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Abstract
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boundary-value problem for the Schrödinger equation are obtained in the linear and
nonlinear cases. Analytic solutions are represented using the generalized Green
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Introduction
The Schrödinger equation is the subject of numerous publications, and it is impossible
to analyze all of them in detail. For this reason, we only briefly describe the methods and
ideas that underlie the approach proposed in this paper for the investigation of the linear
and a weakly nonlinear Schrödinger equation with different boundary conditions.
In this work, we develop constructivemethods of analysis of linear andweakly nonlinear

boundary-value problems, which occupy a central place in the qualitative theory of differ-
ential equations. The specific feature of these problems is that the operator of the linear
part of the equation does not have an inverse. This does not allow one to use the tradi-
tional methods based on the principles of contracting mappings and a fixed point. These
problems include themost complicated and inadequately studied problems known as crit-
ical (or resonance) problems [–]. Therefore, for the investigation of periodic problems
for the Schrödinger equation, we develop the technique of generalized inverse operators
[–] for the original linear operator in Banach and Hilbert spaces.
On the other hand, we use the notion of a strong generalized solution of an operator

equation developed in []. The origins of this approach go back to the works of Weil and
Sobolev. Using the process of completion, one can introduce the concept of a strong pseu-
doinverse operator for an arbitrary linear bounded operator and thus relax the require-
ment that the range of its values be closed. In this way, one can prove the existence of
solutions of different types for the linear Schrödinger equation with arbitrary inhomo-
geneities. Thus, one may say that, in a certain sense, the Schrödinger equation is always
solvable. There are three possible types of solutions: classical generalized solutions, strong
generalized solution, and strong pseudosolutions [].
For the analysis of a weakly nonlinear Schrödinger equation, we develop the ideas of

the Lyapunov-Schmidt method and efficient methods of perturbation theory, namely the
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Vishik-Lyusternik method []. The combination of different approaches allows us to take
a different look at the Schrödinger equation with a constant unbounded operator in the
linear part and obtain all its solutions by using the generalized Green operator of this
problem constructed in this work. Possible generalizations are discussed in the final part
of the paper. By an example of the abstract van der Pol equation, we illustrate the results
that can be obtained by using the proposed method.

Auxiliary result (linear case)
Statement of the problem
Consider the following boundary-value problem for the Schrödinger equation in a Hilbert
space HT :

dϕ(t)
dt

= –iHϕ(t) + f (t), t ∈ [;w], ()

ϕ() – ϕ(w) = α ∈D, ()

whereHT =H⊕H ,H is Hilbert space and vector-function f (t) is integrable; for simplicity,
the unbounded operator H has the following form [] for each t ∈ [;w]:

H = i

(
 T
–T 

)
=

(
T 
 T

)(
 I
–I 

)
= i

(
 I
–I 

)(
T 
 T

)
.

In a more general case, the operator H has the form

H = iJ

(
T 
 T

)
= i

(
T 
 T

)
J , J = J * = J–,

where T is a strongly positive self-adjoint operator in the Hilbert spaceH . Since the oper-
ator T is closed, the domain D(T) of the operator T is a Hilbert space with scalar product
(Tu,Tu). The operator H is self-adjoint in the domain D =D(T)⊕D(T) with product

(〈u, v〉, 〈u, v〉)HT = (Tu,Tu)H + (Tv,Tv)H ,

the infinitesimal generator of a strongly continuous evolution semigroup has the form

U(t) :=U(t, ) =

(
cos tT sin tT
– sin tT cos tT

)
,

Un(t) =

(
cosntT sinntT
– sinntT cosntT

)
=U(nt),

‖Un(t)‖ = , n ∈ N (nonexpanding group), ϕ(t) = (ϕ(t),ϕ(t))T , α = (α,α)T , and f (t) =
(f(t), f(t))T . The mild solutions of equation () can be represented in the form

ϕ(t) =U(t)c +
∫ t


U(t)U–(τ )f (τ )dτ ,

for any element c ∈ HT . Substituting this in condition (), we conclude that the solvabil-
ity of the boundary-value problem (), () is equivalent to the solvability of the following
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operator equation:

(
I –U(w)

)
c = g, ()

where g = α +U(w)
∫ w
 U–(τ )f (τ )dτ . Consider the case where the set of values of I –U(w)

is closed R(I – U(w)) = R(I –U(w)). Since ‖Un(w)‖ = ‖U(wn)‖ =  for all n ∈ N , we can
conclude [] that the operator system () is solvable if and only if

U(w)g = , ()

where

U(w) = lim
n→∞

∑n
k=Uk(w)

n
= lim

n→∞

∑n
k=U(kw)

n
,

is the orthoprojector that projects the space HT onto the subspace  ∈ σ (U(w)). Under
this condition, the solutions of () have the form

c =U(w)c +

( ∞∑
k=

(μ – )k
{ ∞∑

l=

μ–l–(U(w) –U(w)
)l}k+

–U(w)

)
g,

for  < μ– < 
‖Rμ(U(w))‖ , and any c ∈ HT . Thenwe can formulate the first result as a lemma.

Lemma  Suppose that the operator I–U(w) has a closed image R(I–U(w)) = R(I –U(w)).

. Solutions of the boundary-value problem (), () exist if and only if

U(w)
(

α +
∫ w


U–(τ )f (τ )dτ

)
= . ()

. Under condition (), solutions of (), () have the form

ϕ(t, c) =U(t)U(w)c +
(
G[f ,α]

)
(t), ()

where

(
G[f ,α]

)
(t) = U(t)

∞∑
k=

(μ – )k
{ ∞∑

l=

μ–l–(U(w) –U(w)
)l}k+

×
(

α +
∫ w


U(w)U–(τ )f (τ )dτ

)

–U(t)U(w)
(

α +
∫ w


U(w)U–(τ )f (τ )dτ

)

+
∫ t


U(t)U–(τ )f (τ )dτ ,

is the generalized Green operator of the boundary-value problem (), () for
 < μ –  < /‖Rμ(U(w))‖.

