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Abstract

Background: Mucinous ovarian tumors are an unusual group of rare neoplasms with an apparently clear progression
from benign to borderline to carcinoma, yet with a controversial cell of origin in the ovarian surface epithelium. They are
thought to be molecularly distinct from other ovarian tumors but there have been no exome-level sequencing studies
performed to date.

Methods: To understand the genetic etiology of mucinous ovarian tumors and assess the presence of novel therapeutic
targets or pathways, we undertook exome sequencing of 24 tumors encompassing benign (5), borderline (8) and
carcinoma (11) histologies and also assessed a validation cohort of 58 tumors for specific gene regions including exons
4–9 of TP53.

Results: The predominant mutational signature was of C>T transitions in a NpCpG context, indicative of deamination of
methyl-cytosines. As well as mutations in known drivers (KRAS, BRAF and CDKN2A), we identified a high percentage of
carcinomas with TP53 mutations (52 %), and recurrent mutations in RNF43, ELF3, GNAS, ERBB3 and KLF5.

Conclusions: The diversity of mutational targets suggests multiple routes to tumorigenesis in this heterogeneous group
of tumors that is generally distinct from other ovarian subtypes.
Background
Epithelial ovarian tumors have historically been treated
as a homogenous group in the clinic, despite clear histo-
pathological and molecular data showing that distinct
subgroups exist: serous, endometrioid, clear cell and
mucinous. High-grade serous and low-grade serous tu-
mors comprise distinct groups, while endometrioid and
clear-cell histologies are different again from serous but
with some overlapping genetic events. It is now clear
that these molecular distinctions reflect differences in
site of origin, with high-grade serous tumors now
thought to arise from the fallopian tube fimbriae, low-
grade serous tumors from the ovarian epithelium,
and clear cell and endometrioid tumors arising from
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endometriosis, which itself is derived from the endomet-
rium. However, the origin of the mucinous group re-
mains controversial. Many mucinous ovarian tumors
(MOTs) formerly classified as primary are now recog-
nized to have been mis-diagnosed metastases from
predominantly gastrointestinal or endocervical sites.
However, some mucinous tumors do appear to be ovar-
ian primaries, particularly benign and borderline tumors,
which generally have a good prognosis not consistent
with a metastatic tumor. Carcinomas associated with be-
nign and borderline elements and/or with an early-stage,
unilateral presentation are also thought to be primary
ovarian in origin.
Our understanding of the genomic landscape of MOTs

is limited. Older reports are likely to include a high pro-
portion of metastatic mucinous tumors, and the rarity of
true primary mucinous tumors results in limited investi-
gations. Nonetheless, we and others have shown that
mucinous tumors have a high proportion of mutations
in RAS pathway genes and aberration of CDKN2A (p16)
[1, 2]. Beyond these common drivers, little is known,
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and the predominantly stable genomic copy number
profiles we have observed in this tumor type [3] suggest
that somatic point mutations are likely to be more rele-
vant. In this study, we have undertaken exome sequen-
cing of a large cohort of MOTs, and have further
investigated lead candidates in a validation cohort of
58 cases.

Methods
Specimens
Fresh-frozen MOTs were accessed from bio-banked
specimens collected and cryopreserved at the time of
surgical resection for a primary ovarian tumor, prior to
chemotherapy administration. Samples comprised 22 be-
nign cystadenomas, 29 tumors of low malignant poten-
tial (herein referred to as borderline tumors) and 31
carcinomas [4, 5]. Hospitals contributing samples be-
tween 1993 and 2011 included those in the south of
England, UK [5], and in Australia (Southern Health and
the Australian Ovarian Cancer Study [AOCS] [4]). Blood
samples used for germline DNA extraction were also
collected prior to surgery. Thorough histological classifi-
cation was based on the entire specimen at time of
diagnosis, although all cases underwent retrospective
pathological review using information obtained from the
pathology report and histological assessment according
to established criteria [6] in order to exclude likely
metastases. Cases were also excluded if there was in-
sufficient tumor epithelium for nucleic acid extraction.
Carcinoma grade was derived from the diagnostic
pathology report because there were insufficient cases
with archival specimens available for re-review. Clini-
copathological data are provided in Additional file 1:
Table S1.
This study was performed in accordance with the eth-

ical standards of the Peter MacCallum Cancer Centre
Human Research Ethics Committee (Approvals 09/29
and 01/38) and all participants provided written in-
formed consent for tissue collection. This study con-
forms to the Declaration of Helsinki.

