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Abstract
We derive the Levinson type generalization of the Jensen and the converse Jensen
inequality for real Stieltjes measure, not necessarily positive. As a consequence, also
the Levinson type generalization of the Hermite-Hadamard inequality is obtained.
Similarly, we derive the Levinson type generalization of Giaccardi’s inequality. The
obtained results are then applied for establishing new mean-value theorems. The
results from this paper represent a generalization of several recent results.
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1 Introduction and preliminary results
The well-known Jensen inequality asserts that for a convex function ϕ : I ⊆ R → R we
have

ϕ

(


Pn

n∑
i=

pixi

)
≤ 

Pn

n∑
i=

piϕ(xi), (.)

where xi ∈ I for i = , . . . , n, and pi are nonnegative real numbers such that Pn =
∑n

i= pi > .
Steffensen [] showed that inequality (.) also holds in the case when (x, . . . , xn) is a

monotonic n-tuple of numbers from the interval I and (p, . . . , pn) is an arbitrary real
n-tuple such that  ≤ Pk ≤ Pn (k = , . . . , n), Pn > , where Pk =

∑k
i= pi. His result is called

the Jensen-Steffensen inequality.
Boas [] gave the integral analog of the Jensen-Steffensen inequality.

Theorem . ([]) Let ϕ : I → R be a continuous convex function, where I is the range of
the continuous monotonic function (either increasing or decreasing) f : [a, b] → R, and let
λ : [a, b] →R be either continuous or of bounded variation satisfying

λ(a) ≤ λ(x) ≤ λ(b) for all x ∈ [a, b],λ(a) < λ(b).
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Then

ϕ

(∫ b
a f (x) dλ(x)∫ b

a dλ(x)

)
≤

∫ b
a ϕ(f (x)) dλ(x)∫ b

a dλ(x)
. (.)

The generalization of this result is also given by Boas in []. It is the so-called Jensen-
Boas inequality (see also []).

Theorem . ([]) If λ : [a, b] →R is either continuous or of bounded variation satisfying

λ(a) ≤ λ(x) ≤ λ(y) ≤ λ(x) ≤ · · · ≤ λ(yn–) ≤ λ(xn) ≤ λ(b)

for all xk ∈ 〈yk–, yk〉, y = a, yn = b, and λ(a) < λ(b), and if f is continuous and monotonic
(either increasing or decreasing) in each of the n intervals 〈yk–, yk〉, then inequality (.)
holds.

The following theorem states the well-known Levinson inequality.

Theorem . ([]) Let f : 〈, c〉 → R satisfy f ′′′ ≥  and let pi, xi, yi, i = , . . . , n be such
that pi > ,

∑n
i= pi = ,  ≤ xi ≤ c and

x + y = x + y = · · · = xn + yn. (.)

Then the following inequality is valid:

n∑
i=

pif (xi) – f (x̄) ≤
n∑

i=

pif (yi) – f (ȳ), (.)

where x̄ =
∑n

i= pixi and ȳ =
∑n

i= piyi denote the weighted arithmetic means.

Numerous papers have been devoted to extensions and generalizations of this result, as
well as to weakening the assumptions under which inequality (.) is valid (see for instance
[–], and []).

A function f : I →R is called k-convex if [x, . . . , xk]f ≥  for all choices of k +  distinct
points x, x, . . . , xk ∈ I . If the kth derivative of a convex function exists, then f (k) ≥ , but
f (k) may not exist (for properties of divided differences and k-convex functions see []).

Remark .
(i) Bullen [] rescaled Levinson’s inequality to a general interval [a, b] and showed that

if function f is -convex and pi, xi, yi, i = , . . . , n, are such that pi > ,
∑n

i= pi = ,
a ≤ xi, yi ≤ b, (.) holds for some c ∈ 〈a, b〉 and

max{x, . . . , xn} ≤ max{y, . . . , yn}, (.)

then (.) holds.
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(ii) Pečarić [] proved that inequality (.) is valid when one weakens the previous
assumption (.) to

xi + xn–i+ ≤ c and
pixi + pn–i+xn–i+

pi + pn–i+
≤ c, for i = , , . . . , n.

(iii) Mercer [] made a significant improvement by replacing condition (.) with a
weaker one, i.e. he proved that inequality (.) holds under the following conditions:

f ′′′ ≥ , pi > ,
n∑

i=

pi = , a ≤ xi, yi ≤ b,

max{x, . . . , xn} ≤ max{y, . . . , yn},
n∑

i=

pi(xi – x̄) =
n∑

i=

pi(yi – ȳ). (.)

(iv) Witkowski [] showed that it is enough to assume that f is -convex in Mercer’s
assumptions. Furthermore, Witkowski weakened the assumption (.) and showed
that equality can be replaced by inequality in a certain direction.

Furthermore, Baloch, Pečarić, and Praljak in their paper [] introduced a new class of
functions Kc

(a, b) that extends -convex functions and can be interpreted as functions
that are ‘-convex at point c ∈ 〈a, b〉’. They showed that Kc

(a, b) is the largest class of
functions for which Levinson’s inequality (.) holds under Mercer’s assumptions, i.e. that
f ∈Kc

(a, b) if and only if inequality (.) holds for arbitrary weights pi > ,
∑n

i= pi =  and
sequences xi and yi that satisfy xi ≤ c ≤ yi for i = , , . . . , n.

We give the definition of the class Kc
(a, b) extended to an arbitrary interval I .

Definition . Let f : I → R and c ∈ I◦, where I◦ is the interior of I . We say that f ∈ Kc
(I)

(f ∈ Kc
(I)) if there exists a constant D such that the function F(x) = f (x) – D

 x is concave
(convex) on 〈–∞, c] ∩ I and convex (concave) on [c, +∞〉 ∩ I .

Remark . For the class Kc
(a, b) the following useful results hold (see []):

() If f ∈Kc
i (a, b), i = , , and f ′′(c) exists, then f ′′(c) = D.

() The function f : (a, b) → R is -convex (-concave), if and only if f ∈ Kc
(a, b) (f ∈

Kc
(a, b)) for every c ∈ (a, b).

Jakšetić, Pečarić, and Praljak in [] gave the following Levinson type generalization of
the Jensen-Boas inequality.

Theorem . ([]) Let c ∈ I◦ and let f : [a, b] → R and g : [a, b] → R be contin-
uous monotonic functions (either increasing or decreasing) with ranges I ∩ 〈–∞, c] and
I ∩ [c, +∞〉, respectively. Let λ : [a, b] → R and μ : [a, b] → R be continuous or of
bounded variation satisfying

λ(a) ≤ λ(x) ≤ λ(y) ≤ λ(x) ≤ · · · ≤ λ(yn–) ≤ λ(xn) ≤ λ(b)



Mikić et al. Journal of Inequalities and Applications  (2017) 2017:4 Page 4 of 25

for all xk ∈ 〈yk–, yk〉, y = a, yn = b, and λ(a) < λ(b), and

μ(a) ≤ μ(u) ≤ μ(v) ≤ λ(u) ≤ · · · ≤ μ(vn–) ≤ μ(un) ≤ μ(b)

for all uk ∈ 〈vk–, vk〉, v = a, vn = b, and μ(a) < μ(b). If ϕ ∈Kc
(I) is continuous and if

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)
–

(∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)

)

=

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
–

(∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)

)

holds, then

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)
– ϕ

(∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)

)

≤
∫ b

a
ϕ(g(x)) dμ(x)∫ b

a
dμ(x)

– ϕ

(∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)

)
. (.)