We now show that the condition R(I –U(w)) = R(I –U(w)) of Lemma  can be omitted
and, in different senses, the boundary-value problem (), () is always solvable.
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() Classical generalized solutions.
Consider the casewhere the set of values of I–U(w) is closed (R(I–U(w)) = R(I –U(w))).

Then [] g ∈ R(I –U(w)) if and only if PN((I–U(w))*)g = , and the set of solutions of () has
the form [] c =G[g] +U(w)c, ∀c ∈HT , where [, ]

G[g] =
(
I –U(w)

)+g = (
I –

(
U(w) –U(w)

)– –U(w)
)
g

is the generalized Green operator (or it has the form of a convergent series).
() Strong generalized solutions. Consider the case where R(I –U(w)) 
= R(I –U(w)) and

g ∈ R(I –U(w)). We show that the operator I –U(w) can be extended to I –U(w) in such
a way that R(I –U(w)) is closed.
Since the operator I –U(w) is bounded, the following representation of HT in the form

of a direct sum is true:

HT =N
(
I –U(w)

) ⊕X, HT = R
(
I –U(w)

) ⊕ Y ,

where X = N(I – U(w))⊥ = R(I –U(w)) and Y = R(I –U(w))
⊥
= N(I – U(w)). Let E =

HT /N(I – U(w)) be the quotient space of HT and let PR(I–U(w)) and PN(I–U(w)) be the or-
thoprojectors onto R(I –U(w)) and N(I –U(w)), respectively. Then the operator

I – U (w) =PR(I–U(w))
(
I –U(w)

)
j–p : X → R

(
I –U(w)

) ⊂ R
(
I –U(w)

)

is linear, continuous, and injective. Here,

p : X → E =HT /N
(
I –U(w)

)
and j :HT → E,

are a continuous bijection and a projection, respectively. The triple (HT ,E, j) is a locally
trivial bundle with typical fiber H = PN(I–U(w))HT []. In this case [, p.,], we can
define a strong generalized solution of the equation

(
I – U (w)

)
x = g, x ∈ X. ()

We complete the space X with the norm ‖x‖X = ‖(I – U (w))x‖F , where F = R(I –U(w))
[]. Then the extended operator

I – U (w) : X → R
(
I –U(w)

)
, X ⊂ X

is a homeomorphism of X and R(I –U(w)). By the construction of a strong generalized
solution [], the equation

(
I – U (w)

)
ξ = g,

has a unique solution (I – U (w))–g , which is called the generalized solution of equation
().
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Remark  It should be noted that there exist the following extensions of spaces and the
corresponding operators:

p : X → E, j :HT → E, PX =PX :HT → X, G : R
(
I –U(w)

) → X,

where

HT =N
(
I –U(w)

) ⊕X; p(x) = p(x), x ∈ X; j(x) = j(x), x ∈ HT ,

PX(x) =PX(x), x ∈HT
(
PX =P

X =P *
X
)
; G[g] =G[g], g ∈ R

(
I –U(w)

)
.

Then the operator I –U(w) = (I – U (w))PX :HT →HT is an extension of I –U(w), and
(I –U(w))c = (I –U(w))c for all c ∈HT .
() Strong pseudosolutions.
Consider an element g /∈ R(I –U(w)). This condition is equivalent to PN((I–U(w))*)g 
= .

In this case, there are elements of HT that minimize the norm ‖(I –U(w))ξ – g‖HT :

ξ =
(
I – U (w)

)–
g +PN(I–U(w))c, ∀c ∈HT .

These elements are called strong pseudosolutions by analogy with [].
We now formulate the full theorem on solvability.

Theorem  The boundary-value problem (), () is always solvable.
() (a) Classical or strong generalized solutions of (), () exist if and only if

U(w)
(

α +
∫ w


U–(τ )f (τ )dτ

)
= . ()

If (α +
∫ w
 U–(τ )f (τ )dτ ) ∈ R(I –U(w)), then solutions of (), () are classical.

(b) Under assumption (), the solutions of (), () have the form

ϕ(t, c) =U(t)U(w)c +
(
G[f ,α]

)
(t),

where (G[f ,α])(t) is an extension of the operator (G[f ,α])(t).
() (a) Strong pseudosolutions exist if and only if

U(w)
(

α +
∫ w


U–(τ )f (τ )dτ

)

= . ()

(b) Under assumption (), the strong pseudosolutions of (), () have the form

ϕ(t, c) =U(t)U(w)c +
(
G[f ,α]

)
(t),

where

(
G[f ,α]

)
(t) = U(t)G[g] +

∫ t


U(t)U–(τ )f (τ )dτ

= U(t)
(
I – U (w)

)–
g +

∫ t


U(t)U–(τ )f (τ )dτ .
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1 Main result (nonlinear case)
1.1 Modification of the Lyapunov-Schmidt method
In the Hilbert space HT defined above, we consider the boundary-value problem

dϕ(t)
dt

= –iHϕ(t) + εZ
(
ϕ(t), t, ε

)
+ f (t), ()

ϕ(, ε) – ϕ(w, ε) = α. ()

We seek a generalized solution ϕ(t, ε) of the boundary-value problem (), () that be-
comes one of the solutions of the generating equation (), () ϕ(t, c) in the form () for
ε = .
To find a necessary condition for the operator function Z(ϕ, t, ε), we impose the joint

constraints

Z(·, ·, ·) ∈ C
(
[;w],HT

) ×C[, ε]×C
[‖ϕ – ϕ‖ ≤ q

]
,

where q