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Abstract—It is important in communication networks to use
routes that are as short as possible (i.e have low stretch) while
keeping routing tables small. Recent advances in compact routing
show that a stretch of 3 can be achieved while maintaining a sub-
linear (in the size of the network) space at each node [14]. It is also
known that no routing scheme can achieve stretch less than 3 with
sub-linear space for arbitrary networks. In contrast, simulations
on real-life networks have indicated that stretch less than 3 can
indeed be obtained using sub-linear sized routing tables[6]. In
this paper, we further investigate the space-stretch tradeoffs for
compact routing by analyzing a specific class of graphs and by
presenting an efficient algorithm that (approximately) finds the
optimum space-stretch tradeoff for any given network.

We first study a popular model of random graphs, known
as Bernoulli random graphs or Erdős-Renyi graphs, and prove
that stretch less than 3 can be obtained in conjunction with sub-
linear routing tables. In particular, stretch 2 can be obtained
using routing tables that grow roughly as n3/4 where n is the
number of nodes in the network.

Compact routing schemes often involve the selection of land-
marks. We present a simple greedy scheme for landmark selection
that takes a desired stretch s and a budget L on the number of
landmarks as input, and produces a set of at most O(L log n)
landmarks that achieve stretch s. Our scheme produces routing
tables that use no more than O(log n) more space than the
optimum scheme for achieving stretch s with L landmarks. This
may be a valuable tool for obtaining near-optimum stretch-space
tradeoffs for specific graphs. We simulate this greedy scheme
(and other heuristics) on multiple classes of random graphs as
well as on Internet like graphs.

I. INTRODUCTION

Routing messages is a central functionality of a network.
For the efficient use of network resources (link capacities, etc.)
we want to build schemes which route along paths that are as
short as possible. This is measured by the stretch factor, which
is the maximum ratio between the length of the path traversed
by a message and the length of the shortest path between its
source and its destination. On the other hand, as networks
grow in size it becomes important to reduce the amount of
memory that needs to be maintained at every node for routing
purposes.

There is an obvious trade-off between the storage re-
quirement and the stretch factor. On the one hand you can
have shortest path routing (i.e. with a stretch factor of 1)
while maintaining O(n log(n)) tables at each node (one entry
for every other node in the network for a total storage of
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O(n2 log(n)). In that scenario upon receiving a message,
a node can just look up the entry corresponding to the
destination and forward along the shortest path. At the other
extreme, you can maintain only an O(log(n)) identifier at each
node, and send messages by “flooding” the entire network, in
a depth-first search manner for example, with a worst-case
stretch factor equal to n for general graphs. Neither of these
solutions scales well.

For special types of graphs (e.g. trees [8], [11], outerplanar
and planar networks [12], [13], growth-bounded networks [12]
[10]) there are routing schemes which achieve optimal or near-
optimal stretch with sub-linear memory requirements. Except
in the case of special graphs mentioned above, routing schemes
with o(n) memory requirement and stretch values less than
3 have been particularly hard to achieve in general graphs.
In fact, lower-bound results indicate that universal routing
schemes cannot achieve stretch less than 3 with o(n) memory
at each node [5].

A. Our Results

In this paper, we study how a landmark-based routing
approach can lead to achieving stretch values less than 3 with
high probability while maintaining o(n) memory requirements
for Internet-like graphs and other large distributed networks.
We also study the complementary problem: given a maximum
stretch value s, find out the minimum routing table necessary
to achieve this stretch value.

In Section II, we present the details of the routing scheme
we consider. It is similar to the Thorup and Zwick [8] stretch-3
universal (i.e. for all graphs) routing scheme. The main idea is
to select a set of landmarks that act as a post-office/forwarding
center for nearby nodes.

In Section III, we show that with high probability such a
routing scheme can achieve stretch less than 3 with o(n) space
requirement in Bernoulli random graphs. Our method relies on
neighborhood results extended from the work of Chung and
Lu [9] for Bernoulli random graphs. We show that stretch
s = 2 can be achieved with Õ(n3/4) memory at each node
in Bernoulli random graphs (as opposed to Ω(n) memory for
general graphs. In general, stretch s can be achieved while
using Õ(n

2
s+1+ε) memory at each node. The proof of this

generalized result is omitted due to space constraints. We
hope our results for Bernoulli random graphs can be extended
to power-law graphs via a similar neighborhood expansion
analysis.
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In Section IV, we present and analyze a simple com-
pact routing scheme that achieves an approximately optimum
stretch-space tradeoff. The core of our scheme is a simple
(and efficient) greedy algorithm for landmark selection. Our
scheme takes a desired stretch s and a budget L on the
number of landmarks as input, and produces a set of at
most O(L log n) landmarks that achieve stretch s. Our scheme
produces routing tables that use no more total space than
the optimum landmark-based scheme for achieving stretch s
with L landmarks, ignoring the space used to route to the
landmarks. This may be a valuable tool for obtaining near-
optimum stretch-space tradeoffs for specific graphs.