DNA extraction
Tumor genomic DNA was isolated by needle microdis-
section of areas with greater than 80 % neoplastic cellu-
larity from consecutive 10 μm hematoxylin and eosin
(H&E)-stained tumor sections and extracted using the
DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA,
USA) as per the recommended protocol. Matched germ-
line DNA was extracted from whole blood (19 cases) or
paired uninvolved ovarian stroma (5 cases). Whole gen-
ome amplification (WGA) was performed on 20–50 ng
of tumor and germline DNA using the Repli-G Phi-
mediated amplification system (Qiagen) and the product
was used to confirm mutations detected by exome
sequencing and to perform candidate gene mutation
analysis.
Whole-exome library construction and sequencing
Libraries were constructed from 500 ng of unamplified
tumor or germline DNA following the Illumina TruSeq
DNA Sample Preparation procedure (Illumina, San
Diego, CA, USA), followed by exome capture using the
NimbleGen SeqCap EZ Human Exome Library v1 or v2
capture kit (Roche NimbleGen, Heidelberg, Germany).
Each resulting paired-end library was sequenced on one-
third of an Illumina HiSeq2000 lane using 75 bp or
100 bp reads. Library preparation and detailed sum-
mary statistics for all samples are listed in Additional
file 1: Table S2.
Somatic mutation analysis
Purity filtered paired-end reads were quality checked
with FastQC (v0.10.1) and trimmed for low quality bases
and adaptor if necessary using Cutadapt (v1.1). Reads
were then aligned to the human genome (GRCh37/
hg19) using BWA-MEM (v0.7.7-r441). Duplicates were
marked using Picard (v1.77) followed by local insertion-
deletion (indel) re-alignment and base quality score
recalibration using GATK (v2.7-2-g6bda569). Somatic
single nucleotide variants (SNVs) and indels were called
using the following algorithms with the matched germ-
line data used as reference: MuTect (v2.7-1-g42d771f),
JointSNVMix (v0.8-b2) and Somatic Sniper (1.0.2.2-1-
g8ee3999) (SNVs only); SomaticIndelDetector (v1.0.4905)
(indels only); and VarScan (v2.3.4) (both SNVs and indels).
In addition, Pindel (v0.2.5a3) and GATK Unified
Genotyper (v2.7-2-g6bda569) were used to call SNVs
and indels separately in the tumor and germline samples.
Initial variant predictions were filtered to require that

(1) SNVs were called by ≥2 of MuTect, JointSNVMix,
Somatic Sniper, VarScan or Unified Genotyper, (2) indels
were called by any of SomaticIndelDetector, VarScan,
Pindel or Unified Genotyper, (3) the variant was present
in ≥10 reads in the tumor (Pindel) or ≥2 reads in the
tumor (all other callers), (4) the mutant allele frequency
was ≤5 % in the matched germline sample, and (5) the
mutant allele fraction was at least 10 % higher in the
tumor than in the matched germline sample for indels
called by Pindel and Unified Genotyper. Finally, any
remaining germline single nucleotide polymorphisms
(SNPs) or common sequence artifacts were eliminated
by requiring that the variant allele was not observed
in more than two of the other germline samples
from this cohort or more than two (of 147) in-house
germline exome sequences [7], and had an Exome
Variant Server (ESP6500 SI-v2) minor allele frequency
of ≤5 %.



Ryland et al. Genome Medicine  (2015) 7:87 Page 3 of 12
Predicted somatic mutations were annotated with
Ensembl v73 information and those with impact predic-
tions overlapping coding regions and splice sites (±2 bp)
were considered for further analysis. Due to restrictions
of our ethics approval, we are not able to provide BAM
files; however, all variants are available in Additional file 1:
Table S3. All coding mutations were manually reviewed by
examination of BAM files using the Integrative Genomics
Viewer.

Mutation confirmation by nucleotide sequencing
Selected somatic mutations were independently assessed
by polymerase chain reaction (PCR) and Sanger sequen-
cing of the tumor DNA as described previously [8].
Somatic status was confirmed by also resequencing the
corresponding germline sample.
Thirty-two known somatic mutations in KRAS, BRAF,

TP53 and CDKN2A that had been independently vali-
dated in other studies of this cohort by Sanger sequen-
cing were used to assess the sensitivity of somatic
mutation calling, with 96.9 % known somatic variants
successfully identified (27/27 SNVs and 4/5 indels). Fail-
ure to identify a known 36 bp complex indel in
CDKN2A was complicated by low read depth owing to
high GC content for this gene; this variant was included
in subsequent analyses. The confirmation rate of novel
variants by Sanger sequencing was 93.6 % (208/223
SNVs and 25/26 indels).

Significantly mutated gene prediction
The MuSiC algorithm (v0.4) was applied using default
parameters to identify genes significantly enriched for
mutations, given sequence type, context and estimated
background rate [9]. Genes mutated in two or more
samples with a P-value ≤0.05 at a false discovery rate
of ≤0.1 in any of the three tests were considered sig-
nificant. Furthermore, OncodriveFM (accessed through
the online IntOGen platform at [10]) was used to
identify genes with significant bias towards the accu-
mulation of functional mutations (P-value ≤0.05 and
q-value ≤0.1) [11, 12].