On the other hand, in [] Pečarić, Perić, and Rodić Lipanović generalized the Jensen
inequality (.) for a real Stieltjes measure. They considered the Green function G defined
on [α,β] × [α,β] by

G(t, s) =

⎧⎨
⎩

(t–β)(s–α)
β–α

for α ≤ s ≤ t,
(s–β)(t–α)

β–α
for t ≤ s ≤ β ,

(.)

which is convex and continuous with respect to both s and t. The function G is continuous
under s and continuous under t, and it can easily be shown by integrating by parts that any
function ϕ : [α,β] →R, ϕ ∈ C([α,β]), can be represented by

ϕ(x) =
β – x
β – α

ϕ(α) +
x – α

β – α
ϕ(β) +

∫ β

α

G(x, s)ϕ′′(s) ds. (.)

Using that fact, the authors in [] gave the conditions under which inequality (.) holds
for a real Stieltjes measure, which is not necessarily positive nor increasing. This result is
stated in the following theorem.

Theorem . ([]) Let g : [a, b] →R be continuous function and [α,β] interval such that
the image of g is a subset of [α,β]. Let λ : [a, b] → R be continuous function or the function
of bounded variation, such that λ(a) = λ(b) and

∫ b
a g(x) dλ(x)∫ b

a dλ(x)
∈ [α,β].

Then the following two statements are equivalent:
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() For every continuous convex function ϕ : [α,β] → R

ϕ

(∫ b
a g(x) dλ(x)∫ b

a dλ(x)

)
≤

∫ b
a ϕ(g(x)) dλ(x)∫ b

a dλ(x)
(.)

holds.
() For all s ∈ [α,β]

G
(∫ b

a g(x) dλ(x)∫ b
a dλ(x)

, s
)

≤
∫ b

a G(g(x), s) dλ(x)∫ b
a dλ(x)

(.)

holds, where the function G : [α,β] × [α,β] →R is defined in (.).

Furthermore, the statements () and () are also equivalent if we change the sign of inequal-
ity in both (.) and (.).

Note that for every continuous concave function ϕ : [α,β] → R inequality (.) is re-
versed, i.e. the following corollary holds.

Corollary . ([]) Let the conditions from the previous theorem hold. Then the following
two statements are equivalent:

(′) For every continuous concave function ϕ : [α,β] → R the reverse inequality in (.)
holds.

(′) For all s ∈ [α,β] inequality (.) holds, where the function G is defined in (.).

Moreover, the statements (′) and (′) are also equivalent if we change the sign of inequality
in both statements (′) and (′).

The main aim of our paper is to give a Levinson type generalization of the result from
Theorem .. In that way, a generalization of Theorem . for real Stieltjes measure, not
necessarily positive nor increasing, will also be obtained.

2 Main results
In order to simplify the notation, throughout this paper we use the following notation:

f̄ =

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)
and ḡ =

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
.

The following theorem states our main result.

Theorem . Let f : [a, b] → R and g : [a, b] → R be continuous functions, [α,β] ⊆
R an interval and c ∈ 〈α,β〉 such that f ([a, b]) ⊆ [α, c] and g([a, b]) ⊆ [c,β]. Let
λ : [a, b] →R and μ : [a, b] →R be continuous functions or functions of bounded vari-
ation such that λ(a) = λ(b) and μ(a) = μ(b) and such that

f̄ ∈ [α, c] and ḡ ∈ [c,β]
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and

C :=

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)
– f̄  =

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
– ḡ (.)

holds.
If for all s ∈ [α, c] and for all s ∈ [c,β] we have

G(f̄ , s) ≤
∫ b

a
G(f (x), s) dλ(x)∫ b

a
dλ(x)

and G(ḡ, s) ≤
∫ b

a
G(g(x), s) dμ(x)∫ b

a
dμ(x)

, (.)

where the function G is defined in (.), then for every continuous function ϕ ∈ Kc
([α,β])

we have

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)
– ϕ(f̄ ) ≤ D


C ≤

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)
– ϕ(ḡ). (.)

The statement also holds if we reverse all signs of inequalities in (.) and (.).

Proof Let ϕ ∈Kc
([α,β]) be continuous function on [α,β] and let φ(x) = ϕ(x) – D

 x, where
D is the constant from Definition ..

Since the function φ is continuous and concave on [α, c] and for all s ∈ [α, c] (.) holds,
from Corollary . it follows that

φ(f̄ ) ≥
∫ b

a
φ(f (x)) dλ(x)∫ b

a
dλ(x)

.

When we rearrange the previous inequality, we get

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)
– ϕ(f̄ ) ≤ D



[∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)
– f̄ 

]
. (.)

Since the function φ is continuous and convex on [c,β] and for all s ∈ [c,β] (.) holds,
from Theorem . it follows that

φ(ḡ) ≤
∫ b

a
φ(g(x)) dμ(x)∫ b

a
dμ(x)

,

and after rearranging we get

D


[∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
– ḡ

]
≤

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)
– ϕ(ḡ). (.)

Inequality (.) follows directly by combining inequalities (.) and (.), and taking into
account the condition (.). �
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Corollary . Let the conditions from the previous theorem hold.
(i) If for all s ∈ [α, c] and s ∈ [c,β] inequalities (.) hold, where the function G is

defined in (.), then for every continuous function ϕ ∈Kc
([α,β]) the reverse

inequalities in (.) hold.
(ii) If for all s ∈ [α, c] and s ∈ [c,β] the reverse inequalities in (.) hold, then for every

continuous function ϕ ∈Kc
([α,β]) (.) holds.

Remark . It is obvious from the proof of the previous theorem that if we replace the
equality (.) by a weaker condition

C :=
D


[∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)
– f̄ 

]
≤ C :=

D


[∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
– ḡ

]
, (.)

then (.) becomes

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)
– ϕ(f̄ ) ≤ C ≤ C ≤

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)
– ϕ(ḡ).

Since the function ϕ belongs to class Kc
([α,β]), we have ϕ′′

–(c) ≤ D ≤ ϕ′′
+(c) (see []), so if

additionally ϕ is convex (resp. concave), the condition (.) can be further weakened to

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)
– f̄  ≤

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
– ḡ.

Remark . It is easy to see that Theorem . further generalizes the Levinson type gen-
eralization of the Jensen-Boas inequality given in Theorem .. Namely, if in Theorem .
we set the functions f and g to be monotonic, and the functions λ and μ to satisfy

λ(a) ≤ λ(x) ≤ λ(y) ≤ λ(x) ≤ · · · ≤ λ(yn–) ≤ λ(xn) ≤ λ(b)

for all xk ∈ 〈yk–, yk〉, y = a, yn = b, and λ(a) < λ(b), and

μ(a) ≤ μ(u) ≤ μ(v) ≤ λ(u) ≤ · · · ≤ μ(vn–) ≤ μ(un) ≤ μ(b)

for all uk ∈ 〈vk–, vk〉, v = a, vn = b, and μ(a) < μ(b), then since the function G is con-
tinuous and convex in both variables, we can apply the Jensen inequality and see that for
all s ∈ [α, c] and s ∈ [c,β] inequalities (.) hold, so we get exactly Theorem ..

3 Discrete case
In this section we give the results for the discrete case. The proofs are similar to those in
the integral case given in the previous section, so we will state these results without the
proofs.