In Section V, we perform simulations of our routing
schemes on Bernoulli random graphs, on power law graphs,
and on the Internet AS graph. We observe that in practice
stretch less than 3 can be achieved with o(n) memory require-
ment at each node. We also explore a highest-degree landmark
selection heuristic as an alternative to the random landmark
selection explored in Section III.

B. Related Work

Much of the work in compact routing has been incremental,
and some of the initial algorithms and ideas proved to be so
flexible as to allow subsequent layers of requirements to be
added to the existing framework. One such example is the
first o(n) algorithm of stretch 3, proposed by Cowen [4],
which required Õ(n2/3) maximum space at every node. This
algorithm is based on a very natural idea: to designate a set
of “landmarks” which cover all other nodes in the network.
The non-landmark nodes are then re-labeled to include the
name of the closest landmark. Each node needs to remember
routing information regarding its immediate neighbors and the
landmarks. Expanding on this idea, Thorup and Zwick [7],
[8] created a scheme that achieves Õ(

√
n) memory for stretch

3, matching the lower bound for general graphs (up to log-
factors). Furthermore they provide a generalized scheme that
achieves 2k − 1 stretch while using Õ(n1/k) bits of memory
at each node, for any integer k ≥ 2. They do not explore
stretches less than 3, since lower bounds indicate it cannot be
achieved in universal compact routing schemes.

To the best of our knowledge there are no lower-bounds
for random graphs and power-law graphs known other than
those of universal routing schemes for which the following is
known: in order to use o(n) memory at each node (or o(n2)
total memory), we need to route with a stretch factor of at least
3, as shown by Gavoille and Gengler [5]. More generally a
girth conjecture of Erdos and others, implies that Ω(n1+1/k)
bits of total storage are needed to give distances with stretch
strictly less than 2k+1, for any integer k ≥ 1. This conjecture
is proved for k = 1, 2, 3, 5 as documented in [15]. We should
note that these lower bounds are proved under strict naming
constraints (names are usually restricted to log n size for a
network with n nodes).

Previous empirical studies document that simple routing
scheme have excellent performance on Internet-like graphs [6].
Under certain assumptions regarding the distance distribution

in these graphs, Krioukov et. al [6] show an average stretch
of 1.1 and table size of 50 for the AS-graph which contains
about 1000 nodes for the Thorup and Zwick (TZ) scheme.
The authors note that the current degree distribution observed
for the AS-graph, as well as the standard deviation of this
distribution lead to close to optimum results for average
stretch, and make them question the “existence of a certain
link between the Internet topology and the analytical structure
of the average TZ stretch function.” [6] In contrast to this work
our paper focuses on the study of the maximum, rather than
the average stretch value. We also study methods that allow
us to find out the minimum routing table necessary to achieve
a given stretch value s.

We will assume, as in [4], [8], [7], [16] that the designer
of the scheme is allowed to assign a poly-logarithmic name
to each node (labeled model). Name-independent schemes [2],
[3], [10], [1], are inherently harder that labeled schemes, but
can many times be derived from the corresponding labeled
scheme by using a low-stretch lookup service before routing
on the low-stretch path. Our work fits well with the current
research agenda of the IRTF/RRG group, which deals with
similar scalability in routing issues. In fact, scalability is their
top goal, while stretch is also an important goals. Our paper
studies the tradeoff between these two goals.

II. MODEL AND DEFINITIONS

In this section we formalize our network and routing model,
and introduce some of the basic notation that will be used in
later sections.

We view a communication network as a symmetric,
weighted, finite graph G = (V,E, δ), |V | = n, the nodes
representing computers/processors, the edges - bidirectional
communication links, and δ - the edge weight function. Each
node v is assigned a unique identifier, and can have arbitrary
degree. The weights on the edges induce a distance between
any two nodes u, v, given by the sum of the edge weights on
the shortest path connecting them, and which we will denote
by dG(u, v) or d(u, v). Note that Bernoulli random graphs
are un-weighted, and for these, the distance becomes the hop
distance between two nodes.

A routing scheme RS is a distributed algorithm for mes-
sage delivery between any two nodes in the network. A
name dependent routing scheme consists of a distributed data
structure, a delivery protocol, and a routing label for every
node in the graph. The message is delivered via a sequence
of transmission determined uniquely by the distributed data
structure (with no centralized control and no randomization).

The length of the path traversed by a message from u to
v according to the routing scheme R is denoted by dR(u, v).
We can now formally define the stretch factor of the scheme
R as maxu,v

dR(u,v)
d(u,v) .

A. Landmark-Based Routing Scheme

The routing scheme we study in this paper is based on
maintaining information about a set of landmarks as well as
the neighboring nodes. There are four aspects we need to
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make explicit: the landmark selection procedure, the storage
requirement, the labeling, and the actual routing.

Since the scheme is supposed to bound the necessary
memory requirements at all nodes, for any possible graph,
a fundamental realization is that neighborhoods need to be
defined in terms of volume as well as radius. Thus, we define
and denote by Bt(v) the set of the t closest to v, breaking
ties by increasing node identities. We use Ni(v) to denote the
set of nodes at distance at most i from v (in number of hops),
and Γi(v) to denote those nodes at distance exactly equal to
i from v.

