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Abstract

Background: The etiology of autism, a complex, heritable, neurodevelopmental disorder, remains largely unexplained.
Given the unexplained risk and recent evidence supporting a role for epigenetic mechanisms in the development of
autism, we explored the role of CpG and CpH (H = A, C, or T) methylation within the autism-affected cortical brain tissue.

Methods: Reduced representation bisulfite sequencing (RRBS) was completed, and analysis was carried out in 63 post-
mortem cortical brain samples (Brodmann area 19) from 29 autism-affected and 34 control individuals. Analyses to identify
single sites that were differentially methylated and to identify any global methylation alterations at either CpG or CpH sites
throughout the genome were carried out.

Results: We report that while no individual site or region of methylation was significantly associated with autism after
multi-test correction, methylated CpH dinucleotides were markedly enriched in autism-affected brains (~2-fold enrichment
at p< 0.05 cutoff, p= 0.002).

Conclusions: These results further implicate epigenetic alterations in pathobiological mechanisms that underlie autism.
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Background
Autism is a heritable neurodevelopmental disorder af-
fecting one in 68 individuals in the USA [1]. Recent gen-
etic studies have identified a handful of genes that
contribute to autism [2], and gene expression studies
have begun to unravel how altered gene expression man-
ifests within the autistic brain [3, 4]; however, the major-
ity of risk remains unexplained. In addition to genetic
causes, epigenetic mechanisms have been proposed to
play an important role in the development of the
disorder. Three lines of evidence initially supported this
hypothesis. First, direct alterations in epigenetic
pathways can dramatically alter early embryonic and
neonatal neurodevelopment in the same critical periods
as autism-associated changes in the brain [5]. Second,
mutations in indirect epigenetic effectors can result in
autism-spectrum and related disorders, such as Rett syn-
drome, Fragile X syndrome, and Angelman syndrome
[6]. Finally, deficiencies in DNA methylation (DNAm),
historically studied in CpG islands in gene promoters as

an indicator of transcriptional repression, have previ-
ously been implicated in autism [7–9]. We set out to test
for and identify altered methylation within the primary
affected tissue in autism—the brain—through analysis of
reduced representation bisulfite sequencing data.

Methods
Samples
Samples were acquired through the Autism Tissue
Program (which has since joined with the Autism Brain
Net, https://autismbrainnet.org/). Post-mortem, frozen
brain samples from the cerebral cortex Brodmann area
(BA) 19 were collected at two different brain banks: the
Harvard Brain Tissue Resource Center and the NICHD
Brain and Tissue Bank at the University of Maryland
with written informed consent having been obtained
from next-of-kin or a legal guardian. Work herein was
both approved by the IRB of The Johns Hopkins
Hospital and University of Alabama at Birmingham and
conducted in accordance with institutional guidelines.
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RRBS library preparation
Seventy-one samples were prepared for reduced repre-
sentation bisulfite sequencing (RRBS). RRBS libraries
were prepared using 100 ng of genomic DNA (gDNA).
gDNA was first digested with MspI making cuts exclu-
sively at methylated cytosines. 3′ A-overhangs were cre-
ated and filled in with Klenow Fragments. DNA was
then purified using the Qiagen MinElute Kit. Methylated
ilAdap PE adapters (Illumina) were ligated to purified
gDNA. Fragment size selection (105–185 bp) was
carried out by gel extraction on a 2.5% NuSieve GTG
agarose gel (Lonza). DNA was purified using Qiaquick
Gel extraction Kit eluting DNA in elution bugger pre-
warmed to 55 °C. Bisulfite treatment was performed
using the ZymoResearch EZ DNA Methylation Gold Kit
following the manufacturer’s instructions; however, we
eluted with 20 μl M-Elution buffer. Bisulfite-treated
DNA was cleaned up using EpiTect spin columns.
Samples were PCR amplified (using the following
primers: AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATC*T and CA
AGCAGAAGACGGCATACGAGATCGGTCTCGGCAT
TCCTGCTGAACCGCTCTTCCGATC*T; * = phospho-
rothioate bond), and size selection was carried out on a
3% Metaphor agarose gel to ensure that fragments of the
correct size (175–275 bp) were amplified. PCR product
was cleaned up using the Qiagen minElute column, elut-
ing with elution buffer warmed to 55 °C. Each sample
(10 nM) was sequenced in a single lane on the Illumina
HiSeq2000 to produce 50 bp single end reads.