Mutation analysis of ELF3, ERBB3, GNAS, TP53, RAS-RAF
and CDKN2A by Sanger sequencing
The complete coding exons of ELF3 (exons 2–9) and
ERBB3 (exons 1–28) were assessed by direct Sanger se-
quencing using the primers listed in Additional file 1:
Table S4. To assess the ELF3 c.1001 + 1_1001 + 2insGG
mutation on mRNA splicing, cDNA amplification and
direct sequencing were performed using primers listed
in Additional file 1: Table S4. Targeted Sanger sequen-
cing of mutation hotspots in TP53 (exons 4–9), BRAF
(codon 600), KRAS/HRAS/NRAS (codons 12, 13 and 61)
and the coding region of CDKN2A (exons 1–3) were
sequenced using primers previously described [2]. Som-
atic mutations identified in these genes have previously
been published for a subset of the benign and borderline
mucinous tumors [2].

Mutation analysis of GNAS and KLF5 by high-resolution
melt analysis
High-resolution melt analysis was used to screen for
mutations at hotspot codon 201 of GNAS and in the
coding exons of KLF5 (exons 1–4). For this, 15 ng WGA
tumor DNA was amplified in duplicate using the
primers listed in Additional file 1: Table S4, followed by
melt analysis on the LightCycler 480 Instrument using
Gene Scanning Software (Roche). Samples with variant
melt curves in duplicate PCRs were independently amp-
lified using the same primers (KLF5) or an independent
primer set (GNAS) and Sanger sequenced to confirm
sequence variations.

Analysis of CDKN2A and HER2
HER2 status was ascertained based on the detection of
high-level gene amplification by high-density genome-
wide SNP arrays (Affymetrix, Santa Clara, CA, USA)
(35 cases) [2, 3], SNP array data plus immunohisto-
chemistry (IHC) (23 cases), or by IHC alone (18 cases).
For 16 cases, HER2 IHC was evaluated on 4 μM
formalin-fixed paraffin-embedded whole sections using
anti-HER2 antibody clone 4B5 (Ventana Medical Systems,
Tuscon, AZ, USA). Staining was scored visually according
to standard guidelines [13]; briefly, an IHC score of 3+
(strong uniform membrane staining of >30 % tumor cells)
was categorized as HER2 positive; equivocal cases (score of
2+, strong complete membrane staining in <30 % tumor
cells or weak to moderate heterogeneous staining in >10 %
tumor cells) were only considered HER2 positive if accom-
panied by array-based copy number amplification of the
ERBB2 locus. An equivocal score without amplification
confirmation, and tumors that scored 0 or 1 (no staining
or weak incomplete membrane staining in any proportion
of tumor cells), were considered negative. For the
remaining 25 cases, the HER2 IHC score was derived from
Anglesio et al. [1], who used comparable classification
guidelines.

Results and discussion
Somatic mutation frequency and spectra
To profile the somatic mutation spectrum of mucinous
tumors of the ovary, we performed whole exome se-
quencing on 24 tumors including 5 benign cystadeno-
mas, 8 borderline tumors and 11 carcinomas (Table 1,
Additional file 1: Table S1). A mean coverage depth of
144× was achieved in both neoplastic and non-cancerous
specimens (range 53-fold to 224-fold) and 91 % of the
bases were covered by at least 20 uniquely mapping reads



Table 1 Cohort summary

Clinical feature Discovery
(n = 24)

Validation
(n = 58)

Type:

Benign 5 17

Borderline 8 21

Carcinoma 11 20

Grade (carcinoma)

1 5 6

2 3 10

3 2 4

Not known 1

Stage (carcinoma)

1 7 16

2 1 1

3 1 1

Not known 2 2

Age (average ± standard deviation)

