
Malmirchegini and Mostofi EURASIP Journal on Advances in Signal Processing 2013, 2013:144
http://asp.eurasipjournals.com/content/2013/1/144

RESEARCH Open Access

An integrated diversity and fusion framework
for binary consensus over fading channels
Mehrzad Malmirchegini* and Yasamin Mostofi

Abstract

In this paper, we consider a cooperative network that is trying to reach consensus on the occurrence of an event by
communicating over not fully connected and time-invariant network topologies with fading channels. We first discuss
the fusion and diversity decision-making strategies over time-invariant network topologies and shed light on the
underlying trade-offs. We then propose an integrated diversity and fusion framework. Our approach properly takes
advantage of both fusion to enable information flow and diversity to increase robustness to link errors. We
mathematically analyze the proposed framework and show how the network achieves accurate consensus
asymptotically. To show an example, we then utilize the proposed framework over regular ring lattice networks. Our
theoretical and simulation results indicate that the proposed technique improves the consensus performance
considerably.

1 Introduction
Cooperative decision-making over sensor networks has
gotten considerable interest in recent years. These net-
works have a variety of applications such as environmental
monitoring, target tracking, and surveillance. Consider
the scenario where a network of nodes, distributed in
a harsh environment, aims to cooperatively accomplish
a task. Each node has limited local capabilities and can
therefore only accomplish the task in a cooperative man-
ner. In this paper, we are interested in group agreement
problem, where a group of agents need to reach consensus
on the value of a parameter of interest. The consen-
sus problems can be categorized into two main groups:
estimation consensus and detection consensus. Estimation
consensus refers to problems in which each agent has an
estimate of the parameter of interest, where the param-
eter of interest can take values over an infinite set or an
unknown finite set. For instance, it may be of interest
that all the mobile agents that started in different direc-
tions reach an agreement on their asymptotic headings
in a cooperative multi-agent network [1]. Recently, there
has been considerable interest in estimation consensus
problems from the signal processing and communication
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community, with more emphasis on link uncertainties
[2-4].
Detection consensus, on the other hand, refers to prob-

lems in which the parameter of interest takes values from
a finite known set. Then the update protocol, which each
agent will utilize, becomes nonlinear. By binary consensus
[5], we refer to a subset of detection consensus problems
where the network is trying to reach consensus over a
binary parameter. For instance, in a cooperative fire detec-
tion scenario, each node has an initial opinion as to if there
is a fire or not. However, as a network, they may act based
only on the majority vote. Therefore, the goal of the net-
work is for each node to reach consensus over themajority
of initial votes. Another application of binary consensus
is in cooperative spectrum sensing in cognitive radio net-
works. In this scenario, the secondary users communicate
with each other in order to reach consensus on busy or
idle status of the primary user, which is a binary value [6].

1.1 Related work and our contribution
While there exists a rich literature on estimation consen-
sus, detection consensus problems only recently started to
receive attention. In [7], the authors consider convergence
in a detection consensus setup over perfect channels with
repeated sensing and known probabilistic sensing mod-
els. In [8], the authors consider a distributed hypothesis
testing problem over perfect communication channels to
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which they refer to as belief consensus. They consider
the case where each node transmits its belief (conditional
probability) to other nodes. As a result, their problem
immediately takes the form of the traditional average
estimation consensus for which a rich literature exists.
In [5,9], the binary consensus scenario is considered. In

this scenario, each node in the network has an opinion
regarding the occurrence of an event. The nodes will then
communicate over the network topology. The goal for
every node is to reach themajority of the initial votes with-
out any prior knowledge on the sensing qualities. Authors
in [9] characterized phase transition of such a binary con-
sensus problem in the presence of a uniformly distributed
communication noise. In most applications, however, the
agents will communicate their values wirelessly and will
experience Gaussian receiver noise as opposed to a uni-
formly distributed noise. In [5], we considered reaching
binary consensus over regular network topologies (all
nodes have the same number of neighbors) with addi-
tive white Gaussian noise channels. We characterized the
transient behavior of the network probabilistically. We
showed that in the presence of noise, the network state is
asymptotically memoryless, i.e., independent of the initial
state. This is undesirable since the group agreement is not
related to the initial state of the system and is merely a
function of channel errors.
In [10], we studied the binary consensus over a fully

connected network topology with fading channels. We
proposed a novel consensus-seeking protocol that utilizes
information of link qualities. We showed that by incorpo-
rating the information of link qualities, the network will be
in consensus with a higher probability but still holds the
undesirable asymptotic behavior. In [11], we considered
binary consensus over rapidly changing network topolo-
gies with fading channels. We mathematically character-
ized the impact of fading, noise, network connectivity and
time-varying topology on consensus performance.
In this paper, we consider the binary consensus prob-

lem over the general time-invariant network topologies
(not necessarily fully connected) with fading channels.We
study two decision-making strategies that differ in terms
of using the available transmissions: fusion and diver-
sity. In the first strategy, the given resources are used to
increase the flow of information in the network, whereas
the second strategy aims to increase robustness to link
error by channel coding [11]. We characterize the under-
lying trade-offs between these two strategies for binary
consensus over a not fully connected and time-invariant
network topology. In particular, we show that fusion-
based scheme results in an asymptotic memoryless behav-
ior, which is not desirable. Furthermore, diversity-based
scheme only outperforms fusion-based scheme, when the
main bottleneck is link quality and the network has a
good connectivity. The main contribution of this paper is

to propose a framework that keeps the benefits of both
fusion and diversity strategies, in terms of the network
information flow and link error robustness, for binary
consensus over time-invariant network topologies with
fading channels. Wemathematically analyze the proposed
framework and show that it achieves accurate consensus
asymptotically. The proposed framework solves the unde-
sirable memoryless behavior of the network consensus
and results in a drastic performance improvement.