As in the Cowen [4] scheme, we opt for picking the
landmark set LS at random, in a single stage. To ensure that
with high probability any node v /∈ LS has a landmark in its
Bv(t), we recall the following known result:

Lemma II.1 [Awerbuch et al. [3]] Let L be a set of landmark
produced by marking a node as landmark with probability
cn/t log n (where c ≥ 2 is a fixed constant). Then with
probability at least p = 1 − 1

nc−1 , any node v /∈ LS has
a landmark in its Bt(v) and |L| ≤ 2cn ln n

t .

We denote by lv the landmark assigned to v, and by rv the
distance (number of hops for the Bernoulli analysis) from v to
its landmark. Each non-landmark node has label (v, lv, plv ),
as in the Cowen scheme. To route from a node u to another
node v, u first checks if v is in its neighborhood/routing table.
If so, u has the next hop info for v and uses it, otherwise, u
has the next hop info for lv and uses that.

The storage requirement has three components. First, every
node needs to maintain the next hop information for the
landmarks. The second routing component, which we will
denote by RRT1 serves to route from a landmark lv to
the node v: any node u that is in the path from lv to v
needs to remember the next hop info for v. This component
is necessary because the volume based neighborhoods are
non-symmetrical. In previous schemes [4], [8] remembering
the neighborhood ensures RRT1 is covered. We make the
assumption that if a node w is on the shortest path1 from
lv to v, then w needs to remember v. This is what we call a
landmark-based routing scheme.

Finally, in order to achieve a given stretch s, every node u
for which sd(u, v) < d(u, lv) + d(lv, v) needs to remember
the next-hop info for v. We denote this storage requirement
by RRT2, and this will be the focus of our space requirement
analysis. It is not necessary that all nodes in the path from u
to v remember the next hop info. If u′ satisfies sd(u′, v) >
d(u′, lv) + d(lv, v), then d(u,u′)+d(u′,lv)+d(lv,v)

d(u,u′)+d(u′v) < s, so the
resulting path satisfies the stretch requirement.

III. STRETCHES LESS THAN 3 IN BERNOULLI RANDOM

GRAPHS

In this section, we will show that stretches between 1 and
3, can be achieved with high probability in a large family of

1when multiple shortest paths exist, we break ties consistently, for example
by smallest node id from v to lv

random graphs. The graphs we are considering here are the
Bernoulli random graphs denoted by G(n, p). The parameter
n represents the number of nodes of a graph in this class. The
parameter p is the probability that an edge exists between any
two nodes in the graph (independent coin toss for each edge).

We will study the radius of the volume based neighborhoods
Rt(v) = max{d(v, u)|u ∈ Bt(v)}, as well as distance
based neighborhoods Ni(v) = {u|d(u, v) ≤ i} and Γi(v) =
{u|d(u, v) = i}. We will show the following:

Theorem III.1 (Achieving Stretch 2 in Random Graphs)
Assume 2c0 · n3/4 log n landmarks are selected, and assume
the labels and next-hop info for all n3/4 closest neighbors
are remembered at each node. Also suppose p > 2 log n

n and
np = o(n1/9). Then with probability at least 1 − o(n−1), we
have a stretch of at most 2.

The assumption np > 2 log n ensures the average degree
is above the connectivity threshold, so that the graph is
connected, while the assumption np = o(n1/9) excludes very
high density graphs.

To prove our result we will use a stronger version of the
results regarding neighborhood size from Chung and Lu [9]
which we state below. We provide the proof of the next two
lemmas in the appendix.

Lemma III.2 (Upper-Bound Lemma) Suppose p > c log n
n

for a constant c ≤ 2. Then with probability at least 1−o(n−2),
we have

|Γi(x)| ≤ 11
c (np)i ∀1 ≤ i ≤ n (1)

|Ni(x)| ≤ 13
c (np)i ∀1 ≤ i ≤ n (2)

Lemma III.3 (Lower-Bound Lemma) Suppose p > c log n
n

for a constant 1 ≤ c ≤ 2 and suppose that np ≤ n1/6. Then,
for each vertex x in the giant component (in case G(n, p) is
not connected), and for each i satisfying i0 ≤ i ≤ 2

3
n

log(np) ,
with probability at least 1 − o(n−2), we have:

|Γi(x)| ≥ 5
c (np)i−i0 (3)

where i0 satisfies i0 ≤ ' 2
c ( + 1.

Proof of Theorem III.1:
To show the desired stretch result, it is enough to bound the

ratio r
R by 1

2 , where r is an upper bound of the distance from
a node x to its landmark lx (as defined in Section II-A) and
R is a lower-bound on the radius of Bn3/4(x) for any node x,
i.e. R = minx Rn3/4(x). To obtain a bound on the ratio, we
first bound r and R individually.