Benign 49.8 ±5.9 59.5 ±11.3

Borderline 55.4 ±15.8 53.6 ±16.0

Carcinoma 62.3 ±11.0 53.8 ±11.1

Laterality

Unilateral 21 54

Bilateral 2 4

Not known 1

Size

<10 cm 2 1

≥10 cm 21 57

Not known 1 0
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(Additional file 1: Table S2). Using stringent criteria, 1126
somatic coding and essential splice site mutations were
identified (1031 SNVs and 95 indels), of which 841 were
predicted to alter protein sequence (Additional file 1:
Table S3). These included 44 (5.2 %) nonsense, 60 (7.1 %)
frameshift indel, 16 (1.9 %) splice site, 27 (3.2 %) inframe
indel and 694 (82.5 %) missense mutations. Benign and
borderline tumors had on average 25.4 (range 21–38) and
32.9 (range 2–76) coding mutations per tumor, equating to
a frequency of 0.8 mutations/Mb and 0.9 mutations/Mb
respectively. Although variable, this mutation burden
did not differ between benign and borderline tumors
but was significantly lower when compared to the
carcinomas (average of 66.9 mutations per sample and 1.5
mutations/Mb) (P = 0.008 vs. benign and P = 0.047 vs.
borderline) attributed mostly to an accumulation of mis-
sense mutations in the carcinomas (Fig. 1a, Additional
file 1: Table S5). There were no hyper-mutated cases
(defined as >10 mutations/Mb) indicative of a mutator
phenotype such as mismatch repair deficiency. Relative
to other cancer types, MOTs showed a similar somatic
mutation density to breast, serous ovarian and pancreatic
cancers, but a lower density than colorectal and stomach
tumors [14, 15].
The mutation spectrum was dominated by C>T transi-

tions, comprising 63.9 % of somatic substitutions, and
this was common to all three tumor subtypes (Fig. 1b).
Mutations in this context demonstrated a marked pref-
erence for NpCpG trinucleotides (Additional file 2,
Figure S1a), the optimum motif for spontaneous 5-
methylcytosine deamination [16]. An equivalent signa-
ture is frequently seen in other epithelial tumors of the
gastrointestinal tract, but is different to that observed in
other cancers of the female reproductive system includ-
ing high-grade serous ovarian carcinoma (Additional file 2:
Figure S1b). Taken together these findings are consistent
with MOTs having a shared lineage distinct from that of
other ovarian epithelial tumors.

Profile of mutated genes in mucinous ovarian tumors
Protein-altering mutations were detected in 761 genes,
of which 42 were mutated in two or more of the 24 tu-
mors. Among the most frequently mutated were known
mucinous ovarian cancer genes KRAS, BRAF and
CDKN2A (Table 2, Fig. 2). Interestingly, TP53 was the
second most frequently mutated gene, with seven muta-
tions identified. Eight genes were significantly mutated
based on a statistically significant accumulation of muta-
tions by both MuSiC [9] and OncodriveFM [11]
(Table 2). Other genes predicted by one algorithm were
also notable; for example, ERBB3 (MuSiC) and GNAS
and FBXW7 (OncodriveFM) (Table 2). Based on these
predictions and observation in other cancer types, five
novel candidate drivers not previously reported in MOTs
were selected for validation in an independent cohort:
TP53 (7/24), ELF3 (3/24), ERBB3 (2/24), GNAS (2/24)
and KLF5 (2/24) (Table 2, Fig. 2, Additional file 1:
Table S6). Our validation study of the tumor suppressor
gene RNF43 has been published previously [8]. In
addition, known cancer genes for this ovarian subtype
were evaluated in parallel to assess their relationship
with new drivers including HER2 (by immunohisto-
chemistry and copy number analysis) and mutations in
KRAS, BRAF, CDKN2A and other RAS pathway mem-
bers NRAS and HRAS.

Prevalence of mutations in known mucinous ovarian
cancer genes
We and others have previously described the importance
of the RAS pathway and p16 in MOTs [1–3]. Here we
extended this analysis and found 56 cases with muta-
tions in KRAS, BRAF and NRAS (68.3 %). BRAF mu-
tations were significantly more prevalent in the carcinomas



Fig. 1 Mutational landscape of MOTs identified by exome sequencing. Samples are grouped according to pathological classification and ordered
from lowest to highest mutation frequency. a Somatic mutation frequency (left Y-axis) and number of coding mutations by consequence
(right Y-axis). b Relative frequency of somatic mutations according to base substitution type. Substitutions were categorized by the six
possible base-pair changes
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(7/31, 22.6 %) than in the borderline (3/29, 10.3 %) or be-
nign tumors (0/22, P = 0.036 Fisher’s exact test), suggesting
an association with a more aggressive phenotype. An alter-
native mechanism for activation of the MAPK pathway
was identified through mutation of the ras-like gene
RRAS2 in one benign tumor that was KRAS/BRAF wild
type (Fig. 2). We previously reported RRAS2 gene amplifi-
cation in this sample [2]; consistent with this, the Sanger
sequencing validation confirmed homozygous amplifica-
tion of the mutant allele (Additional file 2: Figure S2). This
9 bp duplication, resulting in reiteration of Gly-Gly-Gly
(codons 22–24), occurs in the region of RRAS2 that
is complementary to codons 11–13 within the G1
phosphate-binding loop of conventional ras proteins
(P-loop, amino acids 10–17). Interestingly, rare reports of
comparable events appear in the literature. Huang et al.
[17] described a three amino acid RRAS2 duplication
(Gly24_26dup) in the human uterine leiomyosarcoma cell
line ST-UT-1; this mutation resulted in enhanced GTP-
binding and conferred transforming activity in vitro. Simi-
larly, in KRAS, 9 bp and 12 bp tandem repeats of codons
10–12 and 10–13 respectively were identified as an alter-
native mechanism for KRAS oncogenic activation in 2 of
18 chemically induced rat renal mesenchymal tumors
[18]. Triple residue insertions in the P-loop of HRAS also
demonstrated increased preference for GTP-binding and
increased interactions with downstream Raf kinase com-
pared to wild type [19]. Taken together, these observations
indicate that although the RRAS2 duplication described in
this study is an unconventional mutation for ras proto-
oncogene activation, it is predicted to result in up-
regulated MAPK pathway activity.
A previous study found KRAS mutation and HER2