In Levinson’s inequality (.) and its generalizations (see []) we see that pi (i = , . . . , n)
are positive real numbers. Here, we will give a generalization of that result, allowing pi to
also be negative, with the sum not equal to zero, but with a supplementary demand on pi

and xi given by using the Green function G defined in (.).
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Here we use the common notation: for real n-tuples (x, . . . , xn) and (p, . . . , pn) we set
Pk =

∑k
i= pi, P̄k = Pn – Pk– (k = , . . . , n) and x̄ = 

Pn

∑n
i= pixi. Analogously, for real m-

tuples (y, . . . , ym) and (q, . . . , qm) we define Qk , Q̄k (k = , . . . , m) and ȳ.
We already know from the first section that we can represent any function ϕ : [α,β] →

R, ϕ ∈ C([α,β]), in the form (.), where the function G is defined in (.), and by some
calculation it is easy to show that the following holds:

ϕ(x̄) –


Pn

n∑
i=

piϕ(xi) =
∫ β

α

(
G(x̄, s) –


Pn

n∑
i=

piG(xi, s)

)
ϕ′′(s) ds.

Using that fact the authors in [] derived the analogous results of Theorem . and
Corollary . for discrete case, and here, similarly as in the previous section, we get the
following results.

Theorem . Let [α,β] ⊆ R be an interval and c ∈ 〈α,β〉. Let xi ∈ [a, b] ⊆ [α, c], pi ∈ R

(i = , . . . , n) be such that Pn =  and x̄ ∈ [α, c], and let yj ∈ [a, b] ⊆ [c,β], qj ∈ R (j =
, . . . , m) be such that Qm =  and ȳ ∈ [c,β] and let

C :=


Pn

n∑
i=

pix
i – x̄ =


Qm

m∑
j=

qjy
j – ȳ. (.)

If for all s ∈ [α, c] and for all s ∈ [c,β] we have

G(x̄, s) ≤ 
Pn

n∑
i=

piG(xi, s) and G(ȳ, s) ≤ 
Qm

m∑
j=

qjG(yj, s), (.)

where the function G is defined in (.), then for every continuous function ϕ ∈ Kc
([α,β])

we have


Pn

n∑
i=

piϕ(xi) – ϕ(x̄) ≤ D


C ≤ 
Qm

m∑
j=

qjϕ(yj) – ϕ(ȳ), (.)

where D is the constant from Definition ..
Inequality (.) is reversed if we change the signs of inequalities in (.).

Corollary . Let the conditions from the previous theorem hold.
(i) If for all s ∈ [α, c] and s ∈ [c,β] the inequalities in (.) hold, where the function G

is defined in (.), then for every continuous function ϕ ∈Kc
([α,β]) the reverse

inequalities in (.) hold.
(ii) If for all s ∈ [α, c] and s ∈ [c,β] the reversed inequalities in (.) hold, then for every

continuous function ϕ ∈Kc
([α,β]) (.) holds.

Remark . Theorem . is the generalization of Levinson’s type inequality given in [].
Namely, since the function G is convex in both variables, in the case when all pi >  and
qj >  we can apply the Jensen inequality and we see that for all s ∈ [α, c] and s ∈ [c,β]
inequalities (.) hold. Now from Theorem . and Corollary . we get the result from [].
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Remark . We can replace the equality from the condition (.) by a weaker condition
in the analogous way as in Remark . from the previous section.

4 Converses of the Jensen inequality
The Jensen inequality for convex functions implies a whole series of other classical in-
equalities. One of the most famous ones amongst them is the so-called Edmundson-Lah-
Ribarič inequality which states that, for a positive measure μ on [, ] and a convex func-
tion φ on [m, M] (–∞ < m < M < +∞), if f is any μ-measurable function on [, ] such
that m ≤ f (x) ≤ M for x ∈ [, ], one has

∫ 
 φ(f ) dμ∫ 

 dμ
≤ M – f̄

M – m
φ(m) +

f̄ – m
M – m

φ(M), (.)

where f̄ =
∫ 

 f dμ/
∫ 

 dμ.
It was obtained in . by Lah and Ribarič in their paper []. Since then, there have

been many papers written on the subject of its generalizations and converses (for instance,
see [] and []).

In [] the authors gave a Levinson type generalization of inequality (.) for positive
measures. In this section we will obtain a similar result involving signed measures, with a
supplementary demand by using the Green function G defined in (.). In order to do so,
we first need to state a result from [], which gives us a version of the Edmundson-Lah-
Ribarič inequality for signed measures.

Theorem . ([]) Let g : [a, b] →R be continuous function and [α,β] be an interval such
that the image of g is a subset of [α,β]. Let m, M ∈ [α,β] (m = M) be such that m ≤ g(t) ≤
M for all t ∈ [a, b]. Let λ : [a, b] → R be continuous function or the function of bounded
variation, and λ(a) = λ(b). Then the following two statements are equivalent:

() For every continuous convex function ϕ : [α,β] → R

∫ b
a ϕ(g(x)) dλ(x)∫ b

a dλ(x)
≤ M – ḡ

M – m
ϕ(m) +

ḡ – m
M – m

ϕ(M) (.)

holds, where ḡ =
∫ b

a g(x) dλ(x)∫ b
a dλ(x)

.
() For all s ∈ [α,β]

∫ b
a G(g(x), s) dλ(x)∫ b

a dλ(x)
≤ M – ḡ

M – m
G(m, s) +

ḡ – m
M – m

G(M, s) (.)

holds, where the function G : [α,β] × [α,β] →R is defined in (.).

Furthermore, the statements () and () are also equivalent if we change the sign of inequal-
ity in both (.) and (.).

Note that for every continuous concave function ϕ : [α,β] → R inequality (.) is re-
versed, i.e. the following corollary holds.
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Corollary . ([]) Let the conditions from the previous theorem hold. Then the following
two statements are equivalent:

(′) For every continuous concave function ϕ : [α,β] → R the reverse inequality in (.)
holds.

(′) For all s ∈ [α,β] inequality (.) holds, where the function G is defined in (.).

Moreover, the statements (′) and (′) are also equivalent if we change the sign of inequality
in both statements (′) and (′).

In the following theorem we give the Levinson type generalization of the upper result,
and we use a similar method to Section  of this paper.

Theorem . Let f : [a, b] → R and g : [a, b] → R be continuous functions, [α,β] ⊆
R an interval and c ∈ 〈α,β〉 such that f ([a, b]) = [m, M] ⊆ [α, c] and g([a, b]) =
[m, M] ⊆ [c,β], where m = M and m = M. Let λ : [a, b] → R and μ : [a, b] → R

be continuous functions or functions of bounded variation such that λ(a) = λ(b) and
μ(a) = μ(b) and

C :=
M – f̄

M – m
m

 +
f̄ – m

M – m
M

 –

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)

=
M – ḡ

M – m
m

 +
g – m

M – m
M

 –

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
. (.)

If for all s ∈ [α, c] we have

∫ b
a

G(f (x), s) dλ(x)∫ b
a

dλ(x)
≤ M – f̄

M – m
G(m, s) +

f̄ – m

M – m
G(M, s) (.)

and for all s ∈ [c,β] we have

∫ b
a

G(g(x), s) dμ(x)∫ b
a

dμ(x)
≤ M – ḡ

M – m
G(m, s) +

ḡ – m

M – m
G(M, s), (.)

where the function G is defined in (.), then for every continuous function ϕ ∈ Kc
([α,β])

we have

M – f̄
M – m

ϕ(m) +
f̄ – m

M – m
ϕ(M) –

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)

≤ D


C ≤ M – ḡ
M – m

ϕ(m) +
g – m

M – m
ϕ(M) –

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)
. (.)

The statement also holds if we reverse all signs of inequalities in (.), (.) and (.).

Proof Let ϕ ∈Kc
([α,β]) be continuous function on [α,β] and let φ(x) = ϕ(x) – D

 x, where
D is the constant from Definition ..
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Since the function φ is continuous and concave on [α, c] and for all s ∈ [α, c] (.) holds,
from Corollary . it follows that

∫ b
a

φ(f (x)) dλ(x)∫ b
a

dλ(x)
≥ M – f̄

M – m
φ(m) +

f̄ – m

M – m
φ(M).