First, by choosing c0 = 3 in Lemma II.1, we get that with
probability at least 1 − o(n−2) every node x has a landmark
within its closest n1/4 neighbors. We will now use this to
bound rx, the largest distance from x to its landmark, using
the fact that the sum of all rings at distance 1, 2, . . . , rx from
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a node x is at most n1/4 with high probability. This result is
true for any node x, thus using the union bound we get that
with probability at least 1 − o(n−1) the following is true for
r (the upper bound on all distances):

n1/4 ≥ |Γ1(x)| + |Γ2(x)| + . . . + |Γr(x)|

Now, since the result in Lemma III.3 holds for a given node
x with probability at least 1 − o(n−2), then with probability
o(n−1) it will hold for all x, so we can lower bound |Γi(x)|
as long as i0 ≤ i ≤ 2/3 n

log(np) . If 1 ≤ i < i0 we can use
the trivial lower bound of 1. [Note: we check in the end that
indeed r ≤ 2/3 n

log(np) to be able to ensure that the use of the
lemma is legal.] Now, using Lemma III.3 we get:

Σr
i=1|Γi(x)| ≥ i0 +

5
c
((np)0 + (np)1 + . . . + (np)r−i0)

This result will give us a way to bound r. We have:

n1/4 ≥ i0 +
5
c

(
(np)r+1−i0 − 1

(np) − 1

)

Taking the logarithm of both sides, we get:

log(n1/4 − i0) ≥ log 5 − log c

+ log((np)r+1−i0 − 1) − log((np) − 1)

Since log is an increasing function and i0 ≥ 0 the above
equation implies that:

1
4

log n ≥ log 5 − log c + log((np)r+1−i0 − 1) − log(np)

Since log(x− 1) ≥ log x− c1, for any constant c1 > 1 and
x large enough, we get:

1
4

log n− log 5 + log c + log(np) + c1 > (r + 1− i0) log(np)

And thus, r < i0 +
1
4 log n−log 5+log c+c1

log(np) (note the necessary
bound on r mentioned in the beginning of our proof does hold
for large enough values of n).

Similarly, we can bound R using Lemma III.2. First, recall
that we only consider neighborhoods up to size n3/4, thus we
need to consider at most an R s.t.:

|Γ1(x)| + |Γ2(x)| + . . . + |ΓR(x)| ≥ n3/4

or in other words |NR(x)| ≥ n3/4. From Lemma III.2 with
probability at least 1 − o(n−2): |NR(x)| ≤ 10

c (np)R for a
given x, and using union bound, this result holds in fact for
all x with probability 1− o(n−1). Thus we get the following
bound on R:

R log(np) ≥ 3
4

log n − log 10 + log c

We want to show that r
R ≤ 1

2 ⇔ 2r ≤ R. It is enough then
to argue (based on the bounds on r and R) that:

2(i0 log(np) +
1
4

log n − log 5 + log c + c1)

≤ 3
4

log n − log 10 + log c ⇔

2i0 log(np) + log c + 2c1 + log 10 ≤ 1
4

log n + 2 log 5 ⇔

2i0 log(np) + log c + 2c1 + log 10
log n

≤ 1
4

+
2 log 5
log n

The only contributions on the LHS that does not tend to zero
as n → ∞ is the first term. Using the hypothesis assumption
that np = o(n1/9) and c = 2 we can bound the 2i0 log(np)

log n

term by 2
9 . Since this is clearly less than 1

4 , and given that
the other terms are negligible, we conclude that the above
inequality holds.

It remains to show why this bound on r
R induces a stretch

of at most 2. Let x be the destination node, and y the source
node. If the routing from x to y is done via a non-direct
path then D = dG(x, y) > R (otherwise this destination
node would be in the neighborhood of x). The routing cost
dR(x, y) of the non-direct path is bounded by r + (r + D),
where r represents the bound from the destination node y to
ly , and r + D represents a bound from x to the landmark
ly (using triangle inequality). Thus the stretch cannot exceed
r+r+D

D ≤ R+D
D ≤ 2.

Note that the argument regarding the inter-dependence of
the stretch s and the ratio r

R exposed in the proof of Theo-
rem III.1 can be expanded. In general, in order to guarantee
a stretch value s we need to have r

R ≤ s−1
2 . This ratio gets

arbitrarily close to 0 as s approaches the optimum stretch 1.
Since in Lemma III.3 i0 is a constant, r

R is bounded away
from 0 as long as log(np)

log n is bounded away from 0 and thus we
cannot guarantee stretch values arbitrarily close to 1 without
imposing strict restrictions on how high the average degree np
can be. In general we can show the following tradeoff:

Theorem III.4 Suppose np ≥ 2 log n. If np = o(nc̃) then we
can achieve stretches s > 1 + 2c̃ while storing Õ(nx) bits at
each node, where x ≥ 2

s+1 + ε(c̃), where ε(c̃) → 0 as c̃ → 0

The proof is similar with the proof in the previous section as
is omitted due to space constraints. Notice the implications for
the memory requirement, which increases steeply as s → 1,
going above n for s ≈ 1.2 for n = 100000. For s ∈ [1.5, 3],
however, the memory requirement is quite scalable. Note also
that the upper bound on the average degree must decrease as
s → 1.