amplification to be almost mutually exclusive [1]. Al-
though the number of cases we studied was smaller, we
did not see this exclusivity: 2/6 HER2+ borderline and
3/6 HER2+ carcinomas also carried KRAS mutations.
One caveat to this observation is that HER2 status in
this study was based on IHC and/or high-level amplifica-
tion (SNP array analysis) rather than a combined score
including chromogenic in situ hybridization.

Candidate mucinous ovarian cancer genes
In addition to the seven somatic TP53 mutations identi-
fied by exome sequencing, Sanger sequencing of the
DNA binding domain (exons 4–9) in the validation co-
hort identified a further 15 mutations at an overall fre-
quency of 22/82 (26.8 %) MOTs, of which 21 were
missense mutations (Table 2, Fig. 2). All 22 mutations
have been previously reported in a somatic context
(IARC TP53 mutation database release 17). There was a
significant difference in TP53 mutation frequency among
the three tumor subtypes (P = 0.003, Chi-square test).
While there was a similar frequency of TP53 mutations
in benign (2/22, 9.1 %) and borderline (4/29, 13.8 %) tu-
mors, 16/31 (51.6 %) of carcinomas harbored a TP53



Table 2 Candidate driver genes with significantly recurrent somatic mutations in mucinous ovarian tumors

Exome cohort SMG prediction Validation cohort Overall

Gene Mutated
samples

Nonsense, frameshift
indel, splice

Inframe indel,
missense

OncodriveFM MuSiC q-value Mutated
samples

Nonsense, frameshift
indel, splice

Inframe indel,
missense

Mutated
samplesq-value FCPT LRT CT

KRAS 12 0 12 1.34 × 10−13 0 0 0 32 0 33 44/82

TP53 7 1 6 3.66 × 10−11 2.86 × 10−7 1.41 × 10−9 1.17 × 10−12 15 0 15 22/82

BRAF 6 0 6 2.45 × 10−8 7.77 × 10−7 0 6.18 × 10−12 4 0 5 10/82

CDKN2A 5 5 2 0.0043 1.20 × 10−10 0 7.93 × 10−17 5 5 0 10/63

RNF43 5 5 0 4.65 × 10−6 – 0.0009 0.0004 3 2 1 8/65b

ELF3 3 2 1 0.0079 – 0.0003 0.0004 1 1 0 4/65

ARID1A 2 2 0 0.0164 – 0.0933 – – – – 2/24

DCLK1 2 0 2 – – 0.0569 – – – – 2/24

ERBB3 2 0 3 – – 0.0014 0.0374 0 0 0 2/43

FBXW7 2 1 1 0.0207 – – – – – – 2/24

GNASa 2 0 2 9.05 × 10−8 – – – 3 0 3 5/81

KLF5 2 2 0 0.0164 – 0.0056 0.0536 0 0 0 2/43

LPHN3 2 0 2 0.0493 – – – – – – 2/24

LRRK2 2 1 1 0.0997 – – – – – – 2/24

TTF1 2 0 2 – – 0.0569 – – – – 2/24

All non-synonymous mutations in listed genes were validated by Sanger sequencing
CT convolution test, FCPT Fisher’s combined P-value test, LRT likelihood ratio test, SMG significantly mutated gene
aOnly mutations involving the hotspot codon 201 are reported
bIncludes samples from Ryland et al. [8] plus 16 additional samples
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Fig. 2 Candidate driver genes in MOTs. Significantly mutated genes identified by OncodriveFM and MuSiC analyses are arranged vertically by
their frequency of mutated samples in the whole exome sequencing data. Color indicates mutation consequence. Selected genes were also
investigated in a validation cohort of mucinous tumors. Each column denotes an individual tumor (ordered as listed in Additional file 1: Table S1),
which have been arranged to emphasize mutational groups. Genomic aberrations in other MAPK pathway genes were also screened for
mutations. LOH loss of heterozygosity
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mutation (P = 0.002 and P = 0.002 compared to benign
and borderline tumors respectively, Fisher’s exact test),
suggesting that aberrant p53 contributes to the invasive
phenotype in a proportion of these ovarian cancers. Both
low-grade and high-grade carcinomas harbored muta-
tions, which trended towards increasing frequency with
grade (45.5 %, 53.8 % and 66.7 % in Grades 1, 2 and 3
respectively), and with an overall frequency similar to
that of gastrointestinal mucinous carcinomas (Additional
file 2: Figure S3). While it is well accepted that TP53
mutation is an obligatory event in the genesis of high-
grade serous ovarian carcinoma, we show by direct
sequencing that mutant p53 is also common in
mucinous-type ovarian carcinomas, but is a late event in
their molecular progression. Interestingly, this group
does not share the widespread genomic instability that
typifies high-grade serous carcinomas that is contributed
to, at least in part, by mutant TP53, suggesting different
p53 activity in these two contexts.
Three mutations in the epithelial-specific ETS tran-

