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Abstract
In this paper, we consider the following p-Laplacian Liénard type differential equation
with singularity and deviating argument:

(ϕp(x
′(t)))′ + f (x(t))x′(t) + g(t, x(t – σ )) = e(t).

By applications of coincidence degree theory and some analysis techniques,
sufficient conditions for the existence of positive periodic solutions are established.

MSC: 34C25; 34K13; 34K40

Keywords: positive solution; p-Laplacian; Liénard equation; singularity; deviating
argument

1 Introduction
In this paper, we consider the following p-Laplacian Liénard type differential equation
with singularity and deviating argument:

(
ϕp

(
x′(t)

))′ + f
(
x(t)

)
x′(t) + g

(
t, x(t – σ )

)
= e(t), (.)

where ϕp : R → R is given by ϕp(s) = |s|p–s, here p >  is a constant, f is continuous func-
tion; g is a continuous function defined on R

 and periodic in t with g(t, ·) = g(t + T , ·), g
has a singularity at x = ; σ is a constant and  ≤ σ < T ; e : R →R are continuous periodic
functions with e(t + T) ≡ e(t) and

∫ T
 e(t) dt = .

As is well known, the existence of periodic solutions for Liénard type differential equa-
tions was extensively studied (see [–] and the references therein). In recent years, there
also appeared some results on a Liénard type differential equation with singularity; see
[, ]. In , using coincidence degree theory, Zhang considered the existence of T-
periodic solutions for the scalar Liénard equation

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t)

)
= ,

when g becomes unbounded as x → +. The main emphasis was on the repulsive case, i.e.
when g(t, x) → +∞, as x → +. Afterwards, Wang [] studied the existence of periodic

© 2016 Xin and Cheng. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208309294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13662-015-0721-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0721-2&domain=pdf
mailto:xy_1982@126.com


Xin and Cheng Advances in Difference Equations  (2016) 2016:41 Page 2 of 11

solutions of the Liénard equation with a singularity and a deviating argument,

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t – σ )

)
= ,

where σ is a constant. When g has a strong singularity at x =  and satisfies a new small
force condition at x = ∞, the author proved that the given equation has at least one positive
T-periodic solution.

However, the Liénard type differential equation (.), in which there is a p-Laplacian
Liénard type differential equation, has not attracted much attention in the literature. There
are not so many existence results for (.) even as regards the p-Laplacian Liénard type
differential equation with singularity and deviating argument. In this paper, we try to fill
this gap and establish the existence of a positive periodic solution of (.) using coincidence
degree theory. Our new results generalize in several aspects some recent results contained
in [, ].

2 Preparation
Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm operator with
index zero, here D(L) denotes the domain of L. This means that Im L is closed in Y and
dim Ker L = dim(Y / Im L) < +∞. Consider supplementary subspaces X, Y of X, Y , respec-
tively, such that X = Ker L⊕X, Y = Im L⊕Y. Let P : X → Ker L and Q : Y → Y denote the
natural projections. Clearly, Ker L ∩ (D(L) ∩ X) = {} and so the restriction LP := L|D(L)∩X

is invertible. Let K denote the inverse of LP .
Let � be an open bounded subset of X with D(L) ∩ � 
= ∅. A map N : � → Y is said to

be L-compact in � if QN(�) is bounded and the operator K(I – Q)N : � → X is compact.

Lemma . (Gaines and Mawhin []) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:

() Lx 
= λNx, ∀x ∈ ∂� ∩ D(L), λ ∈ (, );
() Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L;
() deg{JQN ,� ∩ Ker L, } 
= , where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in � ∩ D(L).

For the sake of convenience, throughout this paper we will adopt the following notation:

|u|∞ = max
t∈[,T]

∣
∣u(t)

∣
∣, |u| = min

t∈[,T]

∣
∣u(t)

∣
∣,

|u|p =
(∫ T


|u|p dt

) 
p

, h̄ =

T

∫ T


h(t) dt.