2 Binary consensus problem over time-invariant
topologies with ideal communication links

In this section, we introduce the binary consensus prob-
lem over not fully connected and time-invariant network
topologies. Furthermore, we assume ideal communication
links. Studying this case allows us to focus solely on the
impact of information flow in the network and character-
ize a benchmark for the performance of binary consensus
algorithms over non-ideal communication links.
Consider a cooperative network of M nodesa that are

trying to reach consensus over the occurrence of an event.
Each node has its own initial decision, based on its one-
time sensing. The goal of the network is for each node to
reach a decision that is equal to the majority of the initial
votes. For instance, in a cooperative fire detection sce-
nario, each node has an initial opinion as to if there is a fire
or not. However, as a network, they may act based only on
themajority vote. Therefore, it is desirable that every node
reaches the majority of the initial votes without a group
leader. As it may happen in realistic scenarios, the nodes
may not have any information on their own or the others’
sensing quality. Therefore, the main goal is that each node
reaches the majority of the initial votes. Considering sens-
ing quality of the nodes is among possible extensions of
this work.
In order to achieve this, each node will transmit its

current decision to other nodes.b We model the under-
lying network as an undirected graph G(V , E), where
V = {1, . . . ,M} represents the vertex set and E is the
link set (the set of available communication links among
the nodes). Each node will then revise its current vote
based on the received information. This process will go
on for a while. We say that accurate consensus is achieved
if each agent reaches the majority of the initial votes [5].
For instance, if 70% of the nodes start voting one and
they all end up voting one, we have accurate consen-
sus. Let b̃0i ∈ {0, 1} represent the initial vote of the ith
node, where b̃0i = 1 indicates that the ith agent initially
decides that the event occurred, whereas b̃0i = 0 denotes
otherwise. Consider the binary consensus problem over
ideal communication links. In this scenario, each node
receives the votes of its neighbors over the ideal commu-
nication links. It then fuses all the received information
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and updates its vote based on themajority of its neighbors’
votes.
Let b̃ui denote the ith node’s vote after u fusion steps over

ideal communication links. We have,

b̃ui = ϒideal

⎛
⎝ 1
1 + |Ni|

⎡
⎣b̃u−1

i +
∑
j∈Ni

b̃u−1
j

⎤
⎦ , b̃u−1

i

⎞
⎠
(1)

where Ni denotes the neighbor set of the ith node, and
the decision-making function for the binary consensus
over ideal communication links, ϒideal(., .), is defined as
follows:

ϒideal(x, ξ) �

⎧⎨
⎩

1 x > 0.5
ξ x = 0.5
0 x < 0.5

. (2)

Figure 1 shows a network ofM = 17 nodes trying to reach
consensus over a 6-regular ring lattice.c In this topology,
each node receives information from its neighbors over
ideal communication links. As can be seen, all the nodes
reach the majority of initial votes at the second level of
fusion. LetDu = {b̃u1 , b̃u2 , . . . , b̃uM} denote the network state
after u fusion steps. Define

uG(D0) � min{u|Duis an accurate consensus state}.

For instance, for the example of Figure 1, we have D0 =
{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1} and uG(D0) = 2.
We then define DG � {D0| uG(D0) < ∞} and uG =
maxD0∈DG uG(D0). uG is only a function of graph connec-
tivity and represents the maximum number of required
fusion levels in order to achieve accurate consensus if
D0 ∈ DG. For instance, for the fully connected graph, i.e.,

each node is connected to all the nodes in the network,
we have uG = 1. In the next section, we consider the
binary consensus problem over non-ideal communication
links. We discuss different strategies in terms of informa-
tion flow and robustness to link error and characterize the
underlying trade-offs.

3 The underlying trade-offs between information
flow and link error robustness

In a realistic scenario, each node transmits its decision
to other nodes over non-ideal communication links. The
transmissions occur over fading channels and are further-
more corrupted by the receiver noise. Let rj,i(k) represent
the fading coefficient of the link from node j to node i at
time k. Similarly, nj,i(k) denotes the receiver noise at the
kth time step in the transmission from the jth node to
the ith one. nj,i(k) is zero-mean Gaussian with the vari-
ance of σ 2

j,i. We take the receiver noise of the receptions
of different nodes to be uncorrelated. Let bj,i(k) repre-
sent the reception of the ith node from the transmission
of the jth one at the kth time step. We have the follow-
ing if there exists a link from the jth node to the ith one:d
bj,i(k) = rj,i(k)bj(k) + nj,i(k), where bj(k) denotes the jth
node’s vote at time k. We assume that each receiver can
learn the fading coefficient of each of its receptions and
utilize it in the decision-making process. Furthermore, we
consider the case where the fading coefficients are uncor-
related among different nodes and in different time steps.
Each agent will then update its assessment based on the
received information.We next discuss fusion and diversity
decision-making strategies for binary consensus prob-
lem over not fully connected and time-invariant network
topologies and characterize the underlying trade-offs.