scription factor E74-like factor 3 (ELF3) were detected in
three tumors by exome sequencing. ELF3 was signifi-
cantly mutated above background (MuSiC) and had an
excess of likely deleterious mutations (OncodriveFM) in-
cluding two frameshift insertions (p.Val345Glyfs*126,
p.Asp239Glyfs*62) and a missense substitution (p.Met324-
Val) (Table 2, Figs. 2 and 3). Sequencing of the coding re-
gions in the expanded cohort identified an additional splice
site mutation in a borderline tumor (c.1001 + 1_1001 +
2insGG). Although ELF3 is thus infrequently mutated
(6.9 % borderline tumors and 6.5 % carcinomas), the
shared characteristics of the four heterozygous muta-
tions is indicative of a pathogenic role. Three of the
mutations are overtly deleterious, including two frame-
shift indels and a canonical splice site mutation, while
the missense mutation is predicted to be deleterious by
computational analyses [20–22]. We further investigated
the exon 8 splice donor site mutation by cDNA sequen-
cing, which confirmed the use of an alternative donor
splice sequence in the mutant allele (Additional file 2:
Figure S4) consistent with the in silico prediction [23].
This mutation would result in out-of-frame, continued
translation into the 3′-untranslated region (p.Tyr335-
Glyfs*113). cDNA sequencing of this and the two other
truncating mutations found that all three mutations were
readily detected in the tumor RNA, indicating that these
mutations are not the subject of strong nonsense-
mediated decay (Additional file 2: Figure S4). Truncating
mutations in this epithelial-specific transcription factor
have recently been reported in other cancers, including



Fig. 3 Distribution of somatic mutations identified in novel significantly mutated genes. ELF3, KLF5, GNAS and ERBB3 are shown in the context of
protein domains as predicted by UniProt, with somatic mutations identified in the exome (closed circle) and validation (open circle) cohorts
mapped to each gene. I-IV extracellular domains I, II, III and IV, AT hook & NLS AT-hook domain and nuclear localization signal, C2H2 zinc-finger
C2H2 domain, ETS DNA binding domain, GTP GTP nucleotide binding region, PNT pointed domain, SAR serine-rich and aspartic acid-rich domain,
TAD transactivation domain, TKD tyrosine kinase domain
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cancer of the cervix, stomach and bladder [24–26]. Inter-
estingly, ELF3-mutated cervical carcinomas express ELF3
at a higher level compared to wild-type tumors [24]. This
result may suggest that both copies of this gene are re-
quired and mutation of one allele results in up-regulation
of the gene in an attempt to compensate. Alternatively,
ELF3 mutations may only have a selective advantage in
tumors highly expressing ELF3.
ELF3 has previously been identified as a candidate

cancer gene; however, its role appears to be context
dependent, in keeping with the tissue-specific nature of
its transcriptional target genes. An oncogenic role has
been suggested for breast cancer, with the gene being
amplified and overexpressed [27, 28]. A positive feed-
back loop between ELF3 and HER2 exists in breast can-
cer, where ELF3 is both a downstream mediator and
activator of HER2 signaling [29]. Of note in this study,
two of two mutated carcinomas were HER2+, while the
two mutated borderline tumors were HER2-. However,
in a gastrointestinal tissue context, ELF3 may act as a
tumor suppressor, because it is involved in positively
transcriptionally regulating TGFBR2, facilitating the
growth inhibitory consequences of TGF-β signaling
[30, 31]. ELF3 was identified as a cancer gene in a
recent pan-cancer study, with enrichment for mutations
in bladder and colorectal cancer [32]. The frequency of
mutations in MOTs suggests that ELF3 is indeed a cancer
gene in this tumor type, but its exact role is unclear from
the mutational profile—while the mutations are detri-
mental in nature, the retention of the wild-type allele
argues against a classical tumor suppressor gene func-
tional mechanism.
Another transcription factor with a proclivity for trun-