Lemma . ([]) If ω ∈ C(R,R) and ω() = ω(T) = , then

∫ T



∣∣ω(t)
∣∣p dt ≤

(
T
πp

)p ∫ T



∣∣ω′(t)
∣∣p dt,

where  ≤ p < ∞, πp = 
∫ (p–)/p


ds

(– sp
p– )/p = π (p–)/p

p sin(π/p) .
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Lemma . If x ∈ C(R,R) with x(t + T) = x(t), and t ∈ [, T] such that |x(t)| < d, then

(∫ T



∣∣x(t)
∣∣p dt

) 
p

≤
(

T
πp

)(∫ T



∣∣x′(t)
∣∣p dt

) 
p

+ dT

p .

Proof Let ω(t) = x(t + t) – x(t), and then ω() = ω(T) = . By Lemma . and Minkowski’s
inequality, we have

(∫ T



∣
∣x(t)

∣
∣p dt

) 
p

=
(∫ T



∣
∣ω(t) + x(t)

∣
∣p dt

) 
p

≤
(∫ T



∣∣ω(t)
∣∣p dt

) 
p

+
(∫ T



∣∣x(t)
∣∣p dt

) 
p

≤
(

T
πp

)(∫ T



∣
∣ω′(t)

∣
∣p dt

) 
p

+ dT

p

=
(

T
πp

)(∫ T



∣
∣x′(t)

∣
∣p dt

) 
p

+ dT

p .

This completes the proof of Lemma .. �

In order to apply the topological degree theorem to study the existence of a positive
periodic solution for (.), we rewrite (.) in the form

⎧
⎨

⎩
x′

(t) = ϕq(x(t)),

x′
(t) = –f (x(t))x′

(t) – g(t, x(t – σ )) + e(t),
(.)

where 
p + 

q = . Clearly, if x(t) = (x(t), x(t))� is an T-periodic solution to (.), then
x(t) must be an T-periodic solution to (.). Thus, the problem of finding an T-periodic
solution for (.) reduces to finding one for (.).

Now, set X = Y = {x = (x(t), x(t)) ∈ C(R,R) : x(t + T) ≡ x(t)} with the norm ‖x‖ =
max{|x|∞, |x|∞}. Clearly, X and Y are both Banach spaces. Meanwhile, define

L : D(L) =
{

x ∈ C(
R,R) : x(t + T) = x(t), t ∈R

} ⊂ X → Y

by

(Lx)(t) =

(
x′

(t)
x′

(t)

)

and N : X → Y by

(Nx)(t) =

(
ϕq(x(t))

–f (x(t))x′
(t) – g(t, x(t – σ )) + e(t)

)

. (.)
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Then (.) can be converted to the abstract equation Lx = Nx. From the definition of L,
one can easily see that

Ker L ∼= R
, Im L =

{

y ∈ Y :
∫ T



(
y(s)
y(s)

)

ds =

(



)}

.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂R
 be

defined by

Px =

(
(Ax)()

x()

)

; Qy =

T

∫ T



(
y(s)
y(s)

)

ds,

then Im P = Ker L, Ker Q = Im L. Let K denote the inverse of L|Ker p∩D(L). It is easy to see
that Ker L = Im Q = R

 and

[Ky](t) =
∫ T


G(t, s)y(s) ds,

where

G(t, s) =

⎧
⎨

⎩

s
T ,  ≤ s < t ≤ T ;
s–t
T ,  ≤ t ≤ s ≤ T .

(.)

From (.) and (.), it is clear that QN and K(I – Q)N are continuous, QN(�) is bounded
and then K(I – Q)N(�) is compact for any open bounded � ⊂ X, which means N is
L-compact on �.

3 Main results
Assume that

ψ(t) = lim
x→+∞ sup

g(t, x)
xp– (.)

exists uniformly a.e. t ∈ [, T], i.e., for any ε >  there is gε ∈ L(, T) such that

g(t, x) ≤ (
ψ(t) + ε

)
x + gε(t), (.)

for all x >  and a.e. t ∈ [, T]. Moreover, ψ ∈ C(R,R) and ψ(t + T) = ψ(t).
For the sake of convenience, we list the following assumptions which will be used re-

peatedly in the sequel:
(H) (Balance condition) There exist constants  < D < D such that if x is a positive

continuous T-periodic function satisfying

∫ T


g
(
t, x(t)

)
dt = ,

then

D ≤ x(τ ) ≤ D,

for some τ ∈ [, T].
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(H) (Degree condition) ḡ(x) <  for all x ∈ (, D), and ḡ(x) >  for all x > D.
(H) (Decomposition condition) g(t, x) = g(x) + g(t, x), where g ∈ C((,∞);R) and

g : [, T] × [,∞) → R is an L-Carathéodory function, i.e. it is measurable in the first
variable and continuous in the second variable, and for any b >  there is hb ∈ L(, T ;R+)
such that

∣∣g(t, x)
∣∣ ≤ hb(t), a.e. t ∈ [, T],∀ ≤ x ≤ b.