3.1 Fusion case
In this case, each node fuses its received information in
every time step to form its new opinion, which it will then

Figure 1 Demonstration of different fusion levels forM = 17 nodes trying to reach consensus over a 6-regular ring lattice.
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send to other nodes. In this manner, each node helps to
propagate the information of other nodes in the network.
This strategy is suitable, in particular when the graph con-
nectivity is low, as it creates virtual links between nodes.
In [10], we proposed a fusion-based protocol that utilizes
information of link qualities and noise variance. In this
approach, each node tries to estimate the majority of its
neighbors’ votes based on the best affine estimation (BAE)
of the sum of its neighbors’ votes. Letψi(k) = ∑

j∈Ni bj(k)
represent the sum of the votes of the ith node’s neighbors.
Then the ith node estimates ψi(k) using the best affine
unbiased function of the received information: ψ̂i(k) =∑

j∈Ni αj,i(k)bj,i(k) + βj,i(k) where

αj,i(k) = rj,i(k)

r2j,i(k) + σ 2
j,i

qj(k)(1−qj(k))

and

βj,i(k) = (
1 − αj,i(k)rj,i(k)

)
qj(k),

(3)

and qj(k) = E[ bj(k)] (readers are referred to [10] for more
information). The ith node will then update its decision as
follows:

bi(k + 1) = ϒfading,|Ni|+1

⎛
⎝ 1
1 + |Ni|

×
⎡
⎣bi(k) +

∑
j∈Ni

(
αj,i(k)bj,i(k) + βj,i(k)

)⎤⎦ , bi(k)

⎞
⎠ ,

(4)

where bi(0) = b̃0i for 1 ≤ i ≤ M. The decision-making
function for the binary consensus over fading communi-
cation links, ϒfading,M(., .), is defined as follows:

ϒfading,M=2j
(
x, ξ

)
�

⎧⎨
⎩

1 x > 1
2 + 1

2M
ξ |x − 1

2 | � 1
2M

0 x < 1
2 − 1

2M

and

ϒfading,M=2j+1
(
x, ξ

)
�

{
1 x � 1

2
0 x < 1

2

(5)

It can be seen that Equation 3 assumes that the knowl-
edge of qj(k) is available at the receiver. If the ith node
does not have an estimate of qj(k), it will assume that
qj(k) = 0.5. We refer to this case as basic BAE.
In section III-B of [11], we mathematically analyzed the

asymptotic behavior of the basic BAE for binary consen-
sus over fully connected network topology. We showed

that the network loses its memory of the initial state
asymptotically due to the impact of link errors, which
is undesirable. The same analysis can also be extended
to the case of not fully connected network topologies.
Therefore, the fusion approach for binary consensus over
not fully connected and time-invariant network topol-
ogy and in the presence of noise and fading suffers from
asymptotic memoryless behavior. Next, we discuss the
diversity-based scheme, which is more robust to the link
error.

3.2 Diversity case
In this part, we consider another strategy in which each
node uses its transmissions to repeat its initial vote. Con-
sider the case where the network is given K + 1 trans-
missions to reach an agreement. Each node can use all
of its transmissions to repeat its initial vote and only
fuses the received information afterward. This strategy
can, in particular, be useful in reducing the impact of
link errors. Let Zj,i(K) = [bj,i(0), . . . , bj,i(K)]T denote the
receptions of ith node from the jth node inK+1 transmis-
sions. Define Rj,i(K) = [rj,i(0), . . . , rj,i(K)]T and Nj,i(K) =
[nj,i(0), . . . , nj,i(K)]T . For the diversity case, all nodes use
their transmissions to repeat their initial votes, i.e., bj(k) =
b̃0j for 0 ≤ k ≤ K . Then we have the following, consid-
ering all the receptions of the ith node from the jth node:
Zj,i(K) = b̃0j Rj,i(K) + Nj,i(K). The ith node can then esti-
mate b̃0j by using the best affine unbiased function of the
received information: b̂0j (K) = ρT

j,i(K)Zj,i(K) + ηj,i(K). To
ensure an unbiased estimator, we should have, E

[
b̂0j (K)]=

E
[
b̃0j

] ⇒ ηj,i(K) = q̃0j
(
1 − ρT

j,i(K)Rj,i(K)
)
, where q̃0j =

E
[
b̃0i

]
. Let ζj,i(K) = E[

(
b̂0j (K) − b̃0j

)2] denote the cor-
responding estimation error variance. We then have the
following optimization problem:

ρj,i(K) = arg min ζj,i(K),
subject to ηj,i(K) = q̃0j

(
1 − ρT

j,i(K)Rj,i(K)
)
. (6)

We have

ζj,i(K) = E
[
(b̂0j (K) − b̃0j )

2
]

= E
[((

b̃0j − q̃0j
)

ρT
j,i(K)Rj,i(K) −

(
bj(0) − q̃0j

)

+ρT
j,iNj,i(K)

)2]

= ρT
j,i(K)

(
q̃0j (1 − q̃0j )Rj,i(K)RT

j,i(K) + σ 2
j,iIK×K

)
ρj,i(K)

− 2q̃0j (1 − q̃0j )ρ
T
j,i(K)Rj,i(K) + q̃0j (1 − q̃0j ).

(7)
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By noting that Equation 7 is a convex function of ρj,i(K),
we have

ρj,i(K) = q̃0j (1 − q̃0j )
σ 2
j,i

×
(
q̃0j (1 − q̃0j )

σ 2
j,i

Rj,i(K)RT
j,i(K) + IK×K

)−1

Rj,i(K)

= q̃0j (1 − q̃0j )
σ 2
j,i

⎛
⎜⎜⎝IK×K −

q̃0j (1−q̃0j )
σ 2
j,i

1 + q̃0j (1−q̃0j )
σ 2
j,i

‖Rj,i(K)‖2

× Rj,i(K)RT
j,i(K)

⎞
⎟⎟⎠Rj,i(K)

= 1
σ 2
j,i

q̃0j (1−q̃0j )
+ ‖Rj,i(K)‖2

Rj,i(K),

and ηj,i(K) = q̃0j
(
1 − ρT

j,i(K)Rj,i(K)
)
. We then have

the following for the estimation error variance after

K + 1 transmissions: ζj,i(K) = σ 2
j,i

σ2j,i
q̃0j (1−q̃0j )

+‖Rj,i(K)‖2
=

1
1

q̃0j (1−q̃0j )
+∑K

k=0 CNRj,i(k)
, where CNRj,i(k) = r2j,i(k)

σ 2
j,i

denotes

the channel-to-noise ratio for the link from node j to node
i at time k. We then have the following decision-making
function:

bi(K + 1) = ϒfading,|Ni|+1

×
⎛
⎝ 1
1 + |Ni|

⎛
⎝bi(0) +

∑
j∈Ni

b̂0j (K)

⎞
⎠ , bi(0)

⎞
⎠

= ϒfading,|Ni|+1

⎛
⎝ 1
1 + |Ni|

⎛
⎝bi(0)

+
∑
j∈Ni

ρT
j,i(K)Zj,i(K) + ηj,i(K)

⎞
⎠ , bi(0)

⎞
⎠ ,

(8)

where bi(k) = b̃0i for 0 ≤ k ≤ K .

