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Abstract. If G is a group of order 2" and F is a field of characteristic 2, it

is well known that the augmentation ideal of the group algebra F G is nilpotent.

In this paper, we extend this result to alternative loop algebras.

1. Introduction

A loop is a binary system (L, •) with an identity element 1 in which, given

any two of three elements a, b, c in L, the third is uniquely determined by

the equation a • b = c. This paper is concerned with Moufang loops; that is,

loops in which any one of the following three (equivalent) identities is valid.

x(y ' xz)   =   (xy • x)z the left Moufang identity,

(xy ' z)y   =   x(y • zy) the right Moufang identity,

xy • zx      —   (x • yz)x the middle Moufang identity.

Over any commutative and associative ring R with identity (which we also

denote by 1), one can form the loop ring RL in precisely the same manner

that the group ring is constructed, but, in sharp contrast with the associative

law, the Moufang identities do not usually lift to the loop ring. When they do,

the left Moufang identity (with y — 1) implies the left alternative law— x(xz) =

x2z—and the right Moufang identity implies the right alternative law— (xy)y =
xy2—and the loop ring is, by definition, an alternative ring.

Moufang loops whose loop rings are alternative, but not associative, have

been objects of study for the past dozen years. Over coefficient rings of charac-

teristic different from 2 (where they are called RA loops) they have been com-
pletely classified [4]. Since the elements of odd order split from an RA loop

as a direct factor, those RA loops of primary interest are 2-loops. As might

be expected, over fields of characteristic different from 2, loop algebras of RA

2-loops are semi-simple. This is a general result of Brack's for arbitrary loop al-

gebras [1], but it also follows from work of Parmenter and the author [8] where
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3290 E. G. GOODAIRE

the semi-simplicity of an alternative loop ring, with respect to a variety of radi-

cals, was linked to the semi-simplicity of the group ring of a certain associative

subloop of the loop.
In this paper, we investigate the case where the field has characteristic 2 and

extend to alternative loop algebras a well-known result of Jennings [9] for group

algebras by proving that the augmentation ideal of the alternative loop algebra

of a loop of order 2" in characteristic 2 is a nilpotent ideal (of dimension 2" -

1). This, of course, means that virtually all the familiar radicals of alternative

algebras coincide with the augmentation ideal. In characteristic 2, the class of

Moufang loops whose loop rings are alternative is much broader than the class

of RA loops [5] and, while this broader class is not yet completely understood, it

is pleasing that we are able to prove enough about these RA2 loops, as they have

been termed, that we can start to get information about their loop algebras. To

cite one difference between the classes of RA and RA2 loops, and a difference
which experience with group algebras suggests will be a major stumbling block

to proving theorems about RA2 loop algebras, we mention the fact that, whereas

RA loops are (centrally) nilpotent of class 2, RA2 loops need not be nilpotent (of

any class). For example, the smallest Moufang loop—M(Si, 2)—is RA2, but

not nilpotent. It does, however, contain an abelian associative normal subloop

with a quotient which is an abelian group. This proves to be typical of RA2

loops, as we show in Section 3, and is the key to what we want to establish about

RA2 loop algebras in this paper.

2. Background and notation

If a, b, c are elements of an alternative ring, we denote the {ring) commuta-

tor of a and b by [a, b] and the (ring) associator of a , b and c by [a, b, c].

Thus
[a,b] = ab — ba       and       [a, b, c] = (ab)c — a(bc).

Each of these functions is skew-symmetric. The Kleinfeld function is defined

by

(2.1) f(x,y, z,w) = [xy, z,w]-y[x, z,w]-[y, z,w]x.

It too is skew-symmetric. (Our general reference for the theory of alternative

rings is [12].) An alternative ring R has a nucleus

yV{R) = {xeR\[x,a,b] = [a,x,b] = [a,b,x] = 0, for all a, b e R}

= {x e R | [x, a, b] = 0 for all a, b e R}

(by skew-symmetry of the associator) and a centre

J(J?) = {xe/ {R) \ax = xa for all a e R}.

If a, b, c are elements of a loop, we denote the {loop) commutator of a and

b by (a, b) and the (loop) associator of a, b and c by (a, b, c). Thus

ab = (ba)(a,b)      and      ab • c = (a- bc)(a, b, c).