(H) (Strong force condition at x = )
∫ 

 g(x) dx = –∞.

Theorem . Assume that conditions (H)-(H) hold. Suppose the following condition is
satisfied:

(H) ( T
πp

)p|ψ |∞ < .
Then (.) has at least one positive T-periodic solution.

Proof Consider the equation

Lx = λNx, λ ∈ (, ).

Set � = {x : Lx = λNx,λ ∈ (, )}. If x(t) = (x(t), x(t))� ∈ �, then

⎧
⎨

⎩
x′

(t) = λϕq(x(t)),

x′
(t) = –λf (x(t))x′

(t) – λg(t, x(t – σ )) + λe(t).
(.)

Substituting x(t) = 
λp– ϕp(x′

(t)) into the second equation of (.)

(
ϕp

(
x′

(t)
))′ + λpf

(
x(t)

)
x′

(t) + λpg
(
t, x(t – σ )

)
= λpe(t). (.)

Integrating both sides of (.) over [, T], we have

∫ T


g
(
t, x(t – σ )

)
dt = . (.)

From (H), there exist positive constants D, D, and ξ ∈ [, T] such that

D ≤ x(ξ ) ≤ D. (.)

Then we have

∣∣x(t)
∣∣ =

∣
∣∣
∣x(ξ ) +

∫ t

ξ

x′
(s) ds

∣
∣∣
∣ ≤ D +

∫ t

ξ

∣∣x′
(s)

∣∣ds, t ∈ [ξ , ξ + T],

and

∣
∣x(t)

∣
∣ =

∣
∣x(t – T)

∣
∣ =

∣∣
∣∣x(ξ ) –

∫ ξ

t–T
x′

(s) ds
∣∣
∣∣ ≤ D +

∫ ξ

t–T

∣
∣x′

(s)
∣
∣ds, t ∈ [ξ , ξ + T].
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Combining the above two inequalities, we obtain

|x|∞ = max
t∈[,T]

∣
∣x(t)

∣
∣ = max

t∈[ξ ,ξ+T]

∣
∣x(t)

∣
∣

≤ max
t∈[ξ ,ξ+T]

{
D +




(∫ t

ξ

∣
∣x′

(s)
∣
∣ds +

∫ ξ

t–T

∣
∣x′

(s)
∣
∣ds

)}

≤ D +



∫ T



∣
∣x′

(s)
∣
∣ds. (.)

Multiplying both sides of (.) by x(t) and integrating over the interval [, T], we get

∫ T



(
ϕp

(
x′

(t)
))′x(t) dt + λp

∫ T


f
(
x(t)

)
x′

(t)x(t) dt + λp
∫ T


g
(
t, x(t – σ )

)
x(t) dt

= λp
∫ T


e(t)x(t) dt. (.)

Substituting
∫ T

 (ϕp(x′
(t)))′x(t) dt = –

∫ T
 |x′

(t)|p dt,
∫ T

 f (x(t))x′
(t)x(t) dt =  into (.),

we have

∫ T



∣∣x′
(t)

∣∣pd = λp
∫ T


g
(
t, x(t – σ )

)
x(t) dt – λp

∫ T


e(t)x(t) dt. (.)

For any ε > , there exists a function gε ∈ L(, T) such that (.) holds. Since x(t) > ,
t ∈ [, T], it follows from (.) that

g
(
t, x(t – σ )

)
x(t) ≤ (

ψ(t) + ε
)
xp–

 (t – σ )x(t) + gε(t)x(t). (.)

We infer from (.) and (.)