Alignment
Adaptor sequences were removed, and reads shorter
than 20 bp were excluded using Trim Galore (v0.2.8).
Remaining reads were aligned to hg19 using Bismark
(v0.7.7) [10] allowing for one mismatch and setting the
seed substring length to 24.

Methylation estimation
Two separate analyses were carried out based on cyto-
sine context; one for cytosines in the CpG context and a
separate analysis for all other cytosines in the genome
(CpH, where H = A, C, or T). Samfiles for every sample
and each of the two contexts were formatted for input
into the R package methylKit [11] (v0.9.5) using in-
house scripts. Reads were filtered in methylKit based on
read count discarding bases with coverage below 10× as
well as those with coverage greater than the 99.9th
percentile of coverage in each sample to remove reads
suffering from PCR bias. Data were normalized based on
median coverage and methylation percentage estimated
using “normalizeCoverage” and “percMethylation,”
respectively within methylKit.

Illumina 27K methylation array
To independently verify methylation estimates from
RRBS, CpG methylation was also analyzed in 71 cortical
brain samples using the HumanMethylation27 Bead-
Chip. These samples comprised 41 controls and 30
autism cases. Data were generated as described previ-
ously [12]. Normalized β-values were used for analysis.
For comparison to RRBS data, mean methylation was
quantified for the 1249 CpGs that directly overlap be-
tween the two platforms.

Sample outlier removal
Four samples were excluded from analysis upon initial
diagnostics as their profiles indicated failed library prepar-
ation or failed sequencing. In comparison to expected
distributions (see Additional file 2: Figure S1a), two were
removed due to technical failures, as nearly all (>99%) of
their cytosines were methylated after alignment and
methylation estimation (see Additional file 2: Figure S1b,
c). A third sample was removed because its CpG methyla-
tion percentage distribution was not bimodal (see
Additional file 2: Figure S1d). The fourth sample was re-
moved because its read coverage distribution did not match
the expected distribution (see Additional file 2: Figure S1e).
After identifying samples that failed library preparation

and/or sequencing, remaining sample outliers were iden-
tified using surrogate variable analysis (SVA) [13], in a
manner similar to how outliers have been identified for
removal in previous publications [4, 14]. Ten surrogate
variables (SVs) were generated using methylation esti-
mates from CpG sites with data across all samples
(254,824 CpGs). Samples demonstrating global altered
patterns in methylation were identified as any sample
that was greater than 4 standard deviations away from
the mean in any of the SVs generated. Global outlier
samples were removed from analysis. This process was
carried out iteratively, and after each round of sample
outlier removal, to independently ensure that samples
identified as outliers should in fact be removed from
analysis; the percentage of known brain meQTLs [15,
16] detected was quantified using a method previously
developed for RNA-Sequencing data [14] to guide data
analysis. After each round of sample outlier removal, cis
meQTLs (1 Mb) were detected at SNPs and CpGs
present in both the previously reported meQTL studies
and the brain data using high-quality genotype data de-
scribed previously for these samples [14]. meQTLs were
detected using MatrixEQTL [17] with age, sex, site, and
SVs included as covariates, and the percentage of known
meQTLs was recorded.