(It is often convenient to use dots instead of, or in addition to, parentheses to

denote the order of multiplication in a nonassociative product, with the conven-

tion that juxtaposition takes precedence over a dot.) A loop L has a nucleus,
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THE RADICAL OF A MODULAR ALTERNATIVE LOOP ALGEBRA 3291

JV (L), and a centre, Z (L), defined in a way completely analogous to the

manner in which they are defined in an alternative ring. The traditional refer-

ence for the theory of loops has been Brack's classic text [2], but there is now

available a more modern book by Pflugfelder [11] which contains the basic facts

about loops and, in particular, about Moufang loops.

Moufang loops and alternative rings are diassociative: the subloop (or sub-

ring) generated by any pair of elements is associative. Even more, if three
elements in a Moufang loop or an alternative ring associate in some order, then

these three elements generate an associative substructure. (Thus, for example,

the statement "three elements associate" is unambiguous.) We use these facts
extensively and often implicitly.

This paper is concerned with RA2 loops which are, by definition, loops whose

loop rings in characteristic 2 are alternative. They include the class of RA loops

but, as we have mentioned, are far more numerous. (Of the 159 Moufang loops

of order less than 64 which are not groups [3], just 10 are RA whereas 63 are

RA2.) The most fundamental properties of RA2 loops are contained in the

following restatement of Theorem 2.9 of [5].

Theorem 2.1. An RA2 loop is a Moufang loop in which, given a triple g, h, k

of elements which do not associate, precisely one of the following occurs:

I.  g, h and k commute pairwise and, if x, y, z are g, h, k in some

order, xy • z = gh • k and x•yz = g•hk;
II. exactly one of g, h, k commutes with the other two and, if this element

is g,

hg • k - gh • k = g • kh - k - gh = k • hg = hk - g

and h • gk = g • hk = gk • h = kg • h = kh • g = h • kg ;

III. exactly one of g, h, k commutes with neither of the other two and, if this
element is g,

gk • h - k • gh - kh • g - hk • g - gh • k = h • gk

and g • kh = kg • h = k - hg = h • kg = g • hk = hg • k ;

IV. no pair of elements of the triple g, h,k commute and, if x, y, z are

g, h, k in some order, xy • z = x • zy — y • xz.

We refer to a triple g, h, k of elements which do not associate as a triple
of type I, II g, III g or IV, according as these elements satisfy I, II, III or IV,
respectively, of the theorem.

If this theorem appears somewhat complicated, it should be noted that we

can often manage with a more easily remembered consequence of it.

Corollary 2.2. If g, h and k are three elements of an RA2 loop which do not

associate, then either

(2.2) gh'k = hg -k   and   g • hk = h • gk

or

(2.3) gh-k = h- gk   and   g • hk = hg • k

according as g and h do or do not commute, respectively.
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3. RA2 loops1

In this section, we establish a number of properties of RA2 loops, virtually
all of which are generalizations of known results for RA loops.

Theorem 3.1. Let L be an RA2 loop and let g and h be elements of L such

that (g, h, L) = l {that is, (g, h,k) = 1 for all k e L). Then

(a) (g,h)2 = \,
(b) g2h = hg2 {and gh2 = h2g), and
(c) the commutator (g, h) commutes with g (and with h).

Proof. Thinking of L as embedded in an alternative ring RL of characteristic
2, we see that (g, h, L) - 1 => [g, h, RL] — 0. Then, following Kleinfeld
[10, p. 133] (the argument is also presented in [7, Theorem 3(iii)]), we obtain

n = gh + hg e JV (RL) and then, noting that we also have (g, hg, L) = 1,
that [g, hg] = ng is also in JÏ (RL). (Here, we begin to use freely the fact
that we are working in characteristic 2.) It follows that [ng, x, y] = 0 for all

x, y G RL, and so, from (2.1),

(3.1) 0 = g[n,x,y] + [g, x,y]n + f(n, g, x, y) = [g, x, y]n

since ne jV (L) and f(n, g, x, y) = f(g, x, n, y) is the sum of three terms
each of which involves an associator containing n .

Assume for the moment that g e JV (L). Then g2 £ Z (L) and (g, h)2 =
1 by [5, Corollaries 3.5 and 3.6], so (a) and (b) of the theorem hold. As for
(c), this holds if yV (L) is not commutative by [5, Theorem 3.2], so we now

consider the implications of a commutative nucleus. In this case, and if, fur-
thermore, JV (L) — Z (L), then statement (c) holds since we would then have

g e Z (L). Finally, if JV (L) ± Z (L) (but still assuming the nucleus is
commutative), then L is an extra loop [6] in which squares, and hence com-
mutators, are in the nucleus (because (a, b) = a~xb~xab = a~2(ab~l)2b2). So

g and (g,h), being in the nucleus, must commute. The theorem is therefore
true if g e JIT (L).