IV. GREEDY ALGORITHM FOR LANDMARK SELECTION

In this section we present a simple greedy scheme for
landmark selection that takes a desired stretch s and a budget
L on the number of landmarks as input, and produces a
set of at most O(L log n) landmarks that achieve stretch s.
Our scheme produces routing tables that use no more total
space than the optimum landmark-based scheme (as defined in
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Section II-A) for achieving stretch s with L landmarks. This
may be a valuable tool for obtaining near-optimum stretch-
space tradeoffs for specific graphs. Note that the analysis does
not depend on any assumptions regarding the graph, so the
algorithm can be applied to any general network topology.

Let us denote by Mv,l the number of nodes w that would
need to keep v in either their RRT1 (i.e. w is on the shortest
path1 from v to lv) or RRT2 (i.e. for which the stretch is
above s) given that lv = l (i.e. l is v’s designated landmark).
Let Ti be the total memory requirement at step i. Let vL be
the best landmark of node v from the set L, i.e. the landmark
that is the argument of minl∈L Mv,l.

We consider the memory requirement for storing landmark
information separately. We will study the remaining total
memory requirement (i.e. for RRT1 and RRT2) of the
following greedy algorithm for choosing landmarks:

Input: Graph G, initial landmark l1, parameter L
Output: Landmark set L containing L log n elements
L ← l1;
T1 =

∑
v $=l1

Mv,l1 ;
for i = 2 to 2L log n do

Ti = Ti−1;
foreach x ∈ V − L do

N = 0;
foreach v ∈ V − L and v .= x do

N = N + min(Mv,x,Mv,vL)
end
if N < Ti then

Ti = N ;
li = x;

end
end
L ← li;

end
Algorithm 1: Greedy Landmark Selection

Note: l1 can also be chosen via the same Greedy method
assuming we start with 0 landmarks and T0 = n2.

Theorem IV.1 The above Greedy algorithm is guaranteed to
produce a landmark set with memory requirement less than
or equal to the total memory requirement of an optimal set
of size L. The Greedy will select 2L log n landmarks (by
construction).

Greedy Performance: In the following proof we will
track the memory requirements of an optimal choice of L
landmarks (the OPT) compared to the memory requirement
of our algorithm (GREEDY). In particular we will compare
the number of ”entries” utilized by these solutions.

Each pair of nodes (w, v) represents a potential memory
”entry”, i.e. w need to remember v in reverse routing table
(either RRT1 or RRT2) unless either v is a landmark or v’s
landmark l is such that d(w, l) + d(l, v) ≤ sd(w, v). If the
entry is not needed, we will say that a landmark covers the
entry.

Lemma IV.2 The number of covered entries only increases
during GREEDY.

Proof: Although the specific entries may get cov-
ered/uncovered, this lemma is true because landmarks, once
added are never deleted (thus entries covered by the first case
remain covered), and a node changes landmarks only if this
improves its number of covered entries (thus entries covered
by the second case are exchanged with a larger set of covered
entries that were not previously covered).

Now let us analyze what we can say about the magnitude of
the decrease during consecutive stages of GREEDY. Let Di =
|Ti−OPT| if Ti > OPT (Di = 0 otherwise). There are at least
Di entries that could be covered by OPT but remain uncovered
by GREEDY after i landmarks are added to GREEDY. Since
OPT covers these entries using L landmarks, there exists one
landmark in OPT that is not currently used by GREEDY and
which could cover at least 1

LDi new elements in GREEDY. By
construction, GREEDY will pick a new landmark that covers
at least this many elements in the next stage, so that |Ti+1 −
OPT| ≤

(
1 − 1

L

)
Di.

This argument holds for any of the L log n stages. Also
initially D1 = |T1 − OPT| ≤ n2, thus at the end of the
algorithm:

D2L log n ≤
(

1 − 1
L

)2L log n

D1 < 1

Since the difference can only be a non-negative integer, the
above shows that after 2L log n landmark are added GREEDY
covers at least as many elements as OPT.

Note that although the above greedy routine ensures the
RRT1 and RRT2 requirements are no more than those of the
landmark-based optimal scheme, we will be using O(log n)
more landmarks.

V. SIMULATIONS AND REAL NETWORK DATA RESULTS

In this section, we present simulation results to verify the
theoretical studies shown in previous sections and extensions
to power-law graphs and real network graphs. We focus on
the scalability of routing table size (RRT2 in particular) as the
total number of nodes increases while keeping the maximum
stretch to less than or equal to 2.

A. Random Graphs

Random graphs are generated based on [17]. With a total of
n nodes, each pair of nodes has a probability of p that these
two nodes are directly connected by an edge. We explored
several schemes of landmark construction based on random
graphs.