Single-site differential methylation analysis
To ensure that a single sample’s outlier methylation esti-
mation would not inaccurately inflate the number of
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sites identified as differentially methylated, methylation
outliers at each single site were first identified, as previ-
ously described [14]. Briefly, at each tested site, sample
outliers were defined as any sample greater than 3 stand-
ard deviations away from the mean methylation at that
site. These samples were identified at each site and re-
moved from analysis. Further, only variant sites were in-
cluded for analysis to minimize the multiple testing
burden. Accordingly, the 25% least variable sites were ex-
cluded from analysis. Single-site differential methylation
was then carried out on each site using the lmFit function
in the limma R package [18]. For all cytosines, case-
control status was regressed on methylation percentage
with age, sex, brain bank, and ten SVs included as covari-
ates (full model). To account for unwanted sources of
variation, such as cell type proportion differences or other
technical sequencing artifacts, ten SVs were generated
using methylation data from all variant sites with data
across all samples utilizing the irw method from the sva
package and protecting case-control status. Additionally,
as read coverage impacts our confidence in methylation
estimates, the log10 of read coverage at each site was in-
cluded as weights in the model.
Statistical significance was determined by residual

bootstrapping, again using limma. For each bootstrap,
the full model (described above) was fit and residuals re-
corded. A null model, in which the variable of interest
(here, case-control status) was excluded, was also fit.
The residuals from the full model were resampled with
replacement, randomizing the sample order. “Pseudo-
null” data were then generating adjusting the fits from
the null model with the resampled residuals from the
full model. These pseudonull methylation values were
then substituted as the outcome variable into the full
model, generating a null set of p values. These p values
were collected for each of the 1000 bootstraps to empir-
ically determine study-wide significance.

Differentially methylated region analysis
Differentially methylated region (DMR) analysis com-
bines nearby sites for analysis and thus benefits from
denser methylation data. As such, coverage requirements
were relaxed to include sites with at least five reads
across 20 cases and 20 controls in both the CpG and
CpH data. 1,638,398 CpG and 6,382,340 CpH sites were
included for analysis. As above, age, sex, brain bank, and
ten SVs were included as covariates. DMRs were then
detected using the bumphunterEngine within the R
package bumphunter (v1.14.0) [19, 20]. Default values
were used aside from the following: (1) pickCutoff was
set to “TRUE” as to not unnecessarily impose an
arbitrary cutoff on the data, (2) the maxgap was set to
“300,” in line with previous analyses [19], (3) smoothing
was used (TRUE) as it is known that methylation sites

tend to be correlated across 300 bp (maxgap), (4) null-
method was set to “bootstrap” as is required when cor-
recting for covariates, as is the case here, and (5) 1000
bootstraps were carried out (B = 1000). Significance was
determined by calculating the family-wise error rate
(fwer), the proportion of the 1000 residual boostraps
with at least one null candidate region more extreme
(defined by having a length longer and higher average
value of the regression coefficients) than the region ob-
served. Due to the number of sites included for analysis,
chromosomes were analyzed independently, necessitat-
ing a multiple test correcting for 24 independent tests
(22 autosomes, plus X and Y chromosomes). Significance
was determined to be fwer <0.002 (0.05/24).

Overlap with previous findings
We also tested for altered methylation patterns within
the four genomic regions identified as genome-wide
differentially methylated in Ladd-Acosta et al. [21]
Here, we note specifically that the technology and
brain regions are not directly comparable between the
studies. This analysis includes RRBS data on 63 indi-
vidual samples from a single cortical brain region
(BA19). Ladd-Acosta et al. studied 41 total samples
across three brain regions (temporal cortex, N = 16;
prefrontal cortex, N = 12; cerebellum (N = 13) using
the Illuina Infinium 450k array, identifying three re-
gions in the temporal cortex samples and one other
region in the cerebellar samples to be genome-wide
differentially methylated. While one would not expect
perfectly overlapping coverage between the data sets
given the altered technology, it is possible to query
methylation patterns within our samples at the re-
gions reported in Ladd-Acosta et al. To do so, we
utilized the DMR data set (at least five reads across
20 cases and 20 controls) to visualize methylation
patterns within the regions reported. Methylation
patterns were visualized by case-control status, and
overlap with significant DMRs was queried.

