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Abstract

The covariance intersection (CI), especially with feedback structure, can be easily combined with nonlinear filters to
solve the distributed fusion problem of multi-sensor nonlinear tracking. However, this paper proves that the CI
algorithm is sub-optimal, thus degrading the fusion accuracy. To avoid such an issue, a novel distributed fusion
algorithm, namely Monte Carlo Bayesian (MCB) algorithm, is proposed. First, it builds a distributed fusion architecture
based on the Bayesian tracking framework. Then, the Monte Carlo sampling is incorporated into this architecture to
form a feasible solution to nonlinear tracking. Finally, the simulation results verify that our MCB algorithm advances
the state-of-the-art distributed fusion of nonlinear tracking.

Keywords: Bayesian tracking framework, Monte Carlo sampling, Covariance intersection

1 Introduction
Distributed fusion [1] refers to combining the information
of decentralized sensors [2, 3], in which the observation
information of each sensor is processed independently.
In comparison with centralized fusion, the distributed
fusion can significantly save time and storage resources in
the fusion center. As for distributed fusion, the conven-
tional solution is Bar-Shalom-Campo algorithm [4]. Later,
Chang et al. [5] proved that this algorithm is not opti-
mal in terms of the root-mean-square-error (RMSE), and
they further presented an optimal fusion algorithm. Nev-
ertheless, this algorithm can only be used in the scenario
of two sensors fusion. Hence, Li et al. [6] proposed a uni-
fied fusion architecture, which can be used for two and
more sensors. However, all aforementioned algorithms
are designed with linear state space models (SSM), which
results in the inferior fusion performance of nonlinear
tracking.
Recently, some intelligent techniques, such as the adap-

tive fuzzy backstepping control technique [7] and the
adaptive neural network technique [8] with nonlinear
model predictive control, are proposed to advance the
application of nonlinearmodels inmulti-sensors or sensor
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network control [9]. Hence, the optimal distributed fusion
with nonlinear model becomes one of the most important
direction of signal processing. To our best knowledge, the
most effective algorithms for fusion are based on covari-
ance intersection (CI) [10, 11]. These CI-based algorithms
can be easily combined with nonlinear filers to form the
state-of-the-art solutions to nonlinear problems, such as
UKF-SCI [12] and DPF-ICI [13]. The former is more accu-
rate because the unscented Kalman filter (UKF) performs
better in normally nonlinear tracking, while the latter has
an advantage in non-Gaussian scenarios benefitting from
the particle filter (PF). However, these CI-based algo-
rithms require the computation on additional fractional
powers to calculate the fusion results [14], which causes
an increment of estimation error. Although many applica-
tions utilize a feedback structure1 to improve the fusion
accuracy [15], this paper proves that the sub-optimality
caused by the increment of estimation error still exists in
CI. To our best knowledge, few algorithms are proposed
to overcome this sub-optimality. Hence, the present study
is motivated to achieve a fusion algorithm which can out-
perform the CI algorithm. In summary, the novelty of this
paper is that our algorithm overcomes the sub-optimality
problem in covariance intersection (CI) fusion, which has
not been addressed in the previous work.
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In this paper, a Monte Carlo Bayesian (MCB) algorithm
is proposed to overcome the disadvantage of the sub-
optimality in CI algorithm, such that the fusion perfor-
mance can be improved. Specifically, a distributed fusion
architecture is designed based on the Bayesian track-
ing framework (BTF). This algorithm utilizes the law of
total probability to form the distributed architecture, thus
avoiding the increment of estimation error. Furthermore,
the Monte Carlo sampling [16] is incorporated into our
distributed architecture. This sampling method offers a
direct approximate inference of the expectation of the tar-
get function with respect to a probability distribution [17].
Benefiting from this sampling method, the intractable
problem of nonlinear estimation in BTF is circumvented
by means of the approximation algorithm with sampling
particles. Finally, based on the approximation, the fusion
results are achieved in the form of the mean and variance
of estimation at each step. Themeanings of notation in the
paper are listed in Table 1. The contributions of this work
are listed as follows,

• A novel distributed fusion architecture is proposed,
which makes full use of the information of different
sensors to produce robust fusion estimation.