∫ T



∣∣x′
(t)

∣∣p dt

≤ λp
∫ T



(
ψ(t) + ε

)
xp–

 (t – σ )x(t) dt + λp
∫ T



(
gε(t) + e(t)

)
x(t) dt

≤
∫ T



(∣∣ψ(t)
∣∣ + ε

)∣∣xp–
 (t – σ )

∣∣∣∣x(t)
∣∣dt +

∫ T



(∣∣gε(t)
∣∣ +

∣∣e(t)
∣∣)∣∣x(t)

∣∣dt

≤ (|ψ |∞ + ε
)
(∫ T



∣∣x(t – σ )
∣∣p dt

) p–
p

(∫ T



∣∣x(t)
∣∣p dt

) 
p

+ |x|∞
(∫ T



∣
∣gε(t)

∣
∣dt +

∫ T



∣
∣e(t)

∣
∣dt

)

≤ (|ψ |∞ + ε
)
(∫ T



∣∣x(t)
∣∣p dt

)
+ |x|∞

(∫ T



∣∣gε(t)
∣∣dt +

∫ T



∣∣e(t)
∣∣dt

)
. (.)

From Lemma . and (.), we have

(∫ T



∣∣x(t)
∣∣p

) 
p

≤
(

T
πp

)(∫ T



∣∣x′
(t)

∣∣p dt
) 

p
+ DT


p . (.)
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Substituting (.), (.) into (.), we get

∫ T



∣
∣x′

(t)
∣
∣p dt

≤ (|ψ |∞ + ε
)
((

T
πp

)(∫ T



∣∣x′
(t)

∣∣p dt
) 

p
+ DT


p

)p

+
(

D +



∫ T



∣∣x′
(t)

∣∣dt
)(∫ T



∣∣gε(t)
∣∣dt +

∫ T



∣∣e(t)
∣∣dt

)

≤ (|ψ |∞ + ε
)((

T
πp

)p ∫ T



∣
∣x′

(t)
∣
∣p dt

+ p
(

T
πp

)p–(∫ T



∣∣x′
(t)

∣∣p dt
) p–

p
DT


p + · · · + Dp

T
)

+
(

D +



T

q

(∫ T



∣
∣x′

(t)
∣
∣p dt

) 
p
)(

T


(|gε| + |e|

))

=
(|ψ |∞ + ε

)( T
πp

)p ∫ T



∣∣x′
(t)

∣∣p dt

+
(|ψ |∞ + ε

)
p
(

T
πp

)p–(∫ T



∣∣x′
(t)

∣∣p dt
) p–

p
DT


p + · · ·

+



T

q + 



(∫ T



∣
∣x′

(t)
∣
∣p dt

) 
p (|gε| + |e|

)

+
(|ψ |∞ + ε

)
Dp

T + T

 D

(|gε| + |e|
)
, (.)

where |gε| = (
∫ T

 |gε(t)| dt) 
 . Since ε is sufficiently small, from (H) we know that

( T
πp

)p|ψ |∞ < . So, it is easy to see that there exists a positive constant M′
 such that

∫ T



∣∣x′
(t)

∣∣p dt ≤ M′
.

From (.), we have

|x|∞ ≤ D +



∫ T



∣∣x′
(t)

∣∣dt

≤ D +
T


q



(∫ T



∣∣x′
(t)

∣∣p dt
) 

p

≤ D +
T


q


(
M′


) 

p := M. (.)

Write

I+ =
{

t ∈ [, T] : g
(
t, x(t – σ )

) ≥ 
}

; I– =
{

t ∈ [, T] : g
(
t, x(t – σ )

) ≤ 
}

.
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Then we get from (.) and (.)

∫ T



∣
∣g

(
t, x(t – σ )

)∣∣dt =
∫

I+

g
(
t, x(t – σ )

)
dt –

∫

I–

g
(
t, x(t – σ )

)
dt

= 
∫

I+

g
(
t, x(t – σ )

)
dt

≤ 
∫

I+

((
ψ(t) + ε

)
xp–

 (t – σ ) + gε(t)
)

dt

≤ 
(|ψ |∞ + ε

) ∫ T



∣∣x(t)
∣∣p– dt + 

∫ T



∣∣gε(t)
∣∣dt

≤ 
(|ψ |∞ + ε

)
TMp–

 + 
√

T |gε|. (.)