Global altered methylation analysis
For each cytosine context, the proportion of sites hyper-
methylated (defined as mean methylation in cases
greater than zero) was calculated at three p value cutoffs
(0.05, 5 × 10−3, and 5 × 10−4). To assign significance, this
proportion was then compared to the proportion of sites
hypermethylated in each of the 1000 residual bootstraps
(see Additional file 2: Figure S2). Specifically, to con-
clude that there was in fact significant global methyla-
tion differences between cases and controls at p < 0.05,
the signal for global alteration differences in the case-
control analysis would have to be more extreme than
the signal detected in 95% of the residual bootstraps.
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Lists of functional genomic categories
Lists for 28 different functional genomic categories to test
for enrichment of hypermethylated cytosines within the
CpH context were downloaded from four different
sources: (1) the UCSC Genome Browser (mRNA, tran-
scription factor binding sites (tfbs), DNase I hypersensitive
sites (dnase), enhancers, CTCF binding sites (CTCF), seg-
mental duplications (segdups), repetitive regions (repeats),
and histone marks from lymphoblastoid cell line
GM12878 (H3K4m1, H3K4m2, H3K4m3, H3K9Ac, H3K
9m3, H3K27Ac, H3K27m3, H3K36m3, H3K79m2, and
H4K20m1), (2) UCL Cancer Institute (beacons), (3) the
methylKit package [11] (promoters, exons, introns, tran-
scription start sites (TSS), CpG islands (CGI), and CGI
shores), and (4) the Epigenome Roadmap Project [22]
(H327me3.brain, H3K9me3.brain, H3K36me3.brain, H3
K4me1.brain, H3K9ac.brain, and H3K4me3.brain) (details
in see Additional file 1: Table S1). Brain data from the Epi-
genome Roadmap project were downloaded from adult
cingulate gyrus. For histone marks with data generated on
more than one individual (H3K36me3.brain, H3K4me1.b-
rain, H3K4me3.brain, and H3K9me3.brain), the intersec-
tion of regions across individuals was utilized for
downstream analyses. For beacons, the 200 bp flanking
the identified CpG dinucleotide were investigated for
enrichment.

Functional enrichment testing
To test for genomic enrichment of hypermethylated
CpH sites in each genomic list and at each p value cutoff
from the differential methylation analysis (0.05, 5 × 10−3,
and 5 × 10−4), two-sided Fisher’s exact 2 × 2 test was
carried out. For each list and at each differential methy-
lation p value cutoff, odds ratios and p values for enrich-
ment were recorded.

Power calculation
Power calculations were carried out using the
“pwr.t2n.test” function from the pwr package in R. This
two-sided t test of means for samples of different sizes
(N = 34 controls and 29 cases) was carried out at the
0.05 significance level (Type I error probability).

Results
To gain a more complete picture of altered DNAm in aut-
ism, we carried out Reduced representation bisulfite sequen-
cing (RRBS) in 71 post-mortem cortical brain samples
(BA19) at single nucleotide resolution with a quantitative
measurement of DNAm across CpG-dense regions of the
genome [23]. After sequencing, samples whose libraries
failed library preparation, bisulfite conversion, and/or se-
quencing (N = 4) were identified and removed from analysis
(see Additional file 2: Figure S1). Further, samples with al-
tered patterns of global methylation patterns, as determined

by SVA, were identified and removed from analysis (N= 4).
While this has been demonstrated to be a sound method
for sample outlier removal in RNA-sequencing data previ-
ously [14], we ensured that these samples should, in fact, be
removed in this RRBS experiment by testing for the propor-
tion of previously identified brain meQTLs detected after
the iterative removal of each detected sample outlier. By
maximizing the proportion of known meQTLs detected
(i.e., true biological signal) (see Additional file 2: Figure S3),
this process enabled us to confidently move forward with 63
samples, including 29 autistic cases and 34 controls (see
Additional file 1: Table S2).