Lemma 1. Consider binary consensus over a not fully con-
nected network topology. Under the assumption of i.i.d.
Rayleigh fading channels, CNRj,i(k) are independent and
identically distributed (i.i.d.) exponential random vari-
ables with CNR = E

{
CNRj,i(k)

}
. Then the dynamical

system, based on the decision-making function of 8, will
asymptotically reach D1 = {b̃11, b̃12, . . . , b̃1M}, where D1 rep-
resents the network state after one level of fusion over ideal
communication links.

Proof. It can be easily confirmed that if∣∣∣bi(0) + ∑
j∈Ni b̂

0
j (K) − ∑

j∈Ni
⋃{i} b̃0j

∣∣∣ ≤ 1
2 , then we

have ϒfading,M
(

1
M

[
bi(0) + ∑

j∈Ni b̂
0
j (K)

]
, bi(0)

)
=

ϒideal
(

1
M

∑
j∈Ni

⋃{i} b̃0j , b̃0i
)
, which results in bi(K + 1) =

b̃1i . Therefore, we have,

prob
(
bi(K + 1) �= b̃1i

)

≤ prob

⎛
⎝∣∣∣bi(0) +

∑
j∈Ni

b̂0j (K) −
∑

j∈Ni
⋃{i}

b̃0j
∣∣∣ ≥ 1

2

⎞
⎠

= prob

⎛
⎝∣∣∣ ∑

j∈Ni

[
b̂0j (K) − b̃0j

]∣∣∣ ≥ 1
2

⎞
⎠

≤ 4
∑
j∈Ni

E
[ (

b̂0j (K) − b̃0j
)2 ]

= 4
∑
j∈Ni

ζj,i(K),

where in the last line we are using Chebyshev’s inequality.
Furthermore, we have,

ζj,i(K) = 1
1

q̃0j (1−q̃0j )
+ ∑K

k=0 CNRj,i(k)
< γ −1

j,i (K) (9)

where γj,i(K) �
∑K

k=0 CNRj,i(k). Since CNRj,i(k)s are
i.i.d. exponential random variables with the mean of CNR,
γj,i(K) has Gamma distribution with the following param-
eters: γj,i(K) ∼ Gamma(K + 1, CNR). As a result, γ −1

j,i (K)

is an inverse Gamma random variable. We then have,
limK→∞ E

{
γ −1
j,i (K)

} = limK→∞ 1
(K+1)×CNR = 0. Since

γ −1
j,i (K) is a non-negative random variable, we have

lim
K→∞

1
γj,i(K)

= 0. (10)

Therefore, limK→∞ ζj,i(K) = 0, which results in
limK→∞ prob

(
bi(K + 1) = b̃1i

)
= 1 for 1 ≤ i ≤ M.

Figure 2 shows the performance of both fusion and
diversity strategies over a network of M = 17 nodes that
is trying to reach consensus by communicating over a
regular ring lattice topology. Figure 2 (left) shows the com-
parison for a 16-regular ring topology, i.e., fully connected
graph, where the transmissions occur over Rayleigh chan-
nels with CNR = −6 dB. Since the main bottleneck is
the link qualities, the diversity approach outperforms the
fusion approach and reaches accurate consensus asymp-
totically. The fusion strategy, on the other hand, has a
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Figure 2 Performance comparison of fusion and diversity approaches for binary consensus over regular ring lattice topology. TheM = 17
nodes with fading channels and different graph connectivities: (left) L = 16 and CNR = −6 dB, (right) L = 6 and CNR = 6 dB (averaging is done
over several runs).

better transient behavior. This is due to the fact that
by fusing the received information, it helps in propagat-
ing the information over the network. However, it lacks
asymptotic accurate consensus and suffers from asymp-
totic memoryless behavior. As the network connectivity
decreases, the fusion strategy outperforms the diversity.
For instance, Figure 2 (right) compares the performance of
both approaches for 6-regular ring topology and CNR =
6 dB. Since the main bottleneck is the network connec-
tivity, the fusion approach outperforms the diversity one
drastically. In summary, the fusion strategy is more suit-
able when the graph connectivity is low, while the diversity
technique is a better candidate if poor link quality is the
main bottleneck. The analysis and simulation of this part
show the underlying trade-offs between fusion and diver-
sity strategies. In the next section, we propose a novel
framework that keeps the benefits of both fusion and
diversity approaches.