When we rearrange the previous inequality, we get

M – f̄
M – m

ϕ(m) +
f̄ – m

M – m
ϕ(M) –

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)

≤ D


[
M – f̄

M – m
m

 +
f̄ – m

M – m
M

 –

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)

]
. (.)

Since the function φ is continuous and convex on [c,β] and for all s ∈ [c,β] (.) holds,
from Theorem . it follows that

∫ b
a

φ(g(x)) dμ(x)∫ b
a

dμ(x)
≤ M – ḡ

M – m
φ(m) +

ḡ – m

M – m
φ(M),

and after rearranging we get

D


[
M – ḡ

M – m
m

 +
ḡ – m

M – m
M

 –

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)

]

≤ M – ḡ
M – m

ϕ(m) +
ḡ – m

M – m
ϕ(M) –

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)
. (.)

Inequality (.) follows directly by combining inequalities (.) and (.), and taking into
account the condition (.). �

Corollary . Let the conditions from the previous theorem hold.
(i) If for all s ∈ [α, c] the inequality in (.) holds, and for all s ∈ [c,β] the inequality in

(.) holds, then for every continuous function ϕ ∈Kc
([α,β]) the reverse inequalities

in (.) hold.
(ii) If for all s ∈ [α, c] the reversed inequality in (.) holds, and for all s ∈ [c,β] the

reversed inequality in (.) holds, then for every continuous function ϕ ∈Kc
([α,β])

the inequalities in (.) hold.

Remark . It is obvious from the proof of the previous theorem that if we replace the
equality (.) by a weaker condition

C :=
D


[
M – f̄

M – m
m

 +
f̄ – m

M – m
M

 –

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)

]

≤ C :=
D


[
M – ḡ

M – m
m

 +
g – m

M – m
M

 –

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)

]
, (.)
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then (.) becomes

M – f̄
M – m

ϕ(m) +
f̄ – m

M – m
ϕ(M) –

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)

≤ C ≤ C ≤ M – ḡ
M – m

ϕ(m) +
g – m

M – m
ϕ(M) –

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)
.

Since ϕ′′
–(c) ≤ D ≤ ϕ′′

+(c) (see []), if additionally ϕ is convex (resp. concave), the condition
(.) can be further weakened to

M – f̄
M – m

m
 +

f̄ – m

M – m
M

 –

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)

≤ M – ḡ
M – m

m
 +

g – m

M – m
M

 –

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
.

5 Discrete form of the converses of the Jensen inequality
In this section we give the Levinson type generalization for converses of Jensen’s inequality
in discrete case. The proofs are similar to those in the integral case given in the previous
section, so we give these results with the proofs omitted.

As we can represent any function ϕ : [α,β] →R, ϕ ∈ C([α,β]), in the form (.), where
the function G is defined in (.), by some calculation it is easy to show that the following
holds:


Pn

n∑
i=

piϕ(xi) –
b – x̄
b – a

ϕ(a) –
x̄ – a
b – a

ϕ(b)

=
∫ β

α

(


Pn

n∑
i=

piG(xi, s) –
b – x̄
b – a

G(a, s) –
x̄ – a
b – a

G(b, s)

)
ϕ′′(s) ds.

Using that fact the authors in [] derived analogous results of Theorem . and Corol-
lary . for discrete case.

In [] the authors obtained the following Levinson type generalization of the discrete
Edmundson-Lah-Ribarič inequality.

Theorem . ([]) Let –∞ < a ≤ A ≤ c ≤ b ≤ B < +∞. If xi ∈ [a, A], yj ∈ [b, B], pi > ,
qj >  for i = , . . . , n and j = , . . . , m are such that

∑n
i= pi =

∑m
j= qj =  and

A – x̄
A – a

a +
x̄ – a
A – a

A –
n∑

i=

pix
i =

B – ȳ
B – b

b +
ȳ – b
B – b

B –
m∑
j=

qjy
j ,

where x̄ =
∑n

i= pixi and ȳ =
∑m

j= qjyj, then for every f ∈Kc
(a, B) we have

A – x̄
A – a

f (a) +
x̄ – a
A – a

f (A) –
n∑

i=

pif (xi) ≤ B – ȳ
B – b

f (b) +
ȳ – b
B – b

f (B) –
m∑
j=

qjf (yj).
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Our first result is a generalization of the result from [] stated above, in which it is al-
lowed for pi, qj to also be negative, with the sum not equal to zero, but with supplementary
demands on pi, qj and xi, yj given by using the Green function G defined in (.).

Theorem . Let [α,β] ⊆R be an interval and c ∈ 〈α,β〉. Let xi ∈ [a, b] ⊆ [α, c], a = b,
pi ∈R (i = , . . . , n), and yj ∈ [a, b] ⊆ [c,β], a = b, qj ∈R (j = , . . . , m) be such that Pn = 
and Qm =  and

C :=
b – x̄
b – a

a
 +

x̄ – a

b – a
b

 –


Pn

n∑
i=

pix
i

=
b – ȳ

b – a
a

 +
ȳ – a

b – a
b

 –


Qm

m∑
j=

qjy
j . (.)

If for all s ∈ [α, c] we have


Pn

n∑
i=

piG(xi, s) ≤ b – x̄
b – a

G(a, s) +
x̄ – a

b – a
G(b, s), (.)

and for all s ∈ [c,β] we have


Qm

m∑
j=

qjG(yj, s) ≤ b – ȳ
b – a

G(a, s) +
ȳ – a

b – a
G(b, s), (.)

where x̄ = 
Pn

∑n
i= pixi, ȳ = 

Qm

∑m
j= qjyj and the function G is defined in (.), then for every

continuous function ϕ ∈Kc
([α,β]) we have

b – x̄
b – a

ϕ(a) +
x̄ – a

b – a
ϕ(b) –


Pn

n∑
i=

piϕ(xi)

≤ D


C ≤ b – ȳ
b – a

ϕ(a) +
ȳ – a

b – a
ϕ(b) –


Qm

m∑
j=

qjϕ(yj). (.)

The statement also holds if we reverse all signs of the inequalities in (.), (.), and (.).

Remark . If we set all pi, qj to be positive, then Theorem . becomes the result from
[] which is stated above in Theorem ..

Corollary . Let the conditions from the previous theorem hold.
(i) If for all s ∈ [α, c] inequality (.) holds and for all s ∈ [c,β] inequality (.) holds,

then for every continuous function ϕ ∈Kc
([α,β]) the reverse inequalities in (.)

hold.
(ii) If for all s ∈ [α, c] the reversed inequality in (.) holds and for all s ∈ [c,β] the

reversed inequality in (.) holds, then for every continuous function ϕ ∈Kc
([α,β])

(.) holds.

Remark . We can replace the equality from the condition (.) by a weaker condition
in the analogous way as in Remark . from the previous chapter.
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6 The Hermite-Hadamard inequality
The classical Hermite-Hadamard inequality states that for a convex function ϕ : [a, b] →R

the following estimation holds:

ϕ

(
a + b



)
≤ 

b – a

∫ b

a
ϕ(x) dx ≤ ϕ(a) + ϕ(b)


. (.)

Its weighted form is proved by Fejér in []: If ϕ : [a, b] → R is a convex function and
p : [a, b] →R nonnegative integrable function, symmetric with respect to the middle point
(a + b)/, then the following estimation holds:

ϕ

(
a + b



)∫ b

a
p(x) dx ≤

∫ b

a
ϕ(x)p(x) dx ≤ ϕ(a) + ϕ(b)



∫ b

a
p(x) dx. (.)