Methylation estimation
Methylation was estimated for each sample at cytosines
with greater than 10 reads (default in methylKit [11])
across at least 20 cases and 20 controls, yielding methy-
lation estimates at 1.0 M CpG and 3.3 M CpH sites (see
Additional file 2: Figure S4). In applying these cutoffs,
we allow for the inclusion of cytosines with reasonable
coverage across a majority of the samples to be included
for analysis. On average, samples demonstrated 21.2 and
1.7% methylation across CpG and CpH sites, respectively
(see Additional file 2: Figure S5). These values were
similar across case-control status with cases having aver-
age of 23.4% and controls 19.2% of their CpG sites being
methylated. Within the CpH context, cases and controls
demonstrated an average of 1.6 and 1.7% percent of cy-
tosines being methylated, respectively (Additional file 2:
Figure S5). This is in line with what has been reported
previously, where human brain samples have demon-
strated 1.3 to 1.5% CpH methylation [24]. To assess the
accuracy of the methylation estimates from RRBS, we
compared mean methylation percentage estimates at
CpGs directly measured by both RRBS and the Illumina
27K array. Given the highly correlated measures of mean
methylation (R2 = 0.92), we were confident in the methy-
lation estimates acquired through RRBS (see Additional
file 2: Figure S6).

Single-site differential methylation analysis
Individual cytosines were tested for differential methyla-
tion regressing case-control status on methylation per-
centage with age, sex, brain bank, and ten SVs as
covariates in both the CpG and CpH context. Statistical
significance was determined by residual bootstrapping.
No individual CpG or CpH sites were significantly differ-
entially methylated (p < 0.05 after adjusting for multiple
testing, see Additional File 1: Tables 3-4, see Additional
file 2: Figure S7).

Differentially methylated region analysis
Differentially methylated region analysis was carried out
to compare methylation patterns between autism cases
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and controls in both the CpG and CpH context. This
analysis failed to identify any significant DMRs (fwer
<0.002) in either the CpG or CpH analyses. The 72 CpG
and 54 CpH nonsignificant regions identified by
bumphunter are included in Additional File 1: Tables 5–6.

Overlap with previous findings
Within the RRBS CpG data, 56 individual CpGs over-
lapped with the previously reported differentially methyl-
ated regions from Ladd-Acosta et al. [21]. Five CpGs fell
within the PRRT1 region, one was within the C11orf21 re-
gion, 16 within the ZFP57 region, and 34 were within the
SDHAP3 region. Raw methylation patterns across the
three regions containing more than one CpG were visual-
ized (see Additional file 2: Figure S8). While the patterns
suggest that there may be differences between autism
cases and controls within the ZFP57 and PRRT1 regions,
it is important to note that raw methylation values have
been plotted, which does not account for sources of vari-
ation, and secondly, the direction of effect is only consist-
ent with the direction of effect from Ladd-Acosta et al. for
the ZFP57 region (hypermethyion). Conversely, PRRT1
suggests hypermethylation in the RRBS data; however, it
was reported to be a region demonstrating significant hy-
pomethylation previously. Most importantly, however,
none of these regions was identified as a significant DMR
in the RRBS CpG data.

Global methylation alterations
In addition to testing for differential methylation at indi-
vidual sites, we measured global changes associated with
hypo- or hypermethylation. Among sites demonstrating

nominal differential methylation (p < 0.05), there is a con-
sistent and statistically significant proportion of cytosines
demonstrating increased methylation within the CpH con-
text (Fig. 1b, p = 0.002 with 65.2% of sites demonstrating
hypermethylation), but not the CpG context (Fig. 1a).
Further, given that more stringent p value cutoffs for