4 An integrated diversity-fusion framework for
binary consensus over fading channels

In this section, we propose our diversity-fusion frame-
work for binary consensus over fading channels. In this
strategy, each agent sends a vector to its neighbors. This
vector consists of the estimations of the votes correspond-
ing to the different fusion levels. Throughout the repeated
communications (diversity), each node tries to refine its
assessments of different fusion levels in order to reach
consensus.
Let Bi(k) = [b0i (k), b1i (k), . . . , b

lG(k)
i (k)]T represent the

vector that node i will send to all its neighbors over fad-
ing channels at time k,e where bui (k) represents the ith
node’s estimate of b̃ui at time k and lG(k) = min{k,uG−1}.
Note that b̃ui is defined in Section 2 as the value of node i
after u fusion levels for the case where there is no noise.
Table 1 shows the time progression of the transmitted

vector by node i to all its neighbors. As can be seen, at
time t = 0, node i only transmits its initial vote to its
neighbors. It also receives its neighbors’ initial votes over
fading channels. Next, in time step t = 1, node i fuses
all its receptions in order to come up with an estimate of
b̃1i . It then transmits its initial vote together with the esti-
mate of b̃1i to all its neighbors. This process will go on
for a while, and each agent sends its estimate of differ-
ent fusion levels to it neighbors. As can be seen, the ith
node’s estimate of b̃ui will not be available till k = u. There-
fore, for k < uG−1, Bi(k) =[ b0i (k), b1i (k), . . . , bki (k)]T and
lG(k) = k. However, for t ≥ uG−1, the length of the trans-
mitted vector becomes fixed and equal to uG.f It is worth
noting that except for the first row, the columns of other
rows have different values. This is due to the fact that sim-
ilar transmissions can undergo different noise and fading
values.
Let ruj,i(k) and nuj,i(k) represent the fading coefficient and

the receiver noise of the link, which transmits buj (k) from
node j to node i, respectively. nuj,i(k) is the zero-mean
Gaussian with the variance of σ 2

j,i,u. We take the fading
coefficient and the receiver noise of all the receptions to
be uncorrelated. Let buj,i(k) represent the reception of the
ith node from the transmission of buj (k) at time k. We have
the following, buj,i(k) = ruj,i(k)b

u
j (k) + nuj,i(k) for 1 ≤ i ≤

M andj ∈ Ni. Let Zu
j,i(k) =[ buj,i(u), . . . , buj,i(k)]T represent

all the receptions of node i from node j corresponding to

Table 1 Time progression of transmitted vector by node i
t = 0 t = 1 · · · t = uG−1 · · · t = k

b0i (0) b0i (1) · · · b0i (uG − 1) · · · b0i (k)

b1i (1) · · · b1i (uG − 1) · · · b1i (k)

· · ·
... · · ·

...

· · · buG−1
i (uG − 1) · · · buG−1

i (k)
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the uth level of fusion till time k. Node i will then update
its estimate of bu+1

i at time k + 1 based on bui (k) and all
the uth level votes of its neighbors until time k.

bu+1
i (k + 1) = F

(
bui (k),Zu

j,i(k)∀j ∈ Ni
)
, (11)

where F represents a decision-making function.
The redundancy in vector Zu

j,i(k) tries to improve
the link qualities. We next show how to design
this function. We define the following variables:
B̂u
j (k) =[ buj (u), . . . , buj (k)]T , Ru

j,i(k) =[ ruj,i(u), . . . , ruj,i(k)]T ,
Hu
j,i(k) = diag

(
Ru
j,i(k)

)
, Nu

j,i(k) =[ nuj,i(u),. . . , nuj,i(k)]T ,
where Nu

j,i(k) ∼ N
(
0, σ 2

j,i,uI(k−u+1)×(k−u+1)
)

and
diag(.) is a diagonal matrix with the elements of the
argument on its main diagonal. Therefore, we have
Zu
j,i(k) = Hu

j,i(k)B̂
u
j (k) + Nu

j,i(k) for k ≥ u. The ith node
will then try to estimate b̃uj , based on all receptions
from jth node, i.e., Zu

j,i(k). In order to characterize the
best affine estimation of b̃uj , the second-order statistic
of B̂u

j (k) is required. However, finding a closed-form
expression for the second-order statistics of this vari-
able is challenging. The vector B̂u

j (k) contains different
temporal assessments of the jth node about b̃uj . To sim-
plify the mathematical derivation, we consider the case,
where the uth level of fusion is in its steady state, i.e.,
B̂u
j (k) = b̃uj �1k−u+1 ∀j. Under this assumption, the BAE

estimation can be derived similar to Equation 6 as fol-
lows: b̂uj (k) = ρu

j,i
T (k)Zu

j,i(k) + ηuj,i(k), where ρu
j,i(k) =

1
σ2j,i,u

q̃uj (1−q̃uj )
+‖Ruj,i(k)‖2

Ru
j,i(k), ηuj,i(k) = q̃uj

(
1 − ρu

j,i
T (k)Ru

j,i(K)
)

and q̃uj = E[ b̃uj ]. Since B̂u
j (k) �= b̃uj �1k−u+1, the estima-

tor is suboptimal. However, in Theorem 1, we will show
that limk→∞ buj (k) = b̃uj for 1 ≤ j ≤ M. Therefore, the
proposed suboptimal estimator is asymptotically optimal.
The ith node will then update its (u+1)th level decision as

bu+1
i (k + 1) =ϒfading,|Ni|+1

×
⎛
⎝ 1

|Ni| + 1

⎡
⎣bui (k) +

∑
j∈Ni

b̂uj (k)

⎤
⎦ , bui (k)

⎞
⎠

=ϒfading,|Ni|+1

⎛
⎝ 1

|Ni| + 1

⎡
⎣bui (k)

+
∑
j∈Ni

ρu
j,i
T
(k)Zu

j,i(k) + ηuj,i(k)

⎤
⎦ , bui (k)

⎞
⎠ ,

(12)

for k ≥ u, 0 ≤ u ≤ uG − 1 and b0i (k) = b̃0i∀i, k. Next we show that the decision-making function of
Equation 12 achieves accurate consensus asymptotically
and overcomes the asymptotic memoryless behavior of
the traditional fusion approaches.

Theorem 1. Consider binary consensus over a time-
invariant network topology with i.i.d. Rayleigh fad-
ing channels. Then, the decision-making function of
Equation 12 asymptotically converges (in probability) to
accurate consensus if D0 ∈ DG.