It remains to consider the case that g £ JV (L). In this case, choose a
and b in L with (g, a, b) ± 1. Write ga-b — (g • ab)k for k - (g, a, b)
£ L and note that [g, a, b] = ga • b + g • ab = (g • ab)(k + 1). Then, from
(3.1), [g, a, b]n = 0, so (g• ab)(k + l)n = 0 and, because g-ab isinvertible,
( 1 + k)n = 0. Recalling that n = gh + hg, we obtain gh + hg + k'gh + k-hg
= 0. Now gh t¿ k • gh since k ^ 1, so, by linear independence of loop

elements in the loop ring, either gh = hg, in which case the theorem is true
trivially, or gh = k • hg and hg = k • gh. In this last case, we have gh —
k(k • gh), implying that k2 = 1. Moreover, k = (g~l, h~l) and so

(3.2) k = (g,a,b) = (g-\h-1).

Now, since (g, h, L) = 1, we have also (g, gh, L) — 1. Repeating the

foregoing argument for g and gh and noting that the theorem holds if g
and gh commute, we may assume that (g,a,b) = (g~l, (gh)~l), so that

(g-1, h~l) = (g'1, (gh)~l). This immediately gives that g and (g_1, h'1)

1 Some of the results in this section are based upon unpublished work with Orin Chein and are

used here with his permission and the author's gratitude.
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commute. It is not hard to show that this forces g and (g, h) to commute as

well. Also, since k has order 2, so does (g, h). Hence

(g\h) = g~2h-lg2h = g-\g-lh-xg)gh

= g-\g-xh-xg)hg(g,h)

= g-i(g-lh-lgh)g(g,h)

= g-\g,h)g(g,h)=\

and the theorem is complete.   D

Lemma 3.2. Let g and h be elements of an RA2 loop L. Then

gh = hg =» (g2,h,L) = (g,h2,L) = L

Proof. Let k £ L. If (g, h, k) = 1, then g, h and k generate a group and,
clearly, (g2, h, k) = (g, h2, k) = 1. So assume (g,h,k) / 1. Then g, h
and gk cannot associate; else, they would generate a group containing g, h

and k . So

hg2 • k — (ghg)k = g(h ' gk)   (by the left Moufang identity)

= h(g.gk)   (by (2.2))

= h • g2k.

Thus h , g2 and k associate and, by symmetry, so do g, h2 and k .   n

Theorem 3.3. For any g, h £ L, g2 and h2 commute.

Proof. The result certainly holds if g and h commute or, by Theorem 3.1, if

(g, h, L) = 1. So we assume that gh ^ hg and that (g, h, k) / 1 for some

k £ L. There are four cases to consider.
Case 1. If no two of g, h, k commute, then they are a triple of type IV. None

of these elements can commute with a product of the other two; for example,

if k were to commute with hg, then hk • g = k - hg = hg • k = h • kg, a
contradiction. Also, the square of any of g, h, k associates with the other two.

To see why, suppose g2 did not associate with h and k. Then

hk-g2 = k-hg2   by (2.3)

= k(hg-g)

— (hg • k)g   by (2.3) and the fact that hg and k do not commute

= (h ' kg)g   since h, k, g is a type IV triple

= (kh.g)g

= kh-g2

which implies that hk = kh, a contradiction. Now we observe that since
hg, g, k do not associate and hg and g do not commute, (hg • g)k =

g(hg - k) by (2.3) and so

hg2 ■ k = (hg • g)k = g(hg • k) = g(g • hk) = g2-hk = g2h • k.

This gives g2h = hg2, so the squares of g and h commute as desired.
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Case 2. If gk ^ kg and hk = kh, then (because gh ^ hg) g, h, k is a
triple of type III g. Noting that (h2, k, L) = 1 (Lemma 3.2), that gh and k
commute (see Theorem 2.1, III), and that (gh • k)h = g(h • kh) by the right
Moufang identity, we have

h2g-k = h(h ■ gk) = h(gk -h) = (h- gk)h

= (gh • k)h = g(h -kh) = g- h2k = gh2 ■ k

and hence, again, h2g = gh2 (and g2 and h2 commute).

Case 3. If hk ^ kh and gk = kg, then g, h,k is a triple of type III h ,
so, as in Case 2, we obtain g2h = hg2, from which it follows that g2 and h2

also commute.