1) Scheme 1: Random Landmark Selection: In this
scheme, landmarks are randomly picked among the nodes as
in Section III. The simulation constitutes the following steps.
1. Randomly select n2/3 nodes as landmarks in a random
graph with a total of n nodes;
2. For each node u, choose the landmark that is the closest
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to this node Lu;
3. For each source node u, route to all destination nodes v
by first going to v’s landmark node Lv and then from Lv to
v. If d(u,Lv) + d(Lv, v) > 2d(u, v), i.e., stretch between u
and v is greater than 2, v is placed in u’s routing table;
4. Find the maximum routing table size among all nodes.
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Max. RRT
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Fig. 1. Random Landmark Selection scheme on random graphs: max RRT
scales as n2/3 using random selection of n2/3 landmarks.

100 1000 10000
Number of nodes

10

100

1000

N
um

be
r o

f l
an

dm
ar

ks
 o

r A
ve

. R
R

T

Num. of landmarks
Ave. RRT
y=x

2/3

y~x
0.5

Fig. 2. Greedy Landmark Selection on random graphs: ave RRT scales as
n1/2 using greedy selection of n2/3 landmarks.

Figure 1 shows that when the number of landmarks in-

creases as n2/3, the maximum RRT2 size also increases as
n2/3, consistent with the theoretical studies laid out in Section
III.
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Fig. 3. Histogram of node degree and the degree distribution of landmarks
chosen by Greedy Landmark Selection scheme on a random graph with 4000
nodes total and 252 landmarks.

2) Scheme 2: Greedy Landmark Selection: The Greedy
Landmark Section algorithm iteratively picks each landmark
that minimizes the RRT size. When applied to random graphs,
we found that the RRT size is much reduced compared to
random selection of landmarks, n1/2 rather than n2/3. The
results on Greedy Landmark Selection are summarized in
Figure 2.

The smaller RRT size from Greedy Landmark Selection
demonstrates that Greedy algorithm is more efficient in se-
lecting landmarks. Analysis of the landmarks chosen from
this scheme show that most of the landmarks chosen are high
degree nodes, as seen in Figure 3. This result suggests that an
efficient choice of landmarks is by picking those nodes with
higher degrees than others.

3) Scheme 3: Highest-degree Landmark Selection: The
simulation results based on Greedy Landmark Selection
prompted us to experiment with a heuristic approach – picking
the landmarks based on the degree of the nodes:

1. Rank the degree of all n nodes and pick n2/3 of the
nodes with the highest degrees as landmarks.

Steps 2-4 are the same as those in the Random Landmark
Selection. This scheme is intuitive and easy to implement. Our
simulation results, shown in Figure 4, show that the average
RRT scale as n1/2, almost identical to the results based on
Greedy Landmark Selection.

B. Power-law Graphs

Previous studies have shown that real networks behave
more like power-law graphs [6] (otherwise known as scale-

2in this section RRT refers to RRT2
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Fig. 4. A heuristics method, Highest-degree Landmark Selection, on random
graphs: average RRT scales as n1/2 by choosing n2/3 of highest-degree
nodes as landmarks.

free graphs) rather than random graphs. The degrees of the
nodes follow power-law distributions with a small fraction of
the nodes having a high degree of connections with others. It
is important to analyze the scaling behavior of our technique
on these networks.

The power-law graphs are generated according to [18]
where several seed nodes are all connected to each other. With
the addition of each new node, it is connected to one or a few
of the existing nodes with a probability that is proportional to
the degree of the existing nodes.

Because of the heavy-tailed nature of the power-law graphs,
it is natural to apply the scheme with Highest-degree Land-
mark Selection, which has been shown above to generate near-
optimum landmarks for random graphs. The simulation results
plotted in Figure 5 show that the scaling in power-law graphs
is much more favorable than in random graphs. Even when the
number of landmarks is reduced to n1/2 (compared to n2/3

in random graphs), the maximum RRT size is also limited to
n1/2. Note that stretch is also limited to 2 in these simulations
on power-law graphs.

C. AS Graph from Real Network Data

To verify our results on real network topography, we carried
out simulations on the current AS graph acquired from CAIDA
[19] with a total of 20906 number of nodes. By applying the
Highest-degree Landmark Selection to the AS graph, we found
that results match very well with our simulations on power-law
graphs (see Figure 5).

These simulation results on the AS graph are quite sig-
nificant. The existing routing scheme requires that each node
stores the routing information to all other nodes in the network.
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Fig. 5. Highest-degree Landmark Selection on power-law graphs and AS
graph from real network: max RRT scales as n1/2 using n1/2 of highest-
degree nodes as landmarks.

By switching to compact routing, each node only needs to
store the routing information to a very small fraction of the
nodes: the landmarks and RRTs. In this particular case with
the AS graph, we found that the memory required is less than
2% of what is needed currently. This large gain in memory
is accomplished by relaxing the stretch, which is bound to
2 with our approach. The simulation results on power-law
graphs demonstrate that such scheme is scalable to much larger
network sizes.

VI. CONCLUSIONS

In this paper we explore ways to lower the bound of
the maximum stretch to values below 3, while maintaining
sublinear average and maximum routing table size. We use
the stretch value 2 as an illustrative example throughout the
paper, but the results can be generalized to achieve any stretch
less than 3.