Table 1 Notation list

Notation Meaning of the notation

xk The state at time step k

Pk The variance of state at time step k

i The i-th sensor

I The number of sensors

n The n-th particle

N The number of particles

Xn
k The n-th particle of state at time step k

zik The observation of the i-th sensor at time step k

zf1:k The observation set of all sensors from time step 1 to k

p(·) The transition distribution of state

q(·) The likelihood of state

hi(·) The observation function of the i-th sensor

Q The variance of observation noise

δ(·) The Dirac delta function

C The normalized constant

F The transition function

nk−1 The transition noise at time k − 1

dx,k , dy,k The distances along x and y direction at time step k

vx,k , vy,k The velocity along x and y direction at time step k

sT The sampling interval

nd , nv The transition noise of distance and velocity with
variance σ 2

d and σ 2
v

nθ , nr The observation noise of azimuth and distance with
variance σ 2

θ and σ 2
r

• AMCB algorithm is developed by means of the
Monte Carlo sampling, which solves the nonlinear
fusion problem based on the numerical
approximation.

2 Distributed fusion architecture based on BTF
In this section, our distributed fusion architecture is
developed based on BTF. Let us consider the I sen-
sors fusion scenario with feedback structure. The state
and the ith observation sequences are denoted as{
xk ; k ∈ N, xk ∈ R

dx
}
and

{
zik ; k ∈ N, zik ∈ R

dzi
}
, where k

is the time step, i = {1, 2, . . . I} is the number of sensors,
dx and dzi are the dimensions of the state and the i-th
observation vectors, respectively. Their relationship can
be represented by the SSM as follows,

Transition equation : p(xk|xk−1), k ≥ 0, (1)

Observation equation : q(zik|xk), k ≥ 0, (2)

where p(·) is the transition distribution, and q(·) is the
likelihood of xk in the i-th sensor. According to the BTF,
the fusion process is to obtain the posterior distribution
p
(
xk|zf1:k

)
based on the SSM, where zf1:k = {

zi1:k
}I
i=1 is the

integrated observation set combining all the sensors infor-
mation from step 1 to k. Notice that, in the feedback struc-
ture, we normally have zi1:k =

{
zik , z

f
1:k−1

}
because the

prior observation information has been shared between
sensors. Then, the fusion is calculated iteratively with two
steps: the prediction and update steps.
The prediction step:

p(xk|zf1:k−1) =
∫

p(xk|xk−1)p
(
xk−1|zf1:k−1

)
dxk−1.

(3)

The update step:

p(xk|zf1:k) =
q
(
zfk|xk

)
p
(
xk|zf1:k−1

)
p
(
zfk|zf1:k−1

) , (4)

where

p
(
zfk|zf1:k−1

)
=
∫

q
(
zfk|xk

)
p
(
xk|zf1:k−1

)
dxk (5)

is the marginal likelihood.
In normal cases, the current observation from each

sensor is independent of others. Thus, the posterior dis-
tribution of (4) can be recalculated according to the law of
total probability as follows,

p
(
xk|zf1:k

)
∝ p

(
xk|zf1:k−1

) I∏
i=1

q
(
zik|xk

)
. (6)
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Then, our distributed architecture is obtained by uti-
lizing (6) to decompose the computation of (4) to each
sensor, which is summarized in Fig. 1.
Figure 1 shows that, in the fusion process of time step

k, the fusion center makes a prediction with (3). Then,
the information of prediction is sent to each distributed
sensor, in which the likelihood is calculated. Afterwards,
each sensor sends the likelihood back to the fusion center
to yield the final result with (6). Finally, the fusion result
feeds back to the fusion center as the prior information of
the next step.

3 Sub-optimality in CI algorithmwith feedback
structure

This section analyzes the sub-optimality of the existing CI
algorithm with feedback structure, by comparing it with
the aforementioned distributed fusion in Section 2. This
paper only concentrates on the most common scenarios
that the distribution in SSM is Gaussian [18]. Without
loss of generality, the fusion with I sensors is considered,
where I ≥ 2. According to [19], for anyw ∈ (0, 1), the pos-
terior distribution of two sensors fusion in CI algorithm
holds:

p
(
xk|
{
z11:k , z

2
1:k
}) ∝ p

(
xk|z11:k

)ω p
(
xk|z21:k

)1−ω . (7)

Lemma 1. Let xk ∈ R
dx , zik ∈ R

dzi , where k ∈ N;
i = {1, 2, . . . I}, I ∈ N, I ≥ 2; dx and dzi are the dimen-
sions of vectors xk and zik . Let zf1:k = {

zi1:k
}I
i=1, where

zi1:k =
{
zik , z

f
1:k−1

}
. Given (7), the posterior distribution

p
(
xk|zf1:k

)
can be derived as follows,

p
(
xk|zf1:k) ∝ p(xk|zf1:k−1

) I∏
i=1

q
(
zik|xk

)ωi , (8)

where wi ∈ (0, 1) and
∑I

i=1 wi = 1.