Proof. We prove the theorem by induction. Define

ωu
i (k) � prob

(
bui (k) �= b̃ui

)
. For u = 0, we have b0i (k) =

b̃0i ∀k, i. From Lemma 1, it can be easily confirmed that
limk→∞ ω1

i (k) = 0 ∀i. Assume limk→∞ ωu
i (k) = 0. We

next prove that limk→∞ ωu+1
i (k + 1) = 0.

Similar to Lemma 1, we can show that if
∣∣∣bui (k) +∑

j∈Ni ρ
u
j,i
T (k)Zu

j,i(k) + ηuj,i(k) − ∑
j∈Ni

⋃{i} b̃uj
∣∣∣ ≤ 1

2 , then

we have bu+1
i (k + 1) = b̃u+1

i . Hence,

ωu+1
i (k + 1)

= prob
(
bu+1
i (k + 1) �= b̃u+1

i

)

≤ prob
(∣∣∣bui (k) +

∑
j∈Ni

ρu
j,i
T
(k)Zu

j,i(k) + ηuj,i(k)

−
∑

j∈Ni
⋃{i}

b̃uj
∣∣∣ ≥ 1

2

)

= prob

⎛
⎜⎝

∣∣∣∣bui (k) − b̃ui +
∑
j∈Ni

1
σ 2
j,i,u

q̃uj (1−q̃uj )
+ ‖Ru

j,i(k)‖2

×
⎛
⎝ k∑

t=u
ruj,i

2
(t)

(
buj (t) − b̃uj

)
+ σ 2

j,i,u

1 − q̃uj
(1 − b̃uj

q̃uj
)

+Ru
j,i
T
(k)Nu

j,i(k)

⎞
⎠ ∣∣∣∣ ≥ 1

2

⎞
⎠

≤ prob
(∣∣bui (k) − b̃ui

∣∣ +
∑
j∈Ni

1
‖Ru

j,i(k)‖2

×
( k∑

t=u
ruj,i

2
(t)

∣∣buj (t) − b̃uj
∣∣ + σ 2

j,i,u

1 − q̃uj

∣∣∣1 − b̃uj
q̃uj

∣∣∣
+

∣∣∣Ru
j,i
T
(k)Nu

j,i(k)
∣∣∣∣
)

≥ 1
2

)
,

where in the last inequality, we are using the property that
for any random variables i, we have prob

(∣∣ ∑
i i

∣∣ ≥
ε
)

≤ prob
( ∑

i |i| ≥ ε
)
. Furthermore, we have

E
{∣∣bui (k) − b̃ui

∣∣} = ωu
i (k). Applying Markov’s inequality

results in
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ωu+1
i (k + 1)

≤ 2
[
ωu
i (k) +

∑
j∈Ni

1
‖Ru

j,i(k)‖2
×

⎛
⎝ k∑

t=u
ruj,i

2
(t)ωu

j (k) + σ 2
j,i,u

1 − q̃uj

∣∣∣1 − b̃uj
q̃uj

∣∣∣ + E
{∣∣∣Ru

j,i
T
(k)Nu

j,i(k)
∣∣∣}

⎞
⎠ ]

= 2
[
ωu
i (k) +

∑
j∈Ni

1
‖Ru

j,i(k)‖2

⎛
⎝ k∑

t=u
ruj,i

2
(t)ωu

j (k) + σ 2
j,i,u

1 − q̃uj

∣∣∣1 − b̃uj
q̃uj

∣∣∣
⎞
⎠ +

√
2
π

∑
j∈Ni

σj,i,u

‖Ru
j,i(k)‖

]

= 2
[
ωu
i (k) +

∑
j∈Ni

1
‖Ru

j,i(k)‖2
k∑

t=u
ruj,i

2
(t)ωu

j (k) +
∑
j∈Ni

∣∣∣1 − b̃uj
q̃uj

∣∣∣
1 − q̃uj

1
γ u
j,i(k)

+
√

2
π

∑
j∈Ni

1√
γ u
j,i(k)

]
, (13)

where γ u
j,i(k) = ∑k

t=u CNRu
j,i(t) = ‖Ruj,i(k)‖2

σ 2
j,i,u

. Furthermore,
for the last term in the third line, we are using the prop-
erty that if  is a zero-mean Gaussian variable with the
variance of σ 2, then E{√} =

√
2
π
σ . Let ε > 0. Since

limk→∞ ωu
j (k) = 0, there exists a number Tu

j (ε) such that
ωu
j (k) < ε for all k ≥ Tu

j (ε). Therefore,

1
‖Ru

j,i(k)‖2
k∑

t=u
ruj,i

2
(t)ωu

j (t) ≤ 1
‖Ru

j,i(k)‖2
Tu
j (ε)∑
t=u

ruj,i
2
(t)ωu

j (t)

+ ‖Ru
j,i(k)‖2 − ‖Ru

j,i(T
u
j (ε))‖2

‖Ru
j,i(k)‖2

ε

≤ 1
‖Ru

j,i(k)‖2
Tu
j (ε)∑
t=u

ruj,i
2
(t)ωu

j (t) + ε.

(14)

Since ruj,i(t)’s are i.i.d. random variables, we have

E
{

ruj,i
2(t)

‖Ruj,i(k)‖2
}

= 1
k−u+1 . Therefore,

lim
k→∞

E
{∑Tu

j (ε)

t=u ruj,i
2(t)

‖Ru
j,i(k)‖2

}
= lim

k→∞
Tu
j (ε) − u + 1
k − u + 1

= 0.