differentially methylated sites should enrich for true pos-
itives, we hypothesized that the global hypermethylation
signal would increase in strength with increasingly strin-
gent p value cutoffs in the CpH analyses, but not in the
CpG analyses, which did not yield global differences. In-
deed, as more stringent differential methylation p value
cutoffs were imposed, a greater skewing in the number
of hypermethylated to hypomethylated sites was ob-
served (Fig. 1b). As expected, this trend was not seen in
the CpG sites (Fig. 1a). Moreover, the effect size of this
hypermethylation signal increased with larger methyla-
tion differences between cases and controls (see
Additional file 2: Figure S9). Taken together, these data
suggest that small increases (CpH sites with a differen-
tially methylated p value <0.001 demonstrate a median
1.8% increase in cases relative to controls) in methyla-
tion across many individual sites are found at cytosines
outside of the classically studied CpG context in the
autistic brain.

Functional analysis of hypermethylated CpHs
To gain insight into how altered CpH methylation
(mCH) may be linked to the pathobiology of autism and
aberrant neurodevelopment, we tested for enrichment of
hypermethylated CpHs in various functional categories
annotated across the genome. We used Fisher’s exact test to

Fig. 1 Proportion of hyper- and hypomethylated sites in the CpG and CpH contexts. Proportion of sites (y-axis) across increasingly stringent differentially
methylated p value cutoffs (x-axis). The number of cytosines at each differentially methylated p value cutoff are displayed in the tables (below). aWith
approximately half of all sites demonstrating increased methylation (navy) and the other half decreased methylation (light blue), CpG sites behave as expected
under the null. This pattern holds across increasingly stringent differential methylation p value cutoffs demonstrating no global differences in methylation
within the CpG context. b The proportion of cytosines demonstrating hypermethylation is not significantly different from the proportion demonstrating
hypomethylation when looking at all CpH sites; however, with increasingly stringent differentially methylated p value cutoffs, there is a significant proportion
of hypermethylated CpH sites in the autistic brain
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detect enrichment of hypermethylated cytosines in 20 func-
tional categories of the genome at several thresholds pro-
duced in the differential methylation analysis. This analysis
highlights a role for increased methylation at CpH sites
within repetitive regions of the genome (OR= 1.39, p=
5.7 × 10−4), in regions that contain non-polymorphic
human-specific CpGs, termed beacons [25] (OR = 1.27, p =
0.04), and at deactivating histone marks in the brain
(H3K27me3: OR= 1.22, p= 6.8 × 10−3; H3K9me3, OR =
1.22, 1.6 × 10−2) (Fig. 2). Of note, histone-specific enrich-
ment was not seen in any of the ten histone marks tested
using data generated from a lymphoblastoid cell line, sug-
gesting that this enrichment is tissue-dependent (see
Additional file 2: Figure S10).

Discussion
Previous studies of methylation in autism were limited by
the number of sites investigated, a lack of dynamic range
in microarrays, the number of samples available for study,
and the use of DNA that was procured from cell lines and
tissue other than the brain. RRBS, in addition to querying
methylation at more sites than the previously used Infi-
nium HumanMethylation450 array (Illumina) [21, 26], en-
ables measurement of methylation at cytosines outside of
the classically studied CpG context to include cytosines
within the CpH context. mCH is rare in most tissues;
however, it accumulates in DNA in human and mouse
brain postnatally, ultimately reaching levels similar to that
of CpG methylation (mCG) in brain DNA [24, 27, 28]. In

contrast to mCG, which remains largely unchanged dur-
ing postnatal development, mCH accumulation correlates
with synaptogenesis and increases especially during the
first few years of life [24, 27], a time period of particular
interest in autism. Thus, we used post-mortem cortical
brain samples to characterize CpG and CpH methylation
in autism-affected brain tissue and compared this to
matched neurologically normal control brain tissue.
While we did not detect any significant differences in