By the second equations of (.) and (.), we obtain

∫ T



∣∣x′
(t)

∣∣dt

≤ λ

∫ T



∣
∣f

(
x(t)

)∣∣
∣
∣x′

(t)
∣
∣dt + λ

∫ T



∣
∣g

(
t, x(t – σ )

)∣∣dt + λ

∫ T



∣
∣e(t)

∣
∣dt

≤ λ|f |M T

q

(∫ T



∣∣x′
(t)

∣∣p dt
) 

p
+ λ

(

(|ψ |∞ + ε

)
TMp–

 + 
√

T |gε|
)

+ λ
√

T |e|

≤ λ|f |M T

q
(
M′


) 

p + λ
(

(|ψ |∞ + ε

)
TMp–

 + 
√

T |gε|
)

+ λ
√

T |e|
:= λM′

, (.)

where |f |M = max<x≤M |f (x(t))|. By the first equation of (.), we have

∫ T



∣
∣x(s)

∣
∣q–x(s) ds = ,

which implies that there is a constant t ∈ [, T] such that x(t) = , so

|x|∞ ≤ 


∫ t



∣∣x′
(s)

∣∣ds ≤ 


∫ T



∣∣x′
(s)

∣∣ds ≤ λ


M′

 := λM. (.)

On the other hand, it follows from (.) that

(
ϕp

(
x′

(t + σ )
))′ + λp(f

(
x(t + σ )

)
x′

(t + σ ) + g
(
t + σ , x(t)

))
= λpe(t + σ ). (.)

Namely,

(
ϕp

(
x′

(t + σ )
))′ + λpf

(
x(t + σ )

)
x′

(t + σ )

+ λpg
(
x(t)

)
+ g

(
t + σ , x(t)

)
= λpe(t + σ ). (.)

Multiplying both sides of (.) by x′
(t), we get

(
ϕp

(
x′

(t + σ )
))′x′

(t) + λpf
(
x(t + σ )

)
x′

(t + σ )x′
(t)

+ λpg
(
x(t)

)
x′

(t) + λpg
(
t + σ , x(t)

)
x′

(t) = λpe(t + σ )x′
(t). (.)
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Let τ ∈ [, T], for any τ ≤ t ≤ T , we integrate (.) on [τ , t] and get

λp
∫ x(t)

x(τ )
g(u) du = λp

∫ t

τ

g
(
x(s)

)
x′

(s) ds

= –
∫ t

τ

(
ϕp

(
x′

(s + σ )
))′x′

(s) ds – λp
∫ t

τ

f
(
x(s + σ )

)
x′

(s + σ )x′
(s) ds

– λp
∫ t

τ

g
(
s + σ , x(s)

)
x′

(s) ds + λp
∫ t

τ

e(s + σ )x′
(s) ds. (.)

By (.), (.), (.), (.), and (.), we have
∣
∣∣
∣

∫ t

τ

(
ϕp

(
x′

(t + σ )
))′x′

(s) ds
∣
∣∣
∣

≤
∫ t

τ

∣
∣(ϕp

(
x′

(t + σ )
))′∣∣∣∣x′

(s)
∣
∣ds

≤ ∣
∣x′


∣
∣∞

∫ T



∣
∣(ϕp

(
x′

(t + σ )
))′∣∣dt

≤ λp∣∣x′

∣∣∞

(∫ T



∣∣f
(
x(t)

)∣∣∣∣x′
(t)

∣∣dt +
∫ T



∣∣g
(
t, x(t – σ )

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt

)

≤ λpMp–


(|f |M M
′ 

p
 T


q + 

(|ψ |∞ + ε
)
TMp–

 + T


∣∣g+

ε

∣∣
 + T


 |e|

)
.