Proof. We decompose p
(
xk|zf1:k

)
into a product form

according to (7) as follows

p
(
xk|zf1:k

)
= p

(
xk|{zi1:k}Ii=1

)
∝
( I∏
i=1

p
(
xk|zi1:k

)ω′
i
∏i−1

j=0(1−ω′
j)

)
p
(
xk|zI1:k

)∏I
l=1(1−ω′

l) ,(9)

where ω′
0 ≡ 0, and w′

i ∈ (0, 1), i = 1, 2 . . . I. Then, (9) can
be rewritten as

p
(
xk|zf1:k

)
∝

I∏
i=1

p
(
xk|zi1:k

)ωi , (10)

where ωi � ω′
i
∏i−1

j=0(1 − ω′
j), i = 1, 2 . . . I − 1, and ωI �∏I

l=1(1 − ω′
l). It can be easily known that wi ∈ (0, 1) and∑I

i=1 wi = 1. Based on (10), we finally have

p
(
xk|zf1:k

)
∝

I∏
i=1

p
(
xk|zik , zf1:k−1

)ωi

∝ p
(
xk|zf1:k−1

) I∏
i=1

q
(
zik|xk

)ωi . (11)

This completes the proof of Lemma 1.
In the feedback structure, Lemma 1 provides a general-

ized form of posterior distribution p
(
xk|zf1:k

)
calculated

in CI fusion. As seen from (8) and (6), the CI algorithm
adds a fractional power ωi to each likelihood.

Lemma 2. Assuming that likelihoods obey Gaussian dis-
tribution, i.e., q

(
zik|xk

) = N
(
zik ; h

i(xk), σ 2
i
)
for each i =

{1, 2, . . . I}, where hi(·) is the mapping from R
dx to R

dzi ,
and σ 2

i is the corresponding variance. Then, the variance
of likelihood in each sensor becomes σ 2

i /ωi in CI algorithm.

Fig. 1 The distributed fusion architecture. The figure describes the fusion architecture in which sensors and fusion center are linked with information
flow
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Proof. According to Lemma 1, the posterior distribution
of CI is calculated with (8) as

p
(
xk|zf1:k

)

∝ p
(
xk|zf1:k−1

) I∏
i=1

exp
(

− (zik − hi(xk))2

2σ 2
i /ωi

)
. (12)

Hence, the variance of each likelihood in CI fusion
has turned into σ 2

i /ωi in the process of calculating
the posterior distribution. This completes the proof of
Lemma 2.

Since there exists

ωi ∈ (0, 1)⇒ σ 2
i /ωi > σ 2

i ,

ωi increases the variance of likelihood in CI fusion. Hence,
compared with (6) in the distributed fusion of Section 2,
the estimation (8) calculated in CI contains more uncer-
tainty under the same observations. Such uncertainty
leads to the increment of estimation error. As a result,
the sub-optimality still exists in CI fusion with feedback
structure.

4 Monte Carlo Bayesian algorithm
To avoid the increment of estimation error, this paper
utilizes the distributed fusion architecture in Section 2
to develop the fusion algorithm. In the most common
applications, the observation is nonlinear [20]. Therefore,
the posterior distributed in (6) cannot be simply calcu-
lated by joint Gaussian method with the procedure of
squares completion [21]. To solve this problem, our MCB
algorithm is proposed. This algorithm incorporates the
Monte Carlo sampling into the distributed fusion archi-
tecture, by which the posterior distribution can be directly
approximated with particles.

4.1 Monte Carlo sampling in MCB algorithm
At time k, N independent random particles are drawn
from prediction distribution p

(
xk|zf1:k−1

)
in (3):

{
Xn
k ∼ p

(
xk|zf1:k−1

)}N
n=1

, (13)

where Xn
k is the n-th particle drawn from p

(
xk|zf1:k−1

)
.