any single CpG or CpH site or region, we report, for the
first time to our knowledge, an increase in global CpH
methylation within the brains of autism-affected individ-
uals. These findings are enriched within three general
functional categories: (1) repetitive regions of the gen-
ome, (2) regions that contain beacons [25], and (3) re-
gions of the genome that harbor deactivating histone
sites in the brain (Fig. 2). These results are particularly
intriguing, as autism is a disorder that includes deficits
in language, a key trait unique to humans. Specifically,
repetitive regions, defined as regions that contain inter-
spersed repeats and regions of low DNA complexity, ac-
count for a substantial amount of variation between
humans and other species. Similarly, beacons are regions
known to harbor human-specific CpGs, regions of
substantial regulatory differences between humans and
primates with CpG density at beacons resulting in de-
creased methylation over time within associated CGIs
[25]. Due to the importance of regulation within the hu-
man brain, altered regulation of methylation at regions
harboring beacons is an important avenue of study
within autism. Further, the finding here that increased
mCpH occurs in beacons within the autistic brain offers
support that beacons may, as a result of human evolu-
tion, highlight regions of the genome with particular
susceptibilities for human, and particularly neurological
[25], disease. Finally, we report enrichment at two de-
activating histone marks, H3K27me3 and H3K9me3.
Methylation at these histone marks has been reported to
decrease accessibility of the surrounding DNA to the
transcriptional machinery, resulting in decreased levels
of expression [29, 30]. Given previous reports of altered
gene expression at transcriptional regulators [31], the
finding of altered CpH methylation at deactivating his-
tone marks not only corroborates previous findings but
also further suggests a role for general transcriptional
suppression at the level of mCH within the autistic
brain. This finding offers another possible avenue for
study of the role for epigenetic alterations and their ef-
fects on transcription in autism. Taken together, this
finding implicates increased methylation within autism
brain tissue at cytosines outside of the canonical CpG
dinucleotide.
It is not clear whether increased CpH methylation in

autism is causal, protective, or benign in the etiology of

Fig. 2 Genomic enrichment of hypermethylated CpH sites. For each
genomic category, effect of enrichment (log odds ratio) is plotted
across increasingly stringent differential methylation analysis p value
cutoffs (x-axis). Enrichment within a genomic category is indicated
with the color yellow. Categories demonstrating significant
enrichment (p < 0.05) are in bold
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disease. Given that mCH is specifically enriched in both
the human and mouse brain [24], future studies can
begin to probe the function of CpH methylation in suc-
cessful and aberrant neurodevelopment.
Several limitations should be noted. To maximize the

number of samples that could be sequenced, this study
employed RRBS rather than whole genome bisulfite
sequencing (WGBS). As RRBS enriches for CpG rich re-
gions of the genome, we are unable to estimate methyla-
tion for cytosines outside of CpG rich regions. As
sequencing costs continue to decline, WGBS of all the
available brain tissue specimens will become more feasible
and will undoubtedly add further insight into the role of
methylation and other epigenetic phenomenon in autism.
Additionally, given the scarcity of samples, sample size is
always a cause for concern in post-mortem brain studies.
Here, we report findings from the largest number of sam-
ples studied to date. As such, we are 80% powered to de-
tect mean methylation differences greater than or equal to
2.6% (see Additional file 2: Figure S11); however, group
differences of smaller effect or idiosyncratic changes could
have been missed in these analyses. Finally, mCpG can be
converted to 5-hydroxymethylcytosine (5hmC) and has
been detected within the human brain [32, 33]. As RRBS
does not distinguish 5hmC from mCpG, testing for altered
methylation within 5hmC specifically may detect differ-
ences within the autism brain; however, that question is
not answerable with the data generated in these studies.

Conclusions
We report that while there we did not detect any single
CpGs or CpHs that were significantly differentially
methylated in autism cases relative to controls, we do re-
port that increased CpH methylation occurs throughout
the genome in DNA from autism-affected brain. These
CpH sites are strongly associated with repetitive regions,
deactivating histone marks, and beacons, offering new
insights into how the epigenome may be affected in
autism.
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between RRBS and 27K array data. Figure S7. Single-site differential methylation
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