cating mutations was KLF5, which encodes a zinc finger
transcriptional activator (Table 2, Figs. 2 and 3). Exome
sequencing identified two heterozygous frameshift muta-
tions (p.Phe123Leufs*3 and p.Asp238Argfs*16); however,
sequencing the coding region in a validation cohort of
carcinomas failed to identify additional changes. Collect-
ively, KLF5 is mutated in 6.7 % (2/30) of mucinous ovar-
ian carcinomas. Like ELF3, it has been identified as a
pan-cancer gene but enriched for mutations in bladder,
colorectal, and head and neck squamous carcinoma [32],
and has been variously described as both an oncogene
[33] and a tumor suppressor gene [34].
Considering exome and validation cohorts, five consti-

tutively activating mutations at arginine codon 201 of
the oncogene GNAS were identified, including 2/22
(9.1 %) benign cystadenomas, 2/29 (6.9 %) borderline
tumors and 1/30 (3.3 %) carcinomas (Table 2, Figs. 2
and 3). Hotspot mutations in this guanine nucleotide-
binding protein alpha subunit have recently been identified
in other pre-malignant or non-aggressive mucinous-type
tumors of gastrointestinal origin, albeit at a higher
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frequency (Additional file 2: Figure S3), including intra-
ductal papillary mucinous neoplasm of the pancreas and
bile duct [35, 36]; appendiceal mucinous neoplasms (and
its associated pseudomyxoma peritonei) [37, 38]; and ad-
enoma of the colon/rectum, stomach and small intestine
[39, 40]. In this context, constitutive activation of GNAS
through codon 201 mutation has been shown to increase
levels of cAMP, resulting in prominent mucin production
but not cell growth [38]. Consistent with previous re-
ports, simultaneous KRAS mutations were present in
four MOTs, although this association was not statistically
significant. Thus, unlike gastrointestinal mucinous-type
tumors, GNAS activation occurs only rarely in those in-
volving the ovary.
Although human epidermal growth factor receptors

have been implicated in MOT progression through amp-
lification and overexpression of ERBB2 (HER2), activat-
ing mutations in other family members have not been
previously described. Exome sequencing identified three
ERBB3 (HER3) mutations (a borderline tumor with con-
current mutations, and a carcinoma) (Table 2, Figs. 2
and 3), including two in the extracellular domain
(p.Met91Ile and p.Glu332Lys) and one in the kinase do-
main (p.Glu925Lys). No additional mutations were iden-
tified in a validation screen of 19 carcinomas, giving a
final frequency of 4.7 % in MOTs. Frequent ERBB3 mu-
tations have recently been reported in other cancer
types, including those of the colon, gallbladder and
stomach [41, 42]. Although ERBB3 contains an impaired
kinase domain, it is capable of ligand binding and prefer-
entially hetrodimerizes with ERBB2 to potently activate
cellular signaling pathways [43]. Thus the ERBB3 muta-
tions described here are predicted to cooperate with
ERBB2 to promote ligand-independent oncogenic trans-
formation, as functionally demonstrated for other kinase
and extracellular mutations in this gene [41]. Of note,
the ERBB3 mutant carcinoma was also HER2+. We also
identified a single somatic extracellular domain mutation
in another ErbB receptor, ERBB4 (p.Glu57Asp).

Additional mutated candidate genes
We also identified somatic mutations in epigenetic regu-
latory genes, including the chromatin-remodeling factors
ARID1A (1/5 benign MOTs and 1/11 carcinomas; a
predicted significantly mutated gene) and ARID2 (1/11
carcinomas) (Table 2, Fig. 2). Both genes are recognized
suppressors of tumorigenesis in multiple cancer types
[44, 45]. Consistent with this, the two ARID1A muta-
tions result in protein truncation (p.Gln1894Profs*7 and
p.Arg2116Thrfs*33). A further missense mutation was
found in the Polycomb-group protein member ASXL1.
In addition to ELF3 and KLF5, other genes implicated

in the control of gene expression were collectively mutated
in multiple samples. Three transcriptional co-regulatory
proteins contained somatic mutations, including the con-
sensus driver gene BCL-6 corepressor (BCOR; 2/11 carcin-
omas including splice donor and missense mutations) [45],
and proposed pan-cancer drivers NCOR2 (inframe indel in
a benign tumor) and ARHGAP35 (1/11 carcinomas)
[46, 47]. Other genes involved in transcription also fea-
tured, such as a single mutation in TAF1 that forms
the large subunit of the transcription factor II D com-
plex and facilitates the initiation of transcription by
RNA polymerase II, and a missense mutation at the
serine 34 hotspot of pre-mRNA splicing factor U2AF1,
which has been shown to alter the cancer transcrip-
tome [48]. The GATA3 transcription factor was also
mutated in one carcinoma.
One other important group of genes mutated in MOTs