According to the approximation inference method of
numerical sampling [17], the prediction distribution
p
(
xk|zf1:k−1

)
can be approximated as follows,

p
(
xk|zf1:k−1

)
≈ 1

N

N∑
n=1

δXn
k
(xk). (14)

In (14), δXn
k
(·) denotes the Dirac delta function,

δXn
k
(x) =

{
1, x = Xn

k ,
0, x 
= Xn

k .
(15)

According to (14), the posterior distribution in (6) can
be approximated as,

p
(
xk|zf1:k

)
≈
[
C
N

N∑
n=1

δXn
k
(xk)

] I∏
i=1

q
(
zik|xk

)

= C
N

N∑
n=1

[ I∏
i=1

q(zik|xk)
]

δXn
k
(xk), (16)

where C is the normalization constant.

4.2 Fusion with MCB algorithm
According to the distributed fusion architecture in
section 2, the estimation of state xk is calculated iteratively
by (3) and (6).
First, in the fusion center, at time step k, given the pre-

vious state estimation with the mean x̄k−1 and variance
Pk−1, the unscented sigma point set χk−1 is calculated as
follows,

χk−1 =
[
x̂k−1, x̂k−1 ±√

(Ix + λ)Pk−1
]
. (17)

In (17), χi,k−1 ∈ χk−1 denotes the ith point in the sigma
point set, and λ is the scaling parameter [22]. Then, the
prediction (3) is calculated in the form of mean x̄k|k−1 and
variance Pk|k−1 [22] as

x̄k|k−1 =
2Ix∑
i=0

Wm
i f (χi,k−1), (18)

Pk|k−1 = Q+
2Ix∑
i=0

Wc
i
[
f (χi,k−1) − x̄k|k−1

] [
f (χi,k−1) − x̄k|k−1

]T ,

(19)

where f (·) is the state transition function,Q is the variance
of corresponding noise, Wm

i ∈ Wm and Wc
i ∈ W c are

unscented transformation parameters calculated before
estimation [22]. Then, N particles are drawn from the
Gaussian approximation of prediction:

{Xn
k ∼ N (xk ; x̄k|k−1, Pk|k−1)}Nn=1.

Second, the particles are sent to each sensor node. After
achieving the observation zik in the ith sensor, the likeli-
hood is approximated by the set:

{
q
(
zik|Xn

k
)}N

n=1. Then,
each sensor sends its own approximated likelihood back
to the fusion center.
Finally, the fusion center receives all the approximated

likelihoods, and calculates the fusion results in the form of
the mean and variance with (16) as follows,
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x̄k =
∫

xkp
(
xk|zf1:k−1

)
dxk

≈
∫

xk

{
C
N

N∑
n=1

[ I∏
i=1

q
(
zik|xk

)]
δXn

k
(xk)

}
dxk

= C
N

N∑
n=1

[ I∏
i=1

q
(
zik|Xn

k
)]

Xn
k , (20)

Pk =
∫ (

xk − x̄k
) (
xk − x̄k

)T p
(
xk |zf1:k−1

)
dxk

≈
∫ (

xk − x̄k
) (
xk − x̄k

)T
⎧⎨
⎩ C
N

N∑
n=1

⎡
⎣ I∏
i=1

q(zik |xk)
⎤
⎦ δXn

k

(
xk
)⎫⎬⎭ dxk

= C
N

N∑
n=1

∫ ⎧⎨
⎩
⎡
⎣ I∏
i=1

[
q(zik |xk)

] (
xk − x̄k

) (
xk − x̄k

)T
δXn

k

(
xk
)⎫⎬⎭ dxk

= C
N

N∑
n=1

⎡
⎣ I∏
i=1

q
(
zik |Xn

k

)⎤⎦ [Xn
k − x̄k

] [
Xn
k − x̄k

]T . (21)

5 Simulation results
In this section, the simulation results are provided to
validate the performance of our MCB algorithm. In our
simulation, a classic two-dimensional (2-D) fusion sce-
nario with the nonlinear observation of one active and two
passive radars is considered. In such a scenario, the fusion
process is simulated by tracking a single target under sev-
eral cases. For each case, different noise and kinematic
models of transition equation are applied. Finally, 100
Monte Carlo simulations have been run for each case, and
the fusion performance of nonlinear tracking is compared
between our MCB algorithm and the UKF-SCI algorithm
[12] with feedback structure. Note that, in this paper, we
concentrate on Gaussian tracking scenarios, in which the
UKF-SCI outperforms the DPF-ICI [13].