Case 4. If gk - kg and hk — kh , then g, h,k is a triple of type Ilk . In
this case gh and k do not commute, so gh, h, k is a triple of type III gh .

As in Case 2, it follows that h2 commutes with gh and hence also with g and

with g2.   D

Theorem 3.4. Let g and h be elements of an RA2 loop L. Then (g2, h2, L) =
1.

Proof. Let k £ L and suppose (g, h, k) ^ 1.  If any two of g, h and k
commute, the result follows by Lemma 3.2. For example, if hk = kh, then

(h2, g, k) = 1, so h2, g and k would generate a group and h2, g2 and k
would associate. So we assume no two of g, h and k commute. Thus they
are a triple of type IV. Now consider

g(h • gk) = (gh • g)k =>■ g(gh -k) = (g- hg)k =^ g(g • kh) = hg- gk

using (2.3) to rewrite (g • hg)k. (Note that the triple g, hg, k does not

associate and the pair g, hg does not commute.) Now g(g • kh) = g2 • kh .

As for hg • gk, notice that h and gk do not commute. (We saw this in

Theorem 3.3.) Thus no two elements in the triple h, g, gk commute; this

triple is therefore of type IV and so hg • gk = g(h • gk) = (g • gk)h - g2k • h .
We see thereby that g2 , k and h associate, and the result follows.   D

Corollary 3.5. Let A = (L2) be the subloop of the RA2 loop L generated by the
squares in L. Then (A, A, L)= 1.

Proof. First we use induction to show that (x, h2, L) = 1 for any x =

g\g2'"gn> gi £ L, the case n = 1 being the theorem. For x = xig2,

with x\ the product of squares of elements in L, we have

[x, h2, k] = [xig2, h2, k]

= g2[x{, h2, k] + [g2, h2, k]Xl +/(*,, g2, h2, k) = 0

because f(x\, g2, h2, k) = f(x\ ,k,g2,h2) and / vanishes whenever its last
two arguments associate with all other elements. The final step, that [x, y, k] =

0 for any x, y £ A and k £ L, follows with a similar inductive argument.   □

The main theorem of this section is now quite straightforward.

Theorem 3.6. Let L be an RA2 loop. Then the subloop A generated by the
squares of the elements in L is an associative commutative normal subloop of
L.
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Proof That A is associative follows immediately by Corollary 3.5; that it is

commutative, by Theorem 3.3. To prove normality, we note that, while there

are three things to check in the general setting of Moufang loops, in an RA2
loop we have only to verify that k~lak £ A for every k £ L and a £ A

(see [5, Corollary 2.11]). By diassociativity, k~lg2k is a square and then, for

x = x\g2 with x\ and k~lX\k £ A ,

k~lxk = k~l(xig2)k = (k-lXik)(k~lg2k) £ A

using the fact that k, xi and g2 generate a group, by Corollary 3.5.   D

With A as in the theorem, we see that L/A is an RA2 loop of exponent 2.

So it is commutative and hence a group [5, Corollary 2.5].

Corollary 3.7. In any RA2 loop, the commutators and associators lie in the sub-

loop generated by the squares. If each of a and b is a commutator or an

associator in an RA2 loop, then (a, b) = (a, b, x) = 1 for any x £ L.

We conclude this section with a result of independent interest. It is conve-

nient to include it here since it depends so heavily on the results just obtained.

Our starting point is (3.2). At this stage of the proof of Theorem 3.1 we have

shown that, if g and h are two elements which do not commute in an RA2

loop L and if (g, h, L) = 1, then, whenever an associator (g, a, b) ^ 1,

it is the element k = (g_1, h~l). Note that this element is independent of

a and b. Thus any associator in L of the form (g, a, b) takes on at most

two values, 1 and k . It follows that (g, a, k) = 1 for all a £ L ; otherwise,

gü'k = (g • ak)k quickly gives k = 1, a contradiction. Thus

(g,c,(g,a,b)) = \

for all a, b, c £ L. We use this fact repeatedly in the next few lines. Let

a, b £ L. Then

g2a-b = (g- ga)b

= {g(ga ■ b)}(g, ga, b)

= {g{(g ■ ab)(g, a, b)}}(g, ga,b)

= {{g(g • ab)}(g, a, b)}(g, ga, b)

= (g2ab){(g,a,b)(g,ga,b)}.