Through theoretical proofs and simulations, we demonstrate
the bounds for stretch and routing table size, using three
landmark selection schemes on three types of graphs: random
graphs, power-law graphs, and AS graph from real network.

Our results show: 1). Stretch less than 3 can be achieved
with high probability in a large family of random graphs while
maintaining sublinear memory size on each node. We pre-
sented the memory vs. stretch and average-degree vs. stretch
tradeoffs specific to this family of graphs in Lemma III.4.
2). Selecting high degree nodes as landmarks is efficient for
reducing memory consumption while keeping stretch bounded
by a stretch value s < 3. 3). Compact routing scheme applying
to AS graph from real network can reduce the maximum
routing table size at each node to 1.5% (0.7% on average) of
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the total number of nodes on the entire network and achieve
maximum stretch bounded by 2.

These results are encouraging for reducing routing table size
and increasing scalability of the network.
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VII. APPENDIX

We will need the following lemma (obtained via application
of Chernoff bounds) which we quote from Chung and Lu [9]:

Lemma VII.1 (Binomial Distribution) B(t, p) denotes the
binomial distribution with probability p in a space of size t.

• Suppose X dominates B(t, p). For a > 0, we have

Pr(X < tp − a) ≤ e−
a2
2tp

• Suppose X is dominated by B(t, p). For a > 0, we have

Pr(X > tp + a) ≤ e
− a2

2tp + a3

(tp)3

A. Proof idea for Lemma III.2

Since we closely follow the approach in [9] for this proof
we only mention the change in a parameter needed to show
the stronger probability bound necessary for proving Theo-
rem III.1.

In the original proof the authors define a parameter λ which
they chose to be equal to

√
5 log n to obtain the probability

of 1 − o(n−1). We pick instead λ′ =
√

7 log n we can get
a probability of 1 − o(n−2), and modify the constants in the
statement of Lemma III.2 appropriately for the results to hold.

B. Proof of Lemma III.3 [Modified from [9]]

For proving Lemma III.3 more changes need to me made
to the original proof in [9], so we present the complete proof
here.

Proof: We first prove the following statement:
Claim: With probability at least 1 − o(n−2) there exists a
i0 ≤ ' 2

c ( + 1 satisfying |Γi0(x)| ≥ d, where d = 20
c .

Let k = ' 2
c (. Since x is in the giant component, |Γk(x)| ≥

1. There exists a path xx1 . . . xk satisfying xj ∈ Γj(x) for
1 ≤ j ≤ k. We write x0 = x. Let f(xj) denote the number
of vertices y, for which xjy forms an edge but y is not one
of those vertices x0, x1, . . . , xk. We compute the probability
that f(xj) ≤ d as follows:

Pr[f(xj) ≤ d] = Σd
i=0C

l
n−k−1p

l(1 − p)n−l

≤ Σd
i=0

(np)l

l!
e−(n−l−k−1)p

≤ (np)de−(n−d−k−1)pΣd
i=0

1
l!

≤ (c log n)de−c(1− d+k+1
n ) log ne

= o(n−c+ε)

Here, f(xj) are independent random variables. The proba-
bility that f(xj) ≤ d for all j ≤ k is at most o((n−c+ε)k+1) =
o(n−2) if ε is small enough. Therefore, with probability at
least 1 − o(n−2), there is an index 1 ≤ i0 ≤ k + 1 satisfying
f(xi0+1) ≥ d. Hence, |Γi0 | ≥ d (we can be shown by
contradiction that the nodes represented by f(xi0+1) cannot
have appeared in layers other than Γi0 , Γi0+1 or Γi0−1).

From Lemma III.2 it follows that |Ni(x)| ≤ n
3
4 with

probability 1 − o(n−2) for all 1 ≤ i ≤ log n
log(np) .

Next, we need to prove the following claim for i = i0 + 1:
Claim: Let us denote by I the inequality |Γi(x)| ≤
1
8 |Γi0(x)|(n − |Ni0(x)|)p. Assuming that pn ≤ n1/6 the
following holds:

Pr[I] = e−|Γi0 (x)|(n−|Ni0 (x)|)p/8

≤ e−dc(1−n−1/4) log n/8

= o(n−dc/9) = o(n−2)

The first inequality holds using Chernoff bounds with β =
1/2, and noting that the probability a node not in Ni0 becomes
attached to a node in Γi0 is at most 1/2|Γi0 |p. Using d =
20
c we obtain a probability at most o(n−2) that |Γi(x)| ≤
1
4 |Γi0(x)|(n − |Ni0(x)|)p [or with d ≥ 10

c that |Γi(x)| ≤
1
8 |Γi0(x)|(n − |Ni0(x)|)p].