We have
∣∣
∣∣

∫ t

τ

f
(
x(s + σ )

)
x′

(s + σ )x′
(s) ds

∣∣
∣∣ ≤ |f |M

(∫ T



∣
∣x′

(s)
∣
∣ds

)

≤ |f |M T

q

(∫ T



∣∣x′
(t)

∣∣p dt
) 

p

≤ |f |M T

q
(
M′


) 

p ,
∣
∣∣
∣

∫ t

τ

g
(
s + σ , x(s)

)
x′

(s) ds
∣
∣∣
∣ ≤ ∣∣x′


∣∣
∫ T



∣∣g
(
t, x(t – σ )

)∣∣dt ≤ Mp–


√
T |gM |,

where gM = max≤x≤M |g(t, x)| ∈ L(, T) is as in (H). We have

∣∣
∣∣

∫ t

τ

e(t + σ )x′
(t) dt

∣∣
∣∣ ≤ Mp–

 T

 |e|.

From these inequalities we can derive from (.) that

∣∣
∣∣

∫ x(t)

x(τ )
g(u) du

∣∣
∣∣ ≤ M′

, (.)

for some constant M′
 which is independent on λ, x, and t. In view of the strong force

condition (H), we know that there exists a constant M >  such that

x(t) ≥ M, ∀t ∈ [τ , T]. (.)

The case t ∈ [, τ ] can be treated similarly.
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From (.), (.), and (.), we let

� =
{

x = (x, x)� : E ≤ |x|∞ ≤ E, |x|∞ ≤ E,∀t ∈ [, T]
}

,

where  < E < min(M, D), E > max(M, D), E > M. � = {x : x ∈ ∂� ∩ Ker L} then
∀x ∈ ∂� ∩ Ker L

QNx =

T

∫ T



(
ϕq(x(t))

–f (x(t))x′
(t) – g(t, x(t – σ )) + e(t)

)

dt.

If QNx = , then x(t) = , x = E or –E. But if x(t) = E, we know

 =
∫ T



{
g(t, E) – e(t)

}
dt.

From assumption (H), we have x(t) ≤ D ≤ E, which yields a contradiction. Similarly if
x = –E. We also have QNx 
= , i.e., ∀x ∈ ∂�∩ Ker L, x /∈ Im L, so conditions () and () of
Lemma . are both satisfied. Define the isomorphism J : Im Q → Ker L as follows:

J(x, x)� = (x, –x)�.

Let H(μ, x) = –μx + ( – μ)JQNx, (μ, x) ∈ [, ] × �, then ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L),

H(μ, x) =

(
–μx – –μ

T
∫ T

 [g(t, x) – e(t)] dt
–μx – ( – μ)|x|p–x

)

.

We have
∫ T

 e(t) dt = . So, we can get

H(μ, x) =

(
–μx – –μ

T
∫ T

 g(t, x) dt
–μx – ( – μ)|x|p–x

)

,

∀(μ, x) ∈ (, ) × (∂� ∩ Ker L).

From (H), it is obvious that x�H(μ, x) < , ∀(μ, x) ∈ (, ) × (∂� ∩ Ker L). Hence

deg{JQN ,� ∩ Ker L, } = deg
{

H(, x),� ∩ Ker L, 
}

= deg
{

H(, x),� ∩ Ker L, 
}

= deg{I,� ∩ Ker L, } 
= .

So condition () of Lemma . is satisfied. By applying Lemma ., we conclude that the
equation Lx = Nx has a solution x = (x, x)� on �̄ ∩ D(L), i.e., (.) has an T-periodic
solution x(t). �

Finally, we present an example to illustrate our result.
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Example . Consider the p-Laplacian Liénard type differential equation with singularity
and deviating argument:

(
ϕp

(
x′(t)

))′ + f
(
x(t)

)
x′(t) +




(cos t + )x(t – σ ) –


xκ (t – σ )
= sin t, (.)

where κ ≥  and p = , f is a continuous function, σ is a constant, and  ≤ σ < T .
It is clear that T = π , g(t, x) = 

 (cos t + )x(t – σ ) – 
xκ (t–σ ) , ψ(t) = 

 (cos t + ). It is
obvious that (H)-(H) hold. Now we consider the assumption (H). Since |ψ |∞ ≤ 

 , we
have

(
T
πp

)p

|ψ |∞ =
(

T
π (p–)/p

p sin(π/p)

)p

|ψ |∞ ≤
(

π

π (–)/

 sinπ/

)

× 


=



< .

So by Theorem ., we know (.) has at least one positive π-periodic solution.
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