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Background: The spectral polarization state and dimensionality of random light are important concepts in modern

Methods: By use of space-frequency domain coherence theory, we establish a rigorous classification for the
electricfield vector to oscillate in one, two, or three spatial dimensions.

Results: We also introduce a new measure, the polarimetric dimension, to quantify the dimensional character of
light. The formalism is utilized to show that polarized three-dimensional light does not exist, while an evanescent
wave generated in total internal reflection generally is a genuine three-dimensional light field.

Conclusions: The framework we construct advances the polarization theory of random light and it could be
beneficial for near-field optics and polarization-sensitive applications involving complex-structured light fields.

Background

Polarization is a fundamental property of light [1, 2], spec-
ified by the orientation of the electric-field vector. In a
particular coordinate system, the electric component of
random light may fluctuate in three orthogonal spatial
directions, but by rotating the reference frame it may turn
out that the field vector actually is restricted to a plane,
or even that it fluctuates in just a single direction. Opti-
cal fields can thereby be classified into one-dimensional
(1D), two-dimensional (2D), or three-dimensional (3D)
light, depending on the minimum number of orthogonal
coordinate axes required to represent them. The dimen-
sional nature of light plays an essential role in address-
ing polarization characteristics of complex-structured
light fields, e.g., electromagnetic near and surface fields
[3-5] as well as tightly focused optical beams [6—9], which
are frequently exploited in near-field probing [10], single-
molecule detection [11], particle trapping [12], among
other polarization-sensitive applications. Yet, no system-
atic theory has so far been developed which provides
rigorous means to categorize and to characterize the
dimensionality of light.
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In this work, we consider the dimensionality of ran-
dom light fields and show that the number of nonzero
eigenvalues of the real part of the 3 x 3 polarization
matrix provides the required information for such a
dimensional classification. We also establish a quantitative
measure, the spectral polarimetric dimension, describing
the intensity-distribution spread or the ‘effective’ dimen-
sionality of a light field. The general formalism is utilized
to demonstrate that polarized 3D light does not exist,
while a partially polarized evanescent wave created in
total internal reflection is unambiguously a genuine 3D
light field.

Methods

The polarization properties of a random light field are
in the space—frequency domain described by the spectral
polarization matrix [1, 2, 13, 14]

®(r, ) = <E*(r, »)ET(r, a))> . )

In the stationary case the generally three-component col-
umn vector E(r, ) is a realization representing the elec-
tric field at point r and (angular) frequency w, whereas in
the nonstationary case it is the Fourier transform of the
space—time domain field. In addition, the angle brackets,
asterisk, and superscript T denote ensemble averag-
ing, complex conjugation, and matrix transpose, respec-
tively. Alternatively, the spectral polarization matrix can
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be introduced via the generalized Wiener—Khintchine
theorem [14, 15]. As the polarization matrix is Hermitian
and nonnegative definite, we can express it as

o(r,0) = '(r,0) + i®" (v, w), )

where the real part ®'(r,w) is a symmetric and positive
semidefinite matrix, while the imaginary part ®"(r, ®) is
skew symmetric. The three eigenvalues of ®(r, w) are real
and nonnegative.

Let us next consider a situation that ®(r, w) is subjected
to an orthogonal transformation. Such an operation is rep-
resented by a real-valued 3 x 3 matrix Q which obeys
QT = Q7! and detQ = 1. The matrix Q can be iden-
tified with a rotation of the Cartesian reference frame,
implemented by three successive Euler rotations about
the Cartesian axes. Unlike for unitary transformations in
general, the physical polarization state of the field does
not change in an orthogonal transformation, although its
mathematical representation does. In particular, because
the real part ®'(r, w) is symmetric, it can be diagonalized
by a specific orthogonal transformation that we denote
by Qo. In this intrinsic coordinate frame, the polarization
matrix reads as

al 00 0 —Hnz ny
O, w)=Q O, 0)Q =[0 a0 |+i|lns 0 —m |,
00 as —HNy M1 0

3)

where the eigenvalues a; > ay > az > 0 of ®'(r,w) are
the principal intensities and the vector n = (n1, 1, n3)
is the angular-momentum vector [16-18]. In addition,
ay is the largest while a3 is the smallest diagonal ele-
ment of ®'(r, ) that can be obtained by an orthogonal
transformation [19].