Fink in [] discussed the generalization of (.) by separately looking the left and right
side of the inequality and considering certain signed measures. In their paper [], the
authors gave a complete characterization of the right side of the Hermite-Hadamard in-
equality.

Rodić Lipanović, Pečarić, and Perić in [] obtained the complete characterization for
the left and the right side of the generalized Hermite-Hadamard inequality for the real
Stieltjes measure.

In this section a Levinson type generalization of the Hermite-Hadamard inequality for
signed measures will be given as a consequence of the results given in Sections  and .

Here we use the following notation:

x̃ =

∫ b
a

x dλ(x)∫ b
a

dλ(x)
and ỹ =

∫ b
a

y dμ(y)∫ b
a

dμ(y)
.

Corollary . Let [α,β] ⊆ R be an interval and c ∈ 〈α,β〉 and let [a, b] ⊆ [α, c] and
[a, b] ⊆ [c,β]. Let λ : [a, b] → R and μ : [a, b] → R be continuous functions or func-
tions of bounded variation such that λ(a) = λ(b), μ(a) = μ(b) and x̃ ∈ [α, c], ỹ ∈ [c,β],
and such that

C :=

∫ b
a

x dλ(x)∫ b
a

dλ(x)
– x̃ =

∫ b
a

y dμ(y)∫ b
a

dμ(y)
– ỹ. (.)

If for all s ∈ [α, c] and for all s ∈ [c,β] the inequalities

G(x̃, s) ≤
∫ b

a
G(x, s) dλ(x)∫ b

a
dλ(x)

and G(ỹ, s) ≤
∫ b

a
G(y, s) dμ(y)∫ b

a
dμ(y)

(.)

hold, where the function G is defined in (.), then for every continuous function ϕ ∈
Kc

([α,β]) we have

∫ b
a

ϕ(x) dλ(x)∫ b
a

dλ(x)
– ϕ(x̃) ≤ D


C ≤

∫ b
a

ϕ(y) dμ(y)∫ b
a

dμ(y)
– ϕ(ỹ). (.)

The statement also holds if we reverse all signs of the inequalities in (.) and (.).
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Remark . Let the conditions from the previous corollary hold.
(i) If for all s ∈ [α, c] and s ∈ [c,β] inequalities (.) hold, then for every continuous

function ϕ ∈Kc
([α,β]) the reverse inequalities in (.) hold.

(ii) If for all s ∈ [α, c] and s ∈ [c,β] the reversed inequalities in (.) hold, then for
every continuous function ϕ ∈Kc

([α,β]) (.) holds.

Note that for the Levinson type generalization of the left-side inequality of the general-
ized Hermite-Hadamard inequality it is necessary to demand that x̃ ∈ [α, c] and ỹ ∈ [c,β].

Remark . If in Remark . we put f (x) = x and g(x) = x, we can obtain weaker conditions
instead of equality (.) under which inequality (.) holds.

Similarly, from the results given in the fourth section we get the Levinson type gen-
eralization of the right-side inequality of the generalized Hermite-Hadamard inequality.
Here we allow that the mean value x̃ goes outside of the interval [α, c] and ỹ outside of the
interval [c,β].

Corollary . Let [α,β] ⊆ R be an interval and c ∈ 〈α,β〉, and let [a, b] ⊆ [α, c] and
[a, b] ⊆ [c,β]. Let λ : [a, b] → R and μ : [a, b] → R be continuous functions or func-
tions of bounded variation such that λ(a) = λ(b) and μ(a) = μ(b) and such that

C :=
b – x̃
b – a

a
 +

x̃ – a

b – a
b

 –

∫ b
a

x dλ(x)∫ b
a

dλ(x)

=
b – ỹ

b – a
a

 +
ỹ – a

b – a
b

 –

∫ b
a

y dμ(y)∫ b
a

dμ(y)
. (.)

If for all s ∈ [α, c] we have

∫ b
a

G(x, s) dλ(x)∫ b
a

dλ(x)
≤ b – x̃

b – a
G(a, s) +

x̃ – a

b – a
G(b, s), (.)

and for all s ∈ [c,β] we have

∫ b
a

G(y, s) dμ(y)∫ b
a

dμ(y)
≤ b – ỹ

b – a
G(a, s) +

ỹ – a

b – a
G(b, s), (.)

where the function G is defined in (.), then for every continuous function ϕ ∈ Kc
([α,β])

we have

b – x̃
b – a

ϕ(a) +
x̃ – a

b – a
ϕ(b) –

∫ b
a

ϕ(x) dλ(x)∫ b
a

dλ(x)

≤ D


C ≤ b – ỹ
b – a

ϕ(a) +
ỹ – a

b – a
ϕ(b) –

∫ b
a

ϕ(y) dμ(y)∫ b
a

dμ(y)
. (.)

The statement also holds if we reverse all signs of the inequalities in (.), (.) and (.).
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Remark . Let the conditions from the previous theorem hold.
(i) If for all s ∈ [α, c] inequality (.) holds and for all s ∈ [c,β] inequality (.) holds,

then for every continuous function ϕ ∈Kc
([α,β]) the reverse inequalities in (.)

hold.
(ii) If for all s ∈ [α, c] the reversed inequality in (.) holds and for all s ∈ [c,β] the

reversed inequality in (.) holds, then for every continuous function ϕ ∈Kc
([α,β])

(.) holds.

Remark . If in Remark . we put f (x) = x and g(x) = x, we can obtain analogous weaker
conditions instead of equality (.) under which inequality (.) holds.

It is easy to see that for λ(x) = x and μ(x) = x the conditions (.), (.) and (.) are
always fulfilled. In that way we can obtain a Levinson type generalization of both sides in
the classical weighted Hermite-Hadamard inequality.

Corollary . Let [α,β] ⊆ R be an interval and c ∈ 〈α,β〉, and let [a, b] ⊆ [α, c] and
[a, b] ⊆ [c,β].

(i) If C := 
 (b – a) = 

 (b – a) holds, then for every continuous function
ϕ ∈Kc

([α,β])


b – a

∫ b

a

ϕ(x) dx – ϕ

(
a + b



)

≤ D


C ≤ 
b – a

∫ b

a

ϕ(x) dx – ϕ

(
a + b



)
.

(ii) If C := 
 (b – a) = 

 (b – a) holds, then for every continuous function
ϕ ∈Kc

([α,β])

ϕ(a) + ϕ(b)


–


b – a

∫ b

a

ϕ(x) dx

≤ D


C ≤ ϕ(a) + ϕ(b)


–


b – a

∫ b

a

ϕ(x) dx.

If ϕ ∈Kc
([α,β]), then the inequalities in (i) and (ii) are reversed.

7 The inequalities of Giaccardi and Petrović
The well-known Petrović inequality [] for convex function f : [, a] →R is given by

n∑
i=

f (xi) ≤ f

( n∑
i=

xi

)
+ (n – )f (), (.)

where xi (i = , . . . , n) are nonnegative numbers such that x, . . . , xn,
∑n

i= xi ∈ [, a].
The following generalization of (.) is given by Giaccardi (see [] and []).
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Theorem . (Giaccardi, []) Let p = (p, . . . , pn) be a nonnegative n-tuple and x =
(x, . . . , xn) be a real n-tuple such that

(xi – x)

( n∑
j=

pjxj – xi

)
≥ , i = , . . . , n,

x,
n∑

i=

pixi ∈ [a, b] and
n∑

i=

pixi = x.