5.1 Simulation setup
In the common radar system, the transition Eq. (1) is
considered as

xk = Fxk−1 + nk−1, (22)

where xk =[ dx,k , dy,k , vx,k , vy,k]T is the column vector,
indicating the 2-D distance and velocity of a single target
in the x − y plane at time step k. F is the state transition
matrix with sampling interval sT . In this paper, three state
transition matrices are taken into account for three kine-
matic models: constant-velocity (CV) and constant-turn
(CT) with known turn rates ω = 2.5◦/s and ω = 5◦/s [23]:

F =

⎡
⎢⎢⎣
1 0 sT 0
0 1 0 sT
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (23)

for CV model and

F =

⎡
⎢⎢⎣
1 0 sin(ωsT )

ω
cos(ωsT )−1

ω

0 1 1−cos(ωsT )
ω

sin(ωsT )
ω

0 0 cos(ωsT ) − sin(ωsT )

0 0 sin(ωsT ) cos(ωsT )

⎤
⎥⎥⎦ (24)

for CT model [24]. The trajectories of three kinematic
models in our scenario are shown in Fig. 2.
In addition, nk =[ nd, nd, nv, nv]T represents the

state transition noise in distance and velocity. For fair
comparison, this paper utilizes the same noise for differ-
ent models which obeys the Gaussian distribution, i.e.,
nd ∼ N (nd ; 0, σ 2

d ) and nv ∼ N (nv; 0, σ 2
v ). Here, σd and

σv = 2σd/sT are standard deviations of transition noise of
distance and velocity, respectively.
In our simulation, the observation equation in (2) is

replaced by active and passive radar observation equations
defined as,

Active :zk =
⎡
⎣ arctan dy,k

dx,k√
d2x,k + d2y,k

⎤
⎦+

[
nθ

nr

]
, (25)

Passive :zk = arctan
dy,k
dx,k

+ nθ , (26)

where nθ ∼ N (nθ ; 0, σ 2
θ ), nr ∼ N (nr ; 0, σ 2

r ); σθ and σr
are standard deviations for tracking azimuth and distance.
Then, we evaluate the performance of fusion with three
radars, i.e., one active and two passive radars. Follow-
ing [25], the aforementioned parameters are set as sT =
0.1(s), σθ = 0.0001(rad), σr = 0.5(m), and σd =
{0.25, 0.3, 0.35, 0.4}(m).
The simulation setting may be applied to a compos-

ite guidance scenario [26], in which there are one active
and two passive radars [27, 28]. Although we simplify
the observation equation in a 2-D scenario, the simula-
tion scenario is still suitable for the practical application
of tracking and surveillance in network centric warfare
(NCW) [29].

5.2 Evaluation
In our simulation, the single target tracking is performed
with the aforementioned kinematic models. For each
model, both MCB and UKF-SCI algorithms are utilized
to fuse the information of three radars (one active and
two passive) together, and obtain the final tracking result.
Furthermore, in the tracking process of each model, the
fusion performance is evaluated with four standard devi-
ations of transition noise (i.e., {0.25, 0.3, 0.35, 0.4}(m)).
Note that 100 Monte Carlo runs are applied in our simu-
lation for each scenario, and the particle number N in our
MCB algorithm is set to be 200.
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(a) (b)

(c)

Fig. 2 The trajectories of target for three dynamic models. There are three sub-figures a, b, and c in this figure. a is the trajectory drew according CV
model. b is the trajectory drew according CT model with turn rate ω = 2.5◦/s. c is the trajectory drew according CT model with turn rate ω = 5◦/s

(a) (b)

(c) (d)

Fig. 3 The fusion RMSE of azimuth and distance for both MCB and UKF-SCI algorithms, with CV model. In the upper figures, σd = 0.3(m), and in the
bottom figures, σd = 0.4(m). There are four sub-figures a, b, c, and d in this figure, in which, under the CV model, the changes of fusion RMSE of
azimuth and distance are described along with time steps. Meanwhile, a and b show the comparison between MCB and UKF-SCI algorithms under
the case of standard deviations of distance σd = 0.3(m); b and d show the comparison between MCB and UKF-SCI algorithms under the case of
standard deviations of distance σd = 0.4(m)
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(a) (b)