Results and discussion

Dimensionality of random light

In the case that only one eigenvalue of the real part
®'(r, w) is nonzero, the electric-field vector fluctuates in
just a single direction and the light is considered one
dimensional. If, instead, only one eigenvalue of ®'(r,w)
is zero, the electric field is restricted to a plane and
the light is regarded two dimensional. However, when
every eigenvalue is positive, the intensity of each Carte-
sian field component is nonzero for any orientation of the
frame (since a3 is the smallest obtainable intensity along
a coordinate axis) and the electric-field vector fluctuates
in all three dimensions. The physical dimensionality of
the light field is thereby determined by the eigenvalues of
@' (r,w) as

1D light: a; >0, ap =0, ag = 0; (4)
2D light: a; > 0, az > 0, az = 0; (5)
3D light: a3 >0, az > 0, a3 > 0. (6)
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We further define isotropic 2D light as one for which
a1 = ay in Eq. (5) and isotropic 3D light as one that sat-
isfies a1 = ay = a3 in Eq. (6). In particular, because
det ®'(r, w) = ajazas is invariant under orthogonal trans-
formations, Eqs. (4)—(6) imply that both 1D and 2D light
obey det ®'(r,w) = 0, while for a genuine 3D light field
det ®'(r,w) > 0.

We stress that the number of nonnegative eigenval-
ues of the full complex polarization matrix ®(r, w) does
not necessarily provide information about the physical
dimensionality of light. For instance, the full polariza-
tion matrix of a circularly polarized light beam involves
just a single nonzero eigenvalue, whereas its real part
satisfies a1 = ay and az = 0, thereby correspond-
ing to (isotropic) 2D light in view of Eq. (5). Likewise,
the complex polarization matrix of an incoherent and
orthogonal superposition of a circularly polarized and a
linearly polarized beam has two nonnegative eigenval-
ues, while in this case all three eigenvalues of the real-
valued polarization matrix are nonzero. Hence, according
to Eq. (6), the superposed field is genuinely 3D in
character.

Polarimetric dimension

Although Egs. (4)—(6) establish the definitions for the
dimensionality of a light field, they do not provide infor-
mation how 1D-, 2D-, or 3D-like the light in question
is. For example, an elliptically polarized beam is formally
two dimensional, but from a practical point of view it
can be regarded as one dimensional if the polarization
ellipse is highly squeezed (cf. linear polarization). There-
fore, to characterize the dimensional nature of a light field
more quantitatively, we introduce the spectral polarimet-
ric dimension, D(r, ®), via the relation

D(r,w) = 3 — 2d(r, ), (7)

where d(r,w) is the distance between the real-valued
matrix ®'(r,w) and the identity matrix associated with
isotropic 3D light, i.e.,

3 [u®?(rw) 1
d(r,a)) = \/2 |:tr2tl>’(r,w) - 3i|, (8)

with the scaling chosen so that 0 < d(r,w) < 1. We
remark that an expression formally similar to Eq. (8), with
®(r,w) replacing ®’(r,w), has been employed to char-
acterize the degree of polarization of random 3D light
fields [20, 21]. The polarimetric dimension is thus a real
number that obeys 1 < D(r, w) < 3. Moreover, it is invari-
ant under orthogonal transformations, but generally not
under unitary operations, since the latter may alter the
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polarization state and, consequently, the dimensionality of
the light.

The physical meaning of D(r, w) becomes more appar-
ent by writing Eq. (7) in terms of the eigenvalues of
@' (1, w), viz.,

V2@ — @)? + (@ — a3 + (@ — as)?]

D(r,w)=3 —
a1 +ay + as

)

The above expression indicates that the minimum
D(r,w) = 1 is always, and solely, encountered for 1D
light (a2 = a3 = 0), while the maximum D(r,w) =3 is
reached if, and only if, the field is completely 3D isotropic
(a1 = ap = as). For 2D light (a3 = 0, ap > 0), we find that
1 < D(r,w) < 2, with the upper limit taking place when
the two principal intensities are equal (a; = a5). Values in
the range D(r,w) > 2 are thereby clear signatures of 3D
light [note that 3D light may nonetheless assume any value
within the interval 1 < D(r, w) < 3].