If f : [a, b] →R is a convex function, then

n∑
i=

pif (xi) ≤ Af

( n∑
i=

pixi

)
+ B

( n∑
i=

pi – 

)
f (x), (.)

where

A =
∑n

i= pi(xi – x)∑n
i= pixi – x

, B =
∑n

i= pixi∑n
i= pixi – x

.

In this section we will use an analogous technique as in the previous sections to obtain
a Levinson type generalization of the Giaccardi inequality for n-tuples p of real numbers
which are not necessarily nonnegative. As a simple consequence, we will obtain a Levinson
type generalization of the original Giaccardi inequality (.). In order to do so, we first need
to state two results from [].

Theorem . ([]) Let xi ∈ [a, b] ⊆ [α,β], a = b, pi ∈ R (i = , . . . , n) be such that Pn = .
Then the following two statements are equivalent:

() For every continuous convex function f : [α,β] →R


Pn

n∑
i=

pif (xi) ≤ b – x̄
b – a

f (a) +
x̄ – a
b – a

f (b) (.)

holds.
() For all s ∈ [α,β]


Pn

n∑
i=

piG(xi, s) ≤ b – x̄
b – a

G(a, s) +
x̄ – a
b – a

G(b, s) (.)

holds, where the function G : [α,β] × [α,β] →R is defined in (.).

Moreover, the statements () and () are also equivalent if we change the sign of the inequal-
ity in both inequalities, in (.) and in (.).

Corollary . ([]) Under the conditions from the previous theorem, the following two
statements are also equivalent:

(′) For every continuous concave function ϕ : [α,β] → R the reverse inequality in (.)
holds.
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(′) For all s ∈ [α,β] inequality (.) holds.

Moreover, the statements (′) and (′) are also equivalent if we change the sign of inequality
in both statements (′) and (′).

Our first result is a Levinson type generalization of the Giaccardi inequality for n-tuples
p and m-tuples q of arbitrary real numbers instead of nonnegative real numbers.

Theorem . Let [α,β] ⊆ R be an interval and c ∈ 〈α,β〉 such that [a, b] ⊆ [α, c] and
[a, b] ⊆ [c,β]. Let p and x be n-tuples of real numbers, and let q and y be m-tuples of
real numbers such that Pn =

∑n
i= pi = , Qm =

∑m
i= qi = , and

(xj – x)

( n∑
i=

pixi – xj

)
≥  (j = , . . . , n);

x,
n∑

i=

pixi ∈ [a, b];
n∑

i=

pixi = x;

(yj – y)

( m∑
i=

qiyi – yj

)
≥  (j = , . . . , m);

y,
m∑

i=

qiyi ∈ [a, b];
m∑

i=

qiyi = y.

(.)

Let

C := A

( n∑
i=

pixi

)

+ B

( n∑
i=

pi – 

)
x

 –
n∑

i=

pix
i

= A

( m∑
j=

qjyj

)

+ B

( m∑
j=

qj – 

)
y

 –
m∑
j=

qjy
j , (.)

where

A =
∑n

i= pi(xi – x)∑n
i= pixi – x

, B =
∑n

i= pixi∑n
i= pixi – x

,

A =
∑m

j= qj(yj – y)∑m
j= qjyj – y

, B =
∑m

j= qjyj∑m
j= qjyj – y

.
(.)

If Pn · Qm >  and for all s ∈ [α,β] and the function G defined in (.) the inequalities

n∑
i=

piG(xi, s) ≤ AG

( n∑
i=

pixi, s

)
+ B

( n∑
i=

pi – 

)
G(x, s), (.)

m∑
j=

qjG(yj, s) ≤ AG

( m∑
j=

qjyj, s

)
+ B

( m∑
j=

qj – 

)
G(y, s), (.)
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hold, then for every continuous function ϕ ∈Kc
([α,β]) we have

Aϕ

( n∑
i=

pixi

)
+ B

( n∑
i=

pi – 

)
ϕ(x) –

n∑
i=

piϕ(xi)

≤ D


C ≤ Aϕ

( m∑
j=

qjyj

)
+ B

( m∑
j=

qj – 

)
ϕ(y) –

m∑
j=

qjϕ(yj). (.)

The statement also holds if we reverse all signs of the inequalities in (.), (.), and (.).

Proof We follow the same idea as in the proof of Theorem . from Section . We apply
Theorem . and Corollary . to the function φ(x) = ϕ(x)– D

 x, which is concave on [α, c]
and convex on [c,β]. We set a = min{x,

∑n
i= pixi}, b = max{x,

∑n
i= pixi} on [α, c], and

then we set a = min{y,
∑m

j= qjyj} and b = max{y,
∑m

j= qjyj} on [c,β], as well as consider
the signs of Pn and Qm. We omit the details. �

Corollary . Let the assumptions from the previous theorem hold.
(i) If Pn >  and Qm <  and if for all s ∈ [α,β] inequality (.) holds and inequality

(.) is reversed, then (.) holds.
(ii) If Pn <  and Qm >  and if for all s ∈ [α,β] inequality (.) is reversed and

inequality (.) holds, then (.) holds.
Statements (i) and (ii) also hold if we reverse the signs in all of the inequalities.

Corollary . Let the assumptions from the previous theorem hold.
(i) If Pn · Qm >  and if for all s ∈ [α,β] inequalities (.) and (.) hold, then for every

continuous function ϕ ∈Kc
([α,β]) the reversed inequality in (.) holds.

(ii) If Pn · Qm >  and if for all s ∈ [α,β] inequalities (.) and (.) are reversed, then for
every continuous function ϕ ∈Kc

([α,β]) (.) holds.
(iii) If Pn >  and Qm <  and if for all s ∈ [α,β] inequality (.) holds and inequality

(.) is reversed, then for every continuous function ϕ ∈Kc
([α,β]) the reversed

inequality in (.) holds.
(iv) If Pn <  and Qm >  and if for all s ∈ [α,β] inequality (.) is reversed and

inequality (.) holds, then for every continuous function ϕ ∈Kc
([α,β]) the reversed

inequality in (.) holds.
Statements (iii) and (iv) also hold if we reverse the signs in all of the mentioned inequalities.

Remark . One needs to notice that if we set pi (i = , . . . , n) and qj (j = , . . . , m) to be
positive, Theorem . becomes the Levinson type generalization of the original Giaccardi
inequality (.).

Remark . As in the previous sections, we can replace the equality (.) by a weaker
condition

C :=
D


[
A

( n∑
i=

pixi

)

+ B

( n∑
i=

pi – 

)
x

 –
n∑

i=

pix
i

]

≤ C :=
D


[
A

( m∑
j=

qjyj

)

+ B

( m∑
j=

qj – 

)
y

 –
m∑
j=

qjy
j

]
, (.)
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and then (.) becomes

Aϕ

( n∑
i=

pixi

)
+ B

( n∑
i=

pi – 

)
ϕ(x) –

n∑
i=

piϕ(xi) ≤ C

≤ C ≤ Aϕ

( m∑
j=

qjyj

)
+ B

( m∑
j=

qj – 

)
ϕ(y) –

m∑
j=

qjϕ(yj).

Since ϕ′′
–(c) ≤ D ≤ ϕ′′

+(c) (see []), if additionally ϕ is convex (resp. concave), the condition
(.) can be further weakened to

A

( n∑
i=

pixi

)

+ B

( n∑
i=

pi – 

)
x

 –
n∑

i=

pix
i

≤ A

( m∑
j=

qjyj

)

+ B

( m∑
j=

qj – 

)
y

 –
m∑
j=

qjy
j .