Now g, ga, and b associate if and only if g, a, and b do. Also, each of

the associators (g, ga, b) and (g, a, b) assumes at most two values, 1 or

k . It is therefore the case that these associators are equal and, because k2 = 1,

their product is 1. We have shown that g2 is in the nucleus Jf (L) and, by

symmetry, so is h2. Replacing h by gh~l in the foregoing (note that g and

gh~l do not commute and (g, gh~l, L) = 1), we also have (gh~1)2 £ JV (L)

and therefore (g, h) £ JV (L) too, because (g, h) = g~2(gh~l)2h2. In an RA
loop, (g, h, L) - 1 if and only if (g, h) = 1 [7]. In an RA2 loop, we have
the following weaker statement.

Theorem 3.8. Let L be an RA2 loop and g, h £ L. Then (g, h, L) = 1  =*-
(g, h) £ yV(L). If(g,h,L) = 1 and (g, h) ¿ 1, then also g2,h2 e Jf (L).
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4.  NlLPOTENCE OF THE AUGMENTATION IDEAL

A nonassociative ring S is said to be nilpotent if, for some natural number

n , the product of any n elements in 5, with any order of multiplication, is 0.
Defining S1 = S and then, inductively, Sk+l = SkS, S is right nilpotent if,
for some natural number n, Sn = 0. In an alternative ring, right nilpotence

implies nilpotence [12, p. 119].
If R is a ring of characteristic 2, if L is an RA2 loop, and if N is a normal

subloop of L, then the natural homomorphism L -* L/N extends linearly

to a ring homomorphism RL —> R[L/N] whose kernel, denoted A(L, N), is
the ideal of RL generated by elements of the form 1 + n, n £ N. In the

special case L — N, the homomorphism just described maps ¿^,agg £ RL to

Y,otg £ R. This map, called the aumentation map, has a kernel, written A(L)

rather than A(L, L), known as the augmentation ideal of RL. It follows

directly from the definitions that, for a normal subloop N of L,

A(L,N) = RLA(N).

Assume now that R = F is a field of characteristic 2 and that the order of L
is 2" for some n > 0. Since the elements of S? = {1 + g \ g £ L} are linearly

independent over F and span A(L) (because g(l + h) - (I + gh) + (1 + g)),

it is clear that A(L) has dimension 2" - 1.

As previously, we let A be the normal subloop of L generated by the squares

of L and note that L/A is a group of exponent 2. By Jennings' result for

modular group algebras, A(L/A) (= A(L)/A(L, A)) is nilpotent. For finite-

dimensional alternative algebras, nilpotence is a radical property closed under

extensions. Thus, to prove A(L) nilpotent, it suffices now to prove that A(L, A)
is nilpotent.

Now A(L,A) « FLA(A) is spanned over F by elements of the form
g(l+a), g £ L, a£A, and the identity g(l +a) = (1 + g)(l + a) + (I + a)
shows that A(L, A) ç A(A) + A(L)A(^) = I + JI where we have set / = A(A)
and / = A(L). Since / is nilpotent (by the result for group algebras), the

nilpotency of A(L, A) is an obvious consequence of

(4.1) (I + JI)nci"+InJ   for all n>\,

a fact we proceed to establish. In so doing, we shall use regularly that /

and A are commutative, that (A, A, L) = 1, and hence that [A, A, FL] =

[7,/,FL] = 0.
For any g, h £ L, we can write gh = hg • f or hg = fi • gh for com-

mutators f , f¿ which are in A, by Corollary 3.7. Then [g, h] = gh + hg =
(hg)(l +/,.) = (1 + f2)(gh), with both 1 + f and 1 + f2 in A(^). Further-
more, since (loop) associators of elements of L are in A, we also have such

equations as

[g, h, k] = (gh - fc)(l + h) = (1 + f4)(g ■ hk)

with 1 + ß, 1 + 74 £ A(A), whenever g, h and k are elements of L. We

establish (4.1) with a sequence of lemmas.

Lemma 4.1. With I = A(A) and J = A(L), JI" CI"+I"J for all n>\.
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Proof An element of JI is an F-linear combination of elements of the form
(1 + g)(l +a), g £ L, a£A. Now

(l+g)(l+a) = (l+a)(l + g) + [g,a]

= (1 + a)(l + g) + (1 + f)ag      for some l+f£l

- (1 + fl)(l + g) + (1 + f)a(\ +g) + (\+f)a,

which is in IJ +1 because (1 + f)a £ I (I is an ideal of FA). Thus JI ç
IJ + I and the lemma is true for n - 1. Assuming JIk ç Ik + IkJ, we have

/7*+1 = JIk-lc(Ik + IkJ)I

ç /*+> + 7fc • 77

ç/fc+1+7^(77 + /)

Ç /*+!+/*+!/ + /*+»,

from which the lemma follows.   D

For our next proof, it will be important to note that I • I" = I" • I ( = In+l)

for any n > 1 because elements of I commute.