Since D(r, w) is generally not an integer, it should not be
identified as such with the actual physical dimensionality
of the light [specified by Eqgs. (4)-(6)], but as an effec-
tive dimension characterizing the intensity-distribution
spread. Figure 1 provides an interpretative illustration for
the polarimetric dimension, in which principal-intensity
distributions for three different 3D light fields have been
depicted. In the left panel a; is significantly larger than
the intensities in the other directions, whereupon the light
is effectively one dimensional and thus D(r,w) ~ 1. A
practical realization of such a field would be a directional
surface plasmon polariton beam [22-24]. In the middle
panel a1 =~ ay > a3, indicating that the light field is
virtually 2D isotropic and hence D(r,w) ~ 2. An unpo-
larized or a circularly polarized light beam of high degree
of directionality [17, 25] would constitute an example. In
the right panel all principal intensities are about equally
distributed, which corresponds to isotropic 3D light and
thereby yields D(r, w) = 3, as is the case for instance with
blackbody radiation.
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Examples

As concrete examples, we investigate the dimensional-
ity of stationary polarized light and an evanescent wave
created in total internal reflection.

Polarized random light
Let E, (r, w) with o € {x,y, z} represent a Cartesian com-
ponent of the electric-field realization. Furthermore, let

MHap (r, (,()) = “'Laﬂ (r’ (,()) |ei‘pa,3 (r,w)
(E% (r, ) Eg (r, w))

- ’

VIEL (6, 0) ) (IEp ) )

a, B e {xy 2},

(10)

where @up(r, w) are real-valued phase factors, be the com-
plex correlation coefficient between the « and 8 compo-
nents. Since for polarized light all field components are
completely correlated [20], i.e., |1ep(r, w)] = 1, we can
express the polarization matrix in Eq. (1) of a polarized
light field as

L TLe T Le*=
<I)(r, Cl)) = Ix]ye_’:‘pxy 1}’ ‘ Iylzei(pyz ,
L e ¥x ]ylze_“/’;vz I

(11)

in which the shorthand notations I, = (|Ey(r, w)|?) and
9up = @up(r,w) have been introduced for convenience,
and the phases satisfy [26]

Pxy = Paz + @yz = 2mm,  m € L. (12)

By taking the real part of Eq. (11) and utilizing Eq. (12) one
then gets that

det®'(1,0) = Lyl [1 = (¢, + ¢ + &) + 2enyazcyc | =0,
(13)

where cug = cos @48, implying that polarized light is nec-
essarily 1D or 2D in nature. In other words, fully polarized
3D light does not exist.

Ad

A i

A

a a

D(r,w) ~ 3 (right panel)

Q

Fig. 1 (Color online) Examples of principal-intensity distributions for 3D light fields with D(r,w) ~ 1 (left panel), D(r, w) ~ 2 (middle panel), and
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This finding can intuitively be justified as follows. If a
random light field with three electric components is spec-
trally fully polarized, it is at frequency w represented by an
ensemble of monochromatic field realizations as

[E@r, 0)e "} = {E(r, 0)}e(r, w)e ™", (14)

where E(r,w) is a random scalar variable and e(r,w)
is a deterministic three-component vector. The realiza-
tions thus have identical polarization states although their
spectral densities may vary, and because the electric-field
vector of monochromatic light is necessarily bounded in a
plane [27], each realization lies in the same plane. Conse-
quently, the random light that these monochromatic fields
represent must fluctuate in this plane as well.

Random evanescent wave

As a second example, we consider an optical evanes-
cent wave excited in total internal reflection at a planar
dielectric interface (z = 0) by a stationary beam [28].
Both medium 1 (z > 0) and medium 2 (z < 0), hav-
ing refractive indices n1(w) and n2(w), respectively, are
taken lossless, and the x axis is chosen to coincide with
the surface-propagation direction. Moreover, the incom-
ing beam, generally carrying both an s-polarized and a
p-polarized constituent, hits the boundary at the angle
of incidence 6(w) that satisfies 6.(w) < O(w) < 7/2,
with 6c(w) = arcsin7i~!(w) being the critical angle and
n(w) = n(w)/ny(w) > 1. Under these conditions, the
spatial part of the electric-field realization for the evanes-
cent wave takes on in Cartesian coordinates the form [4, 5]