8 Mean-value theorems
Let f : [a, b] → R and g : [a, b] → R be continuous functions, [α,β] ⊆ R an interval
and c ∈ 〈α,β〉 such that f ([a, b]) = [m, M] ⊆ [α, c] and g([a, b]) = [m, M] ⊆ [c,β].
Let λ : [a, b] → R and μ : [a, b] →R be continuous functions or functions of bounded
variation such that λ(a) = λ(b) and μ(a) = μ(b), and let ϕ ∈Kc

([α,β]) be a continuous
function.

Motivated by the results obtained in previous sections, we define the following linear
functionals which, respectively, represent the difference between the right and the left
side of inequalities (.) and (.):

�J (ϕ) =

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)
– ϕ(ḡ) –

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)
+ ϕ(f̄ ), (.)

where f̄ ∈ [α, c], ḡ ∈ [c,β];

�ELR(ϕ) =
M – ḡ

M – m
ϕ(m) +

g – m

M – m
ϕ(M) –

∫ b
a

ϕ(g(x)) dμ(x)∫ b
a

dμ(x)

–
M – f̄

M – m
ϕ(m) –

f̄ – m

M – m
ϕ(M) +

∫ b
a

ϕ(f (x)) dλ(x)∫ b
a

dλ(x)
, (.)

where m = M and m = M.
We have:
(i) �J (ϕ) ≥ , when (.) holds and for all s ∈ [α, c], s ∈ [c,β] (.) holds;

(ii) �ELR(ϕ) ≥ , when (.) holds, and for all s ∈ [α, c] (.) holds and for all s ∈ [c,β]
(.) holds.

In the following two theorems we give the mean-value theorems of the Lagrange and
Cauchy type, respectively.

Theorem . Let f : [a, b] → R and g : [a, b] → R be continuous functions, [α,β] ⊆
R an interval and c ∈ 〈α,β〉 such that f ([a, b]) = [m, M] ⊆ [α, c] and g([a, b]) =
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[m, M] ⊆ [c,β]. Let λ : [a, b] →R and μ : [a, b] →R be continuous functions or func-
tions of bounded variation such that λ(a) = λ(b), μ(a) = μ(b). Let �J and �ELR be linear
functionals defined above, and let ϕ ∈ C([α,β]).

(i) If (.) holds and for all s ∈ [α, c], s ∈ [c,β] (.) holds, then there exists ξ ∈ [α,β]
such that

�J (ϕ) =
ϕ′′′(ξ)



[∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)
–

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)
+ f̄  – ḡ

]
. (.)

(ii) If (.) holds, and for all s ∈ [α, c] (.) holds and for all s ∈ [c,β] (.) holds, then
there exists ξ ∈ [α,β] such that

�ELR(ϕ) =
ϕ′′′(ξ)



[
M – ḡ

M – m
m

 +
g – m

M – m
M

 –

∫ b
a

g(x) dμ(x)∫ b
a

dμ(x)

–
M – f̄

M – m
m

 –
f̄ – m

M – m
M

 +

∫ b
a

f (x) dλ(x)∫ b
a

dλ(x)

]
. (.)

Proof Since ϕ′′′(x) is continuous on [α,β], it attains its minimum and maximum value on
[α,β], i.e. there exist m = minx∈[α,β] ϕ

′′′(x) and M = maxx∈[α,β] ϕ
′′′(x). The functions ϕ,ϕ :

[α,β] →R defined by

ϕ(x) = ϕ(x) –
m


x and ϕ(x) =
M


x – ϕ(x)

are -convex because ϕ′′′
 (x) ≥  and ϕ′′′

 (x) ≥ , so from Remark . it follows that they
belong to the class Kc

([α,β]). From Theorem . it follows that �J (ϕ) ≥  and �J (ϕ) ≥ ,
and from Theorem . it follows that �ELR(ϕ) ≥  and �ELR(ϕ) ≥  and so we get

m


�J (ϕ̃) ≤ �J (ϕ) ≤ M


�J (ϕ̃), (.)

m


�ELR(ϕ̃) ≤ �ELR(ϕ) ≤ M


�ELR(ϕ̃), (.)

where ϕ̃(x) = x. Since the function ϕ̃ is -convex, we have ϕ̃ ∈ Kc
([α,β]), so by apply-

ing Theorem . (resp. Theorem .) we get �J (ϕ̃) ≥  (resp. �ELR(ϕ̃) ≥ ). If �J (ϕ̃) = 
(resp. �ELR(ϕ̃) = ), then (.) implies �J (ϕ) =  (resp. (.) implies �ELR(ϕ) = ), so (.)
(resp. (.)) holds for every ξ ∈ [α,β]. Otherwise, dividing (.) by �J (ϕ̃) >  (resp. (.)
by �ELR(ϕ̃) > ) we get

m


≤ �J (ϕ)
�J (ϕ̃)

≤ M


(
resp.

m


≤ �ELR(ϕ)
�ELR(ϕ̃)

≤ M


)
,

and continuity of ϕ′′′ ensures the existence of ξ ∈ [α,β] satisfying (.) (resp. ξ ∈ [α,β]
satisfying (.)). �

Theorem . Let the conditions from Theorem . hold. Let ϕ,ψ ∈ C([α,β]). If �J (ψ) = 
and �ELR(ψ) = , then there exist ξ, ξ ∈ [α,β] such that

�J (ϕ)
�J (ψ)

=
ϕ′′′(ξ)
ψ ′′′(ξ)

or ϕ′′′(ξ) = ψ ′′′(ξ) = 
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and

�ELR(ϕ)
�ELR(ψ)

=
ϕ′′′(ξ)
ψ ′′′(ξ)

or ϕ′′′(ξ) = ψ ′′′(ξ) = .

Proof Let us define a function χ ∈ C([α,β]) by χ (x) = �J (ψ)ϕ(x) – �J (ϕ)ψ(x). Due to the
linearity of �J we have �J (χ ) = . Theorem . implies that there exist ξ, ξ ∈ [α,β] such
that

�J (χ ) =
χ ′′′(ξ)


�J (ϕ̃),

�J (ψ) =
ψ ′′′(ξ )


�J (ϕ̃),

where ϕ̃(x) = x. Now we have �J (ϕ̃) = , because otherwise we would have �J (ψ) = ,
which is a contradiction with the assumption �J (ψ) = . So we have

χ ′′′(ξ) = �J (ψ)ϕ′′′(ξ) – �J (ϕ)ψ ′′′(ξ) = ,

and this gives us the first claim of the theorem. The second claim is proved in an analogous
manner, by observing the linear functional �ELR instead of �J . �

Remark . Note that if in Theorem . we set the function ψ to be ψ(x) = x, we get
exactly Theorem ..

Remark . Note that if we set the functions f , g , λ, and μ from our theorems to fulfill
the conditions from Jensen’s integral inequality or Jensen-Steffensen’s, or Jensen-Brunk’s,
or Jensen-Boas’ inequality, then - applying that inequality on the function G which is con-
tinuous and convex in both variables - we see that in these cases for all s ∈ [α, c], s ∈ [c,β]
inequalities in (.) hold, and so from our results we directly get the results from the paper
[].

Remark . If in the definition of the functional �J (resp. �ELR) we set f (x) = x and g(x) =
x, then we get a functional that represents the difference between the right and the left
side of the left-hand part (resp. right-hand part) of the generalized Hermite-Hadamard
inequality. In the same manner, adequate results of Lagrange and Cauchy type for those
functionals can be derived directly from Theorem . and Theorem ..

8.1 Discrete case
Let [α,β] ⊆R and c ∈ 〈α,β〉. Let xi ∈ [a, b] ⊆ [α, c], pi ∈R (i = , . . . , n) be such that Pn =
, and let yj ∈ [a, b] ⊆ [c,β], qj ∈ R (j = , . . . , m) be such that Qm = . Let ϕ ∈ Kc

([α,β])
be a continuous function.