Lemma 4.2. With I = A(A) and J = A(L), [/", J, J] C I" + I"J for all
n> 1.

Proof. Let a £ A and g, h e L. Then [1 + a, 1 + g, 1 + h] = [a, g, h] =
(l+f)(a'gh),forsome l+f£l. Now (l + f)(a-gh) = (1 + f)(l +a-gh) +
( 1 + f) £ IJ + I, so the result holds for n = 1. Now assume [Ik, J, J] ç
Ik + IkJ and let ae/1, 2> e 7, x, y £ J. Then

[ab,x,y] = b[a,x,y] + [b,x, y]a

because f(a, b, x, y) = f(x, y, a, b) and [FL, I, I] = 0. Now

b[a,x,y]£ I(Ik + IkJ) ç Ik+l + Ik+lJ

and

[b,x,y]a£ (I + IJ)Ik

ci.Ik + IJ.Ik

ç Ik+l +I-JIk

ç Ik+l + I(Ik + IkJ)      by Lemma 4.1

Clk+l+Ik+lJ,

completing the induction.   □

Lemma 4.3. With I = A(A) and J = A(L), we have (I + JI)n cl" + I"J, for
any n>l.

Proof. When n — 1, the result follows immediately from Lemma 4.1. Assume
inductively that (/ + JI)k ç Ik + IkJ for some k > 1. Then

(I + JI)k+x = (I + JI)k(I + JI)

C(Ik+IkJ)(I + IJ)

Ç Ik+l +Ik.IJ + IkJ.I + IkJ . IJ.
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Now Ik • 77 = Ik+lJ (since [1,1, FL] = 0), and IkJ ■ I = Ik ■ JI C

Ik(I + IJ) ç Ik+X + Ik+1J. Thus, it remains only to prove that IkJ • IJ ç

jk+i _|_ jk+\ j Eiements of IkJ • IJ are TMinear combinations of elements of

the form x(l + g) • (1 + a)(\ + h), where x £ Ik and where g, h £ L and

a £ A, and such an element can be written as

(4.2) {X(i + g)(i+a)}(i+h) + [x(l + g), l+a, l+h].

The first of these terms is {x(l + a)(l + g) + x[l + g, 1 + a]} • (1 + h)

= {x(l + a)(l + g) + x[g, a]}(\ + h)

= {x(l +a)(l + g) + x(l +f)ag}(l +h)      for some l+fel

= {x(l+a)(l + g)}(l + h) + {x(l+f)(l+ag) + x(l+f)}(l+h).

The last of the three terms here, x(\ + f)(l + h), is certainly in Ik+lJ, while

the first two are of the form uv -w, where u £ Ik+l and v , w £ J. Writing
uv -w - u- vw + [u, v, w], we see at once that uv -w £ Ik+l + Ik+l J, by the

previous lemma.

The second term in (4.2) is

[x + xg, l+a, 1 + h] = [xg, a, h]

= g[x, a, h] + [g, a, h]x + f(x, g, a, h)

= [g,a,h]x

because [Ik,I,FL] — 0 and f(x,g,a,h) = f(g,h,x,a) = 0 since
f(g,h,x,a) is the sum of three terms involving associators in each of which

the two elements x and a (of 7) appear. As for [g, a, h]x, we write this

as [g, h, a]x and observe that this can be rewritten first as (gh • a)(\ + f)x
for some 1 + / G 7, and then as ( 1 + gh • a)( 1 + f)x + ( 1 4- f)x, which is an
element of 77fc+1 + Ik+l ç Ik+l + Ik+1J, by Lemma 4.1.   D

Combining the results of this section with the known result for group algebras,

we have the following theorem.

Theorem 4.4. Let FL be the alternative loop algebra (associative or otherwise)

of a loop L of order 2" over a field of characteristic 2. Then, with respect to
any radical property for which nilpotent algebras are radical and algebras with 1

are not, the radical of FL is its augmentation ideal A(L) and this is nilpotent

of dimension 2" - 1.
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