQP sites, Rhizon CSS-F 5-cm core solution 
samplers with 0.1µm microporous filters were used to collect 
porewater. The squeezing apparatus and method on both 
cruises were identical to those used by the Ocean Drilling 
Program (ODP) and Integrated Ocean Drilling Program 
(IODP) (see Methods in Backman et al., 2006). 

For SPG and EQP samples, we measured alkalinity by 
Gran-titration following Gieskes et al. (1991). DIC was 
measured by acid extraction and infrared measurement of 
purged CO2. Sulfate, chloride, and nitrate were quantified by 
ion chromatography. Dissolved ammonium was determined 
spectrophotometrically based on Solórzano (1969). 

Comparative Assessment of Rhizon and 
Squeezing Protocols

At SPG-9 and EQP-9, alkalinities from porewater collect-
ed by Rhizon sampling are consistently lower than those 
measured from squeezed samples by approximately 0.8 mM 
and 0.06 mM, respectively. At EQP-9, DIC concentrations 
from Rhizons are approximately 0.06 mM on average less 
than squeezed concentrations (Fig. 1). These differences in 
alkalinity and DIC are larger than can be explained by analy-
tical uncertainty.

Alkanity and DIC concentrations collected by Rhizon 
sampling have more scatter at SPG-9 and EQP-9. Rhizon 
alkalinities ranges from 1.64–2.02 mM and 2.37–2.52 mM at 
SPG-9 and EQP-9, respectively, while squeezed alkalinities 
range from 2.53–2.69 mM and 2.42–2.56 mM at these re-
spective sites. Rhizon DIC values ranges from 2.25–2.41 mM 
versus 2.38–2.46 mM for squeezed samples at EQ-9.

Figure 2. EQP-9 alkalinity (filled circles) and DIC (open circles) concentrations from 
Rhizon and squeezing methods. Line is 1:1. 0.5% and 1% error bars on alkalinity and DIC, 
respectively.
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CO2 degassing during Rhizon sample 
extraction leads to alkalinity and DIC con-
centrations that are consistently lower than 
squeezed sample concentrations (Fig. 1). 
CO2 degassing drives an increase in carbo-
nate ion concentration, which increases 
the tendency for calcium car-bonate to pre-
cipitate, thereby decreasing alkalinity. In 
contrast, whole round squeezing applies 
pressure to the sediment sample, pushing 
the porewater out of the sediment into the 
filter-capped syringe, and it should have 
minimal impact on the carbonate system 
during sampling. It is possible, however, 
that pressure-related destruction of cells 
may cause some carbonate contamination 
during squeezing. When squeezing is used 
for sample extraction, care should be taken 
to store whole rounds at in situ tempera-
ture prior to squeezing, as carbonate satu-
ration has retrograde solubility, and cation 
exchange between clay minerals and inter-
stitial water is temperature dependent 
(Bischoff et al., 1970; Masuzawa et al., 
1980). 

The increased scatter in the alkalinity and DIC concentra-
tions collected by Rhizon sampling also indicates compro-
mised data. Based on visual inspection, if these concentra-
tions were taken as true values, the data would lead to 
unrealistic concentration gradients in the sediment with 
improbable fluxes and rapidly changing sources and sinks 
(Fig. 1).

Our alkalinity results are not consistent with Backman et 
al. (2006), who convincingly reported no significant differ-
ence in alkalinity between samples collected by Rhizon and 
whole round squeezing. The differences in our findings are 
possibly due to sediment composition and porewater carbo-
nate concentrations. Dissolved calcium carbonate concen-
trations are higher at most of the Pacific sites than in Arctic 
sediment collected by Backman et al. Porewater degassing 
during Rhizon sampling likely caused relatively greater cal-
cium carbonate precipitation, which led to a greater decrease 
in alkalinity compared to squeezed samples. This is also the 
likely explanation for the greater difference in alkalinity con-
centrations between the Rhizon and squeezed samples at 
SPG-9 compared to EQP-9 (Fig. 1). 

Recommendations

Our study shows that a combined sampling protocol of 
Rhizon sampling for ammonium (this study and Backman et 
al., 2006), nitrate, and metals (e.g., Mn, Backman et al., 
2006) and squeezing for alkalinity, DIC, and pH will lead to a 
complete characterization of the dissolved chemical species 
in multiple environments. Future scientific coring and drill-

ing expeditions that rely on high precision chemical profiles 
in marine sediment would greatly benefit from this combi-
ned sampling protocol.

While Seeberg-Elverfeldt et al. (2005) suggest that pH 
may be a viable measurement from Rhizon samplers, we 
argue that the degassing of CO2 by Rhizons will produce 
higher than realistic pH and should be avoided. In this con-
text, critical differences between soil systems and marine 
sediments appear to compromise comparison between 
soil-based and sediment-based studies. It is important that 
Rhizon samplers are employed to collect porewater that will 
be used to measure nitrate, as squeezing potentially intro-
duces nitrate contamination on the scale of tens of micro-
moles.
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