Since 1
‖Ruj,i(k)‖2

∑Tu
j (ε)

t=u ruj,i
2(t) is a non-negative random

variable, it goes to 0 as k → ∞. Therefore, we have,
limk→∞ 1

‖Ruj,i(k)‖2
∑k

t=u ruj,i
2(t)ωu

j (t) = 0. Furthermore,

similar to Equation 10, we can show that limk→∞ 1
γ u
j,i(k)

=
0. By substituting these values in Equation 13, it can be
easily confirmed that limk→∞ ωu+1

i (k + 1) = 0. Using
induction, we have limk→∞ ω

uG
i (k) = 0 and as a result

limk→∞ prob
(
buGi (k) = b̃uGi

)
= 1 for 1 ≤ i ≤ M.

Therefore, if D0 ∈ DG, then limk→∞[ buG1 (k), · · · , buGM (k)]
is an accurate consensus state with the probability of one,
which proves the theorem.

Remark 1. The decision-making function of Equation 12
uses information of σj,i,us. If such information is not
available, then the ith node can estimate b̃uj using best lin-
ear unbiased estimation: b̂uj (k) = 1

‖Ruj,i(k)‖2R
u
j,i
T (k)Zu

j,i(k),
assuming that the uth level of fusion is in its steady state.
Each node will then update its (u + 1)th level decision as
follows:

bu+1
i (k + 1) = ϒfading,|Ni|+1

×
( 1

|Ni| + 1
[
bui (k) +

∑
j∈Ni

b̂uj (k)
]
, bui (k)

)

= ϒfading,|Ni|+1
( 1

|Ni| + 1

[
bui (k)

+
∑
j∈Ni

1
‖Ru

j,i(k)‖2
Ru
j,i
T
(k)Zu

j,i(k)
]
, bui (k)

)
,

(15)

for k ≥ u, 0 ≤ u ≤ uG − 1, and b0i (k) = b̃0i ∀i, k.
This receiver can be considered as a special case of the
decision-making function of Equation 12, where σj,i,u = 0.
We can similarly show that it achieves accurate asymp-
totic consensus. Furthermore, we have limk→∞ ρu

j,i(k) ≈
1

‖Ruj,i(k)‖2R
u
j,i(k) and limk→∞ ηuj,i(k) ≈ 0.

In the subsequent sections, we utilize the integrated
framework for a special class of undirected graphs and
show the performance of the proposed framework.

5 Integrated framework over regular ring lattice
topologies

In Section 4, we introduced our proposed framework,
which asymptotically achieves accurate consensus. In this
approach, node i will send a vector Bi(k) to all its neigh-
bors over fading channels. The length of this vector is uG
for t ≥ uG − 1, which is a function of graph connectiv-
ity. Intuitively, networks with higher connectivity require
smaller values of uG. For instance, for fully connected
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networks, we have uG = 1. In general, uG is a func-
tion of network topology and independent of communi-
cation quality. This parameter needs to be determined
before running the algorithm. In this section, we mainly
focus on L-regular ring lattice topologies with ideal com-
munication links in order to characterize uG. Let V =
{1, 2, . . . ,M} denote the vertex set. Without loss of gener-
ality, we assume that the vertices are ordered clockwise on
the ring (see Figure 1). Furthermore, we assume that M is
odd. Under the above assumptions, the adjacency matrix
of an L-regular ring lattice, i.e.,AL, can be represented by a
circulant matrix with the first row of [ 0, �1TL

2
, �0TM−L−1, �1TL

2
].

For this class of graphs, L is a notion of connectivity.
Therefore, we try to show how uG changes as a function of
L. We then have the following lemma, which will be used
in Theorem 2.

Lemma 2. For an L-regular ring lattice, if L = M − 1,
then

∣∣∣ ∩M
i=1

{
Ni ∪ {i}}∣∣∣ = M. Moreover, if L ≤ M − 3, then∣∣∣ ∩p

n=1
{
Nin ∪ {in}

}∣∣∣ ≤ L + 2 − p. The equality is achieved
if and only if {i1, . . . , ip} ⊂ V denotes a set of consecutive
nodes on the corresponding ring.

Proof. The proof is straightforward and we skip it.

Let mu = min
( ∑M

j=1 b̃uj ,M − ∑M
j=1 b̃uj

)
. We then have

the following theorem.

Theorem 2. Consider binary consensus over an L-regular
ring lattice. We then have the following properties:

1. Assume V = ⋃c
i=1 Vi, such that Vi represents a set of

consecutive nodes on the ring that vote the same and
|Vi| ≥ L

2 + 1. Then the corresponding network state
is an absorbing state.

2. Form0 ≤ L
2 , the accurate consensus is achievable

after one level of fusion.
3. Form0 = L

2 + 1 and D0 ∈ DG, accurate consensus is
achievable at most after two fusion steps.

Proof. Let Vi = {oi1, . . . , oi|Vi|} denote the ith partition,
where oij represents the index of jth node in the ith parti-

tion. Therefore, we have,
∣∣∣{Noij

∪ {oij}
} ⋂

Vi

∣∣∣ ≥ L
2 + 1 for

all 1 ≤ j ≤ |Vi|. Since all the nodes in Vi vote the same, we
have b̃u+1

oij
= b̃uoij

for 1 ≤ i ≤ c and 1 ≤ j ≤ |Vi|.
We next prove the second part. Consider the case where

the majority of the initial votes is 1. If m0 ≤ L
2 , we then

have
b̃0i +

∑
j∈Ni b̃

0
j

L+1 ≥ L+1−m0

L+1 > 1
2 ∀ i, which results in

b̃1i = 1. For the case where the majority of the initial votes

is 0, we have
b̃0i +

∑
j∈Ni b̃

0
j

L+1 ≤ m0

L+1 < 1
2 ∀ i, which results

in b̃1i = 0. Therefore, for m0 ≤ L
2 accurate consensus is

achievable in one iteration.
Next, we show the third statement. First we show that

for m0 = L
2 + 1 and D0 ∈ DG, we have m1 ≤ L

2 . Let{
i01, i02, . . . , i0m0

}
denote an ordered set of the nodes, which

vote to the minority of the initial votes. Lemma 2 says that
at most L + 2 − m0 = L

2 + 1 nodes can have {i01, . . . , i0m0}
in their neighbor set if and only if

{
i01, i02, . . . , i0m0

}
is a

set of consecutive vertices. Therefore, m1 = L
2 + 1 is

achievable if and only if the initial state is an absorbing
state (see Theorem 2-1). Therefore, if D0 ∈ DG, then
m1 ≤ L

2 , which reaches accurate consensus in u = 2 (see
Theorem 2-2).