As before, motivated by the discrete results obtained in previous sections, we define the
following linear functionals which, respectively, represent the difference between the right
and the left side of inequalities (.), (.), and (.):

�JD (ϕ) =


Qm

m∑
j=

qjϕ(yj) –


Pn

n∑
i=

piϕ(xi) + ϕ(x̄) – ϕ(ȳ), (.)
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where x̄ ∈ [α, c], ȳ ∈ [c,β];

�ELRD (ϕ) =
b – ȳ

b – a
ϕ(a) +

ȳ – a

b – a
ϕ(b) –


Qm

m∑
j=

qjϕ(yj)

–
b – x̄
b – a

ϕ(a) –
x̄ – a

b – a
ϕ(b) +


Pn

n∑
i=

piϕ(xi), (.)

where a = b and a = b;

�G(ϕ) = Aϕ

( m∑
j=

qjyj

)
+ B

( m∑
j=

qj – 

)
ϕ(y) –

m∑
j=

qjϕ(yj)

– Aϕ

( n∑
i=

pixi

)
– B

( n∑
i=

pi – 

)
ϕ(x) +

n∑
i=

piϕ(xi), (.)

where the conditions (.) hold and A, B, A, B are defined in (.).
We have:

(i) �JD (ϕ) ≥ , when (.) holds and for all s ∈ [α, c], s ∈ [c,β] (.) holds;
(ii) �ELRD (ϕ) ≥ , when (.) holds, and for all s ∈ [α, c] (.) holds and for all s ∈ [c,β]

(.) holds;
(iii) �G(ϕ) ≥ , when Pn · Qm >  and (.) holds, and for all s ∈ [α,β] (.) and (.)

hold.
The following two results are mean-value theorems of the Lagrange and Cauchy type,

respectively, and they are obtained in an analogous way to the theorems of the same type
in the previous sections, so we omit the proof.

Theorem . Let [α,β] ⊆ R be an interval and c ∈ 〈α,β〉. Let xi ∈ [a, b] ⊆ [α, c], pi ∈ R

(i = , . . . , n) be such that Pn =  and let yj ∈ [a, b] ⊆ [c,β], qj ∈ R (j = , . . . , m) be such
that Qm = . Let �JD , �ELRD , and �G be the linear functionals defined above, and let ϕ ∈
C([α,β]).

(i) If (.) holds and for all s ∈ [α, c], s ∈ [c,β] (.) holds, then there exists ξ ∈ [α,β]
such that

�D(ϕ) =
ϕ′′′(ξ)



[


Qm

m∑
j=

qjy
j –


Pn

n∑
i=

pix
i + x̄ – ȳ

]
. (.)

(ii) If (.) holds, and for all s ∈ [α, c] (.) holds and for all s ∈ [c,β] (.) holds, then
there exists ξ ∈ [α,β] such that

�ELRD (ϕ) =
ϕ′′′(ξ)



[
b – ȳ

b – a
a

 +
ȳ – a

b – a
b

 –


Qm

m∑
j=

qjy
j

–
b – f̄
b – a

a
 –

f̄ – a

b – a
b

 +


Pn

n∑
i=

pix
i

]
. (.)
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(iii) If Pn · Qm >  and (.) holds, and for all s ∈ [α,β] (.) and (.) hold, then there
exists ξ ∈ [α,β] such that

�G(ϕ) =
ϕ′′′(ξ)



[
A

( m∑
j=

qjyj

)

+ B

( m∑
j=

qj – 

)
y

 –
m∑
j=

qjy
j

– A

( n∑
i=

pixi

)

– B

( n∑
i=

pi – 

)
x

 +
n∑

i=

pix
i

]
. (.)

Theorem . Let the conditions of Theorem . hold and let ϕ,ψ ∈ C([α,β]). If �JD (ψ) =
, �ELRD (ψ) = , and �G(ψ) = , then there exist ξ, ξ, ξ ∈ [α,β] such that all of the fol-
lowing statements hold:

�JD (ϕ)
�JD (ψ)

=
ϕ′′′(ξ)
ψ ′′′(ξ)

or ϕ′′′(ξ) = ψ ′′′(ξ) = , (.)

�ELRD (ϕ)
�ELRD (ψ)

=
ϕ′′′(ξ)
ψ ′′′(ξ)

or ϕ′′′(ξ) = ψ ′′′(ξ) = , (.)

�G(ϕ)
�G(ψ)

=
ϕ′′′(ξ)
ψ ′′′(ξ)

or ϕ′′′(ξ) = ψ ′′′(ξ) = . (.)

Remark . Note that if in Theorem . we set the function ψ to be ψ(x) = x, we get
exactly Theorem ..

As a consequence of the previous two theorems, we now give some further results in
which we give explicit conditions on pi, xi (i = , . . . , n) and qj, yj (j = , . . . , m) for (.) and
(.) to hold, where using the properties of the function G we can skip the supplementary
conditions on that function.

Corollary . Let xi ∈ [α, c], pi ∈R
+ (i = , . . . , n) and yj ∈ [c,β], qj ∈R

+ (j = , . . . , m), and
let ϕ,ψ : [α,β] → R.

(i) If (.) holds and ϕ ∈ C([α,β]), then there exists ξ ∈ [α,β] such that (.) holds.
(ii) If (.) holds and ϕ,ψ ∈ C([α,β]), then there exists ξ ∈ [α,β] such that (.) holds.

Proof Note that pi, qj >  implies that x̄ ∈ [α, c] and ȳ ∈ [c,β], so we can set the interval
[a, b] to be [α, c] and [a, b] to be [c,β]. The function G is convex, so by Jensen’s in-
equality we see that the inequalities in (.) hold for all s ∈ [α, c], s ∈ [c,β]. Now we can
apply Theorem . and Theorem . to get the statements of this corollary. �

Corollary . Let (x, . . . , xn) be monotonic n-tuple, xi ∈ [α, c] (i = , . . . , n) and (y, . . . , ym)
be monotonic m-tuple, yj ∈ [c,β] (j = , . . . , m). Let (p, . . . , pn) be a real n-tuple such that

 ≤ Pk ≤ Pn (k = , . . . , n), Pn > ,

and (q, . . . , qm) be a real m-tuple such that

 ≤ Qk ≤ Qm (k = , . . . , m), Qm > .

Let ϕ,ψ : [α,β] →R.
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(i) If (.) holds and ϕ ∈ C([α,β]), then there exists ξ ∈ [α,β] such that (.) holds.
(ii) If (.) holds and ϕ,ψ ∈ C([α,β]), then there exists ξ ∈ [α,β] such that (.) holds.

Proof Suppose that x ≥ x ≥ · · · ≥ xn. We have

Pn(x – x̄) =
n∑

i=

pi(x – xi) =
n∑

j=

(xj– – xj)(Pn – Pj–) ≥ 

so it follows that x ≥ x̄. Furthermore,

Pn(x̄ – xn) =
n–∑
i=

pi(xi – xn) =
n–∑
j=

(xj – xj+)Pj ≥ ,

so x̄ ≥ xn. We see that we have obtained xn ≤ x̄ ≤ x, that is, x̄ ∈ [α, c]. In an analogous
way we can get ȳ ∈ [c,β]. Therefore, as well as in the proof of the previous corollary, we
can set the interval [a, b] to be [α, c] and [a, b] to be [c,β]. By the Jensen-Steffensen
inequality we see that for the convex function G the inequalities in (.) hold for all s ∈
[α, c], s ∈ [c,β]. Now the statements of this corollary follow directly from Theorem .
and Theorem .. �
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