—iy (w)tp (w)Ep ()
X (@)ts(w)Es(w)
sin 6 (w)ty (w)Ep(w)

E(I‘, w) — eikl (w) sin H(w)xefkl (m)y(m)z,

X (w)
(15)

where Es(w) and E, (w) are, respectively, the complex field
amplitudes of the s- and p-polarized components of the
incident light. Furthermore,

X (@) = Jsin? 6() + y2(), »

y(w) = ﬁ_l(w)\/ 12(w) sin? 0(w) — 1,

with y (@) being the decay constant of the evanescent
wave, and

2 cosf(w)
() = —————7"—,
cosf(w) + iy (w) (17)
271% (w) cos 0 (w) x (w)
Ip () =

cos () + inn?(w)y (w)

are the Fresnel transmission coefficients of the two polar-
izations, and k; (w) is the wave number in medium 1.
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On next calculating the polarization matrix in Eq. (1) for
the evanescent wave given by Eq. (15), and then extract-
ing the real part ®'(r,w) = ®'(z,w) from the obtained
expression, we find that

s .2 2
detd(5,0) = 2Ty i e ) [1 ~ ).
(18)
Above, wy(z,0) = |t,(@)[*L,(w)e 21 @Y (@2 js propor-

tional to the energy density of the v € {s, p} polarized part
of the evanescent wave at height z, with I, (w) = (|Ev (w) |2>
being the intensity of the respective component of the
incoming beam, and p(w) = (E;‘ (a))Ep(a))) [ Is(@) ()
is the correlation coefficient among the s- and p-polarized
constituents of the incident light. Equation (18) especially

shows that det®'(z,w) = 0 only when the excitation
beam is totally polarized, ie., Is(w) = 0, [,(w) = 0,
or |u(w)| = 1, and in this case the ensuing evanescent

wave is either 1D or 2D in character. Generally, however,
when the incident beam is partially polarized [ I;(w) # O,
I,(w) # 0, and |u(w)| # 1], we obtain from Eq. (18)
that det®’(z, w) > 0, corresponding to genuine 3D light.
This discovery reveals that optical evanescent waves are
predominantly 3D light fields, which necessitate a rigor-
ous 3D treatment to fully describe their electromagnetic
properties.

Motivated by the above result we further examine how
close to isotropic 3D light an evanescent wave can be, and
to this end we employ the polarimetric dimension D(r, )
defined in Eq. (7). Utilizing Egs. (15)—(17) then yields that
the fundamental upper limit that D(r, w) can attain for
such a wave is

2

1+ 34 () x ()

which is reached when the incident light possesses the
properties

D(r,w) =3 — (19)

L(w) [sin‘*e(w) + y‘*(w)} [|tp<w>|]2
L) xHw) lts(@)] ]
(20)

For a high refractive-index contrast surface, such as GaP
and air with 7#(w) &~ 4 in the optical regime [29], Eq. (19)
shows that the polarimetric dimension may be as high as
D(r,w) = 2.96, while for a typical SiOy—air interface the
maximum is around D(r, w) &~ 2.67.

Conclusions

In summary, we have formulated a framework to clas-
sify and to characterize the dimensionality of random
light fields. To this end, it was shown that the num-
ber (1, 2, or 3) of nonzero eigenvalues of the real-valued
polarization matrix ®'(r,w) [i.e. the real part of the full
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complex polarization matrix ®(r,w)] specifies whether
the light is 1D, 2D, or 3D, respectively. We also put
forward a measure, the spectral polarimetric dimension,
which quantifies the intensity-distribution spread and in
this sense the effective dimensionality of a light field.
The formalism was exemplified by showing that com-
pletely polarized random light is necessarily 1D or 2D
in character, while an evanescent wave generated by a
partially polarized beam in total internal reflection is
unambiguously a genuine 3D light field. The polarimetric
dimension could similarly be defined also in the space—
time domain. Our work, providing novel insights and
means to address polarization of random light fields,
could thus be instrumental for applications involving
complex-structured light, such as near-field optics and
high-numerical-aperture imaging systems.
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