In Theorem 2, we showed that the number of fusion
levels, required to achieve accurate consensus is a func-
tion of graph connectivity (L) and initial state (D0). For
instance, for a fixed connectivity, if m0 ≤ L

2 , accurate
consensus is achievable after one level of fusion. How-
ever, if m0 increases to L

2 + 1, then the network may
require two fusion steps to reach consensus. In order to
understand the impact of the connectivity on the required
fusion steps, Figure 3 characterizes uG as a function of L
over a regular ring lattice topology for different number
of nodes. As can be seen, as L increases, uG decreases.
For instance, for L = 16, i.e., a fully connected graph,
the network requires only one level of fusion to reach
accurate consensus. It can also be seen that uG is only a
function of the graph topology. Figure 3 also compares uG
for different number of nodes. As can be seen, uG is a
non-decreasing function of M for a fixed L. However, the
mathematical derivations are challenging. Intuitively, as
M increases, the network requires more number of fusion
levels, i.e., ‘a higher’ uG, in order to achieve consensus. For
instance, consider an L-regular ring lattice network ofM1
nodes, where L = M1 −1 andM1 is an odd number. Since
we always have m0 ≤ L

2 = M1−1
2 , therefore the network

achieves accurate consensus only in one iteration. Next,

2 4 6 8 10 12 14 16 18 20
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Figure 3 uG as a function of L for the regular ring lattice of
M = 13, 17, and 21 nodes.
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consider an L-regular ring lattice network of M2 nodes,
where L = M1 − 1,M2 > M1 andM2 is an odd number. It
is easy to confirm that uG ≥ 2 in this case.

6 Simulation and comparison
Figure 4 shows the performance of the proposed frame-
work over a regular ring lattice topology of M = 17
nodes. In order to show the impact of network connec-
tivity on the performance of the proposed algorithm, we
consider a regular graph topology with different values
of L. For each L, the number of required fusion levels,
i.e., uG, can be found from Figure 3. Each node will then
send a binary vector of length uG to all its neighbors over
communication channels. Moreover, we assume all chan-
nels experience the same noise variance (σj,i,u = 1.5) and
the average power of fading coefficients is equal to one
(E

[
ruj,i

2(k)
] = 1). In order to make a fair comparison (the

proposed integrated approaches send more bits per iter-
ation), we compare all the approaches under the same
number of transmitted bits. Therefore, in Figure 4, we
show the probability of accurate consensus as a function
of number of transmitted bits per node.
Figure 4 shows the performance of the proposed frame-

work for L = 8, 10, and 14. For these simulations,
we assume that node i does not have the knowledge
of quj for j ∈ Ni. So it simply assumes quj = 0.5 in
the decision-making function of Equation 12. As can be
seen, the the integrated approach, independent of network
connectivity, achieves accurate consensus asymptotically.
Therefore, the proposed approach overcomes the mem-
oryless asymptotic behavior of traditional binary con-
sensus approaches. Furthermore, networks with higher
connectivity, i.e., larger values of L, reach their steady
state in fewer transmissions. For the case of L = 8, the
performance of both fusion and diversity approaches of
Section 3 are also shown for comparison. As can be seen,
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Figure 4 Average probability of accurate consensus over regular
ring lattice of 17 nodes where CNR = −3.5 dB.

the proposed approach keeps the benefits of both fusion
and diversity in terms of the transient and asymptotic
behaviors respectively. Furthermore, the performance of
the integrated approach for the case where L = 8 and
knowledge of σj,i,u is not available (Remark 1) is also
shown in Figure 4. As can be seen, the integrated approach
with known link quality slightly outperforms the case of
unknown link quality. However, both cases provide a sim-
ilar performance asymptotically as mentioned earlier in
Remark 1.

7 Conclusions
In this paper we considered a cooperative network that
is trying to reach binary consensus over not fully con-
nected and time-invariant network topologies with fading
channels. We first characterized the underlying trade-offs
between fusion and diversity strategies.We then proposed
a framework that keeps the benefits of both strategies.
We mathematically analyzed the proposed algorithm and
showed how it achieves accurate consensus asymptoti-
cally. Our results indicated that the proposed technique
improves the consensus performance considerably and
solves the undesirable memoryless asymptotic behavior of
the original problem.

Endnotes
a We also use the term ‘agent’ to refer to each node.
b Note that in a binary consensus scenario, each node

only exchanges 1 bit of information with its neighbors in
each time step.

c An L-regular ring lattice is an L-regular graph withM
vertices in a ring in which each vertex is connected to its
L neighbors (L2 on each side for an even value of L).

d Note that without loss of generality, we assumed that
the modulation is on-off keying.

e We assume an FDMA- or TDMA-based MAC
approach. For instance, in FDMA-base approach, to each
node we assign different frequency subbands,
corresponding to different fusion levels.

f Note that we chose uG as the maximum length based
on the fact that, in the case of no noise, this is the
number of fusion levels needed for convergence.
However, in this case that we have noise, this may not be
the optimum length and choosing longer lengths can
possibly result in a better performance.
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