Combining our two claims, with probability at least 1 −
o(n−2) we have: |Γi0+1(x) ≥ 1

2 |Γi0(x)|(n − |Ni0(x)|)p ≥
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1
3dnp. The 1

2 becomes 1
3 to compensate for the small differ-

ence that is introduced by the o(n) contribution of Ni0(x)
A similar argument can be made for i = i0 + 2. In [9] the

proof is based on the claim that |Γi(x)| dominates a random
variable with distribution B(t, p) where t = |Γi0+1(x)|(n −
|Ni0+1(x)|), which in general is not true. |Γi(x)| may be
smaller due to some vertices being linked to the previous layer
by more than one edge. Thus B(t, p) will double count some
vertices. If we add a term that generally will be larger than
the double-counting error, we can fix the above statement. Let
Di represent the contribution of extra vertices. By definition
|Γi(x)| + Di dominates a random variable with distribution
B(t, p).

Note that for a vertex to be double-counted two edges
from Γi0+1 need to connect to the same vertex outside of
Ni0+1(x). There are C2

|Γi0+1(x)| possible ways to pick the
conflicting edges, and the probability of a conflict is p2. Thus,
the expected value of the number of double-counted vertices is
≤ C2

|Γi0+1(x)|p
2(n − Ni0+1(x)). Using a Chernoff bound, we

can claim that w.h.p. that the total contribution of the double-
counted vertices Di ≤ 2C2

|Γi0+1(x)|p
2(n − Ni0+1(x)). More

specifically, with probability at least 1 − o(−2) we have:

Di ≤ 2C2
|Γi(x)|p

2(n − Ni(x))

≤
(
|Γi(x)|2

2

)
2p2n

≤ |Γi(x)|p2n

(
11
c

)
(np)i

≤ |Γi(x)| (np)2

n

(
11
c

)
n2/3

=
11
c
|Γi(x)|(np)2n−1/3

(4)

For the fourth inequality above we use the fact that i ≤
2
3 log n/ log(np) and thus (np)i ≤ n2/3.

Therefore, with high probability we have:
Pr (|Γi(x)| + Di < tp − λ

√
tp) < e−

λ2
2 .

More specifically, with probability 1 − o(n−2) − e−
λ2
2

|Γi0+2| ≥ tp − λ
√

tp − Di0+1

≥ |Γi0+1|(n − n3/4)p − λ
√
|Γi0+1|np − Di0+1

≥ |Γi0+1|(np)(1 − n− 1
4 − 11

c
n− 1

3 np − λ√
|Γi0+1|np

)

≥ 1
3
d(np)2(1 − n− 1

4 − 11
c

n− 1
6 − 3λ√

(np)2
)

≥ 1
3
d(np)2(1 − n− 1

4 − n− 1
7 − 3λ√

(np)2
)

In the above we use the upper bound lemma for |Γi0+1(x)|
and we omitted the parameter x since it is understood from
context.

By induction on i ≥ i0 + 2, we can show that with
probability at least 1− o(n−1)− 2ie−

λ2
2 [the 2 factor in from

of the exponential term accounts also for the probability error
introduced by the Di term] the following holds:

|Γi(x)| ≥ d

3
(np)i−i0Πi−i0

j=2

(
1 − n−1/4 − n−1/7 − 3λ√

(np)2

)

The base case i = i0 + 2 is already done. For the inductive
hypothesis, assume the statement holds for |Γi|. We use again
the corrected argument that |Γi+1|+Di dominates B(t, p) for
i0 + 2 ≤ i ≤ 2

3 log n/ log(np). We get, following the same
reasoning as in the i = i0 + 2 case above:

|Γi+1| ≥ tp − λ
√

tp − Di

≥ |Γi|(n − n
3
4 )p − λ

√
|Γi|np − Di

≥ |Γi|(np − n
3
4 p − λ

√
np

√
|Γi(x)|

) − Di

≥ |Γi|np(1 − n− 1
4 − n− 1

7 − λ√
|Γi|np

)

≥ |Γi|np(1 − n− 1
4 − an− 1

3 − 3λ√
(np)i−i0

The last inequality holds by applying the induction hypoth-
esis, bounding |Γi(x)| for large enough n and we omitted x
for brevity.

Once the induction step is completed, we can conclude the
proof by picking an appropriate value λ.

Take λ′ =
√

5 log n combined with Lemma III.2. Since
i ≤ log n, we have:

1−o(n−2)−(i−i0)e−λ2/2 ≥ 1−o(n−2)−in−2.5 = 1−o(n−2)

Note that Πi−i0
j=2

(
1 − n−1/4 − n−1/7 − 3λ√

(np)2

)
≥ 1 −

in−1/4 − in−1/7 − Σi−i+0
j=2

3λ√
(np)j

. Thus, we probability 1 −
o(n−2) we have:

|Γi(x)| ≥ d

3
(np)i−i0(1 − in−1/4 − in−1/7 − Σi−i0

j=2

3λ√
(np)j

)

≥ d

3
(np)i−i0(1 − in−1/4 − in−1/7 − 3λ

np

1
1 − (np)−1/2

)

≥ d

3
(np)i−i0(1 − O(

1√
log n

))

≥ d

4
(np)i−i0 =

5
c
(np)i−i0
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