included those associated with ubiquitin-mediated pro-
tein degradation. As well as frequent deleterious muta-
tions in the E3 ubiquitin ligase RNF43 [8], the consensus
cancer gene and tumor suppressor FBXW7 is note-
worthy [45], encoding for the substrate recognition com-
ponent of SCF (complex of SKP1, CUL1 and F-box
protein)-type ubiquitin ligases. Recurrent heterozygous
mutations (1/8 borderline tumors and 1/11 carcinomas)
(Table 2, Fig. 2) are predicted to result in proteins with
impaired (p.Asp560Asn) or absent (p.Arg278*) substrate
binding capability that dominantly interfere with wild-
type protein through the intact dimerization domain.
Interestingly, the mutant borderline tumor also harbored
bi-allelic mutations in another SCF complex gene CUL1.
We also identified a missense mutation in the E3
ubiquitin-protein ligase and cancer gene UBR5 [46].
Other genes identified based on significance prediction

and mutated in 2/24 MOTs by exome sequencing in-
cluded leucine-rich repeat kinase 2 (LRRK2), the riboso-
mal gene transcription termination factor TTF1, and
LPHN3, which encodes a member of the latrophilin sub-
family of G protein-coupled receptors (Table 2, Fig. 2).
DCLK1, a newly identified marker of transformed stem
cells in the gut [49], was also mutated in 8.3 % of cases
(Table 2, Fig. 2), and is a recurrent target for mutation
in neoplasms of the stomach [25], appendix [37] and
skin [50]. Clonal heterogeneity may be a feature of
DCLK1, as we and others [25, 50] observed mutations at
low allelic fractions. Validation in a larger cohort of sam-
ples is needed to interpret the role of these genes in mu-
cinous ovarian tumorigenesis.

Conclusions
Little is known about the genomics of mucinous ovarian
carcinoma beyond the known cancer driver genes. Here,
through mutation analysis, we provide insight into the
somatically altered genes of MOTs, identifying many
candidates not previously implicated in this disease, in-
cluding a higher than expected proportion of carcinomas
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with TP53 and BRAF mutations, as well as the preva-
lent RAS pathway mutations and loss of p16. Ther-
apies for this relatively rare entity have focused on
general chemotherapeutics currently used in ovarian
cancer. These therapies show limited success in treat-
ing advanced mucinous disease and novel targeted
therapies would be beneficial, especially for high-grade
carcinoma.
Using exome sequencing we could resolve driver mu-

tations in four of the six MOTs without a KRAS or
BRAF oncogenic mutation. Two tumors were likely
driven by alternative mechanisms for constitutive RAS
signaling (RRAS2 mutation and HER2 amplification)
with both also harboring cooperating events in TP53
and CDKN2A. Two further tumors may be explained by
a truncation in ARID1A, and ELF3 mutation plus homo-
zygous CDKN2A loss, leaving only a benign and a bor-
derline MOT unexplained. Given this, and the fact that
a significant proportion of mutations in candidate
drivers were identified among the carcinoma cohort, it is
plausible that these genes represent cooperative mecha-
nisms contributing to tumor progression rather than
novel initiating events; the diversity of biological pro-
cesses and pathways they involve hints at a high level of
molecular heterogeneity in this contribution. This study
provides a basis for understanding the diverse pathways
targeted by somatic mutation in mucinous tumors of the
ovary, although further functional work is required to
elucidate the role of novel, less commonly affected genes
with conflicting roles in the literature, such as ELF3 and
KLF5.
It is clear from this and other studies that the genes

underlying MOTs are markedly different from other
ovarian cancer subtypes. Genetic changes in the RAS/
RAF pathway and concurrent loss of cell cycle regulation
through aberrant p16 define MOTs. Some of the mu-
tated genes we have observed have been seen in other
tumor types, including in genes more commonly associ-
ated with tumors of the gastrointestinal tract, pancreas
and endometrium, such as RNF43, ELF3, ARID1A and
GNAS. Comparing MOTs to mucinous-type tumors
from other organ sites reveals some genetic similarities,
but also some striking differences (Additional file 2:
Figure S3). Like MOTs, colorectal mucinous carcinomas
are the only group in which frequent KRAS and BRAF
mutations are found; mutations in both genes are absent
in breast and rare gastric mucinous carcinomas, and
appendiceal mucinous tumors are BRAF wild type. Like-
wise, pancreatic carcinomas and their mucinous neo-
plastic precursors appear not to be driven by oncogenic
BRAF, but instead are the only group apart from MOTs
to harbor mutant CDKN2A. We also identified genes
novel to cancer that may reflect rarely targeted genes
unique to the mucinous ovarian milieu. The initiating
cell type of mucinous tumors presenting on the ovary
remains to be determined; the heterogeneity of the mu-
tations observed here as well as the mutational spectrum
suggests that the ovarian surface epithelium is unlikely
to be the only source.
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