Fig. 4 The comparison of azimuth and distance RMSE at different standard deviations of distance, with CV model. There are two sub-figures a and b
in this figure, in which, under the CV model, the changes of fusion RMSE of azimuth and distance are described along with different standard
deviations of distance. The fusion RMSE in a and b is the mean of all results covering all fusion time steps

The simulation results of CVmodel are shown in Figs. 3
and 4. In Fig. 3, two scenarios with σd = {0.3, 0.4}
are selected to show the fusion root-mean-squared-error
(RMSE) averaged over all 100 Monte Carlo simulations,
along with the tracking time. Obviously, we can see from
Fig. 3 that our MCB algorithm reduces the RMSE of
both azimuth and distance, along with the tracking time.

Such RMSE reduction becomes larger, when the transi-
tion noise increases. Furthermore, in Fig. 4, we show the
average RMSE (from tracking time 3 to 50 s) of MCB and
UKF-SCI algorithms with all scenarios of four transition
noises. As seen from this figure, our MCB algorithm out-
performs the UKF-SCI algorithm in all cases except the
azimuth case of σd = 0.25. In addition, the improvement

(a) (b)

(c) (d)

Fig. 5 The fusion RMSE of azimuth and distance for both MCB and UKF-SCI algorithms, with CT model of turn rate 2.5◦/s. In the upper figures,
σd = 0.3(m), and in the bottom figures, σd = 0.4(m). There are four sub-figures a, b, c, and d in this figure, in which, under the CT model of turn
rate ω = 2.5◦/s, the changes of fusion RMSE of azimuth and distance are described along with time steps. Meanwhile, a and b show the
comparison between MCB and UKF-SCI algorithms under the case of standard deviations of distance σd = 0.3(m); b and d show the comparison
between MCB and UKF-SCI algorithms under the case of standard deviations of distance σd = 0.4(m)
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(a) (b)

Fig. 6 The comparison of azimuth and distance RMSE at different standard deviations of distance, with CT model of turn rate 2.5◦/s. There are two
sub-figures (a) and (b) in this figure, in which, under the CT model of turn rate 2.5◦/s., the changes of fusion RMSE of azimuth and distance are
described along with different standard deviations of distance. The fusion RMSE in (a) and (b) is the mean of all results covering all fusion time steps

of our MCB algorithm increases, when the transition
noise becomes larger.
The simulation results of CTmodel are shown in Figs. 5,

6, 7, and 8. Figures 5 and 6 show the fusion RMSE com-
parison of MCB and UKF-SCI algorithms with the known
turn rate ω = 2.5◦/s. Figures 7 and 8 show the same things
with the known turn rate ω = 5◦/s. All the results in these

figures are similar to the ones in Figs. 3 and 4. Hence, our
MCB algorithm also outperforms the UKF-SCI algorithm
with CTmodels. In addition, ourMCB algorithm can per-
form better when the turn rate increases. The details are
shown in Tables 2 and 3.
Tables 2 and 3 depict the proportions of reduced RMSE

for different kinematic models and noises. As seen in

Fig. 7 The fusion RMSE of azimuth and distance for both MCB and UKF-SCI algorithms, with CT model of turn rate 5◦/s. In the upper figures,
σd = 0.3(m), and in the bottom figures, σd = 0.4(m). There are four sub-figures a, b, c, and d in this figure, in which, under the CT model of turn
rate ω = 5◦/s, the changes of fusion RMSE of azimuth and distance are described along with time steps. Meanwhile, a and b show the comparison
between MCB and UKF-SCI algorithms under the case of standard deviations of distance σd = 0.3(m); b and d show the comparison between MCB
and UKF-SCI algorithms under the case of standard deviations of distance σd = 0.4(m)
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Fig. 8 The comparison of azimuth and distance RMSE at different standard deviations of distance, with CT model of turn rate 5◦/s. There are two
sub-figures (a) and (b) in this figure, in which, under the CT model of turn rate 5◦/s., the changes of fusion RMSE of azimuth and distance are
described along with different standard deviations of distance. The fusion RMSE in (a) and (b) is the mean of all results covering all fusion time steps

these two tables, the reduction of RMSE becomes larger
when the transition noise increases. This is consistent
with the results shown in aforementioned figures. More-
over, the reduction of RMSE with CT model of turn rate
5◦/s is largest among all three kinematic models. That
means, our MCB algorithm has more advantage for high
maneuvering targets.
In summary, based on the BTF, our MCB algorithm

makes full use of the information of all observations, and
fuses it to obtainmore accurate estimation on target track-
ing. Hence, compared with the CI algorithm, there are
two advantages in ourMCB algorithm: (1)When the tran-
sition noise is large, the fusion RMSE of azimuth and
distance is still small; (2) When the turn rate is large, the
fusion RMSE of azimuth and distance is small as well.
In other words, in the high maneuvering cases such as
large transition noise and turn rate, ourMCB outperforms
the state-of-the-art CI algorithm, in terms of the fusion
RMSE.

5.3 Computational complexity
In this section, the computational complexity of our
MCB algorithm is analysed. According to Section 4.2, in
the fusion center, the algorithm contains two steps for
each iteration: the prediction and update steps. In the
prediction step, according to (18) and (19), the mean
and variance are calculated with a summed form, in
which the computational complexity is proportional to

Table 2 The proportion of azimuth RMSE reduced by MCB
algorithm over UKF-SCI, with four standard deviations of
transition noise

0.25(m) 0.3(m) 0.35(m) 0.4(m)

CV −2.51% 1.29% 4.90% 7.78%

CT with turn rate of 2.5◦/s −3.19% 0.88% 4.10% 7.43%

CT with turn rate of 5◦/s −0.53% 3.47% 7.47% 10.36%

the dimension of tracking state. Moreover, N particles are
drawn by sampling precess whose complexity is O(N). In
the update step, firstly, we need to multiple all I sensors
information of each particle to form a fusion likelihood.
The computational complexity of this process is O(I).
Then, the likelihood is used to compute the fusion results
with the complexity being O(N), according to (20) and
(21). In summary, the computational complexity in the
update step is O(I · N).
To further evaluate the computational complexity of our

MCB algorithm, we have recorded the computational time
of the prediction and update steps, respectively, for one
iteration in the simulation. Specially, the computer used
for the test is with Intel Core i7-3770 CPU at 3.4 GHz
and 4 GB RAM. In the aforementioned tracking case in
Sections 5.1 and 5.2, the dimension of tracking state is
4, the particle number is 200 and the sensor number is
3. Through the simulation, we found out that the predic-
tion and update steps take around 0.563 and 2.3 ms for
one iteration. In other word, we only need 2.863 ms to
compute the tracking results in the fusion center at each
iteration. Hence, this algorithm is fast enough to utilize in
the fields of radar tracking and fusion.

6 Conclusions
In this paper, we have proposed a novel MCB algorithm
to achieve the distributed fusion estimation of nonlinear
tracking. First, the distributed fusion architecture is set

Table 3 The proportion of distance RMSE reduced by MCB
algorithm over UKF-SCI, with four standard deviations of
transition noise

0.25(m) 0.3(m) 0.35(m) 0.4(m)

CV 3.55% 5.80% 8.02% 10.37%

CT with turn rate of 2.5◦/s 3.51% 5.57% 8.06% 10.25%

CT with turn rate of 5◦/s 4.54% 7.06% 9.42% 12.24%
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up based on BTF. Second, the sub-optimality in CI algo-
rithms is proved. Then, to solve the estimation problem of
nonlinear tracking, the Monte Carlo sampling method is
incorporated into the distributed architecture. Benefiting
from this sampling method, the approximation of fusion
results is obtained through random particles. Simulation
results verify that our MCB algorithm outperforms the
state-of-the-art CI algorithm.
In summary, there are three directions of the future

work in our paper. (1) Our MCB algorithm only offers a
distributed calculation on the update step. Hence, a total
distributed fusion structure is needed to further reduce
the computation and communication overhead. (2) The
time-discrete SSM used in our paper is actually a special
case of continuous-time SSM. Therefore, we can extend
our method to the exponential tracking scenario, in which
the filtering can be processed with partially unknown and
uncertain transition probabilities [30–33] withMarkovian
jump system. (3) Unknown inputs which represent the
faults can be added into SSM and the residuals are cal-
culated [34]. Hence, the fault detection algorithms [35]
and the fuzzy model [36] can also be incorporated into
our fusion system to strengthen the reliability of fusion
process in the future work.

Endnote
1The feedback structure means a structure which feeds

the tracking result back to each sensor as the prior
knowledge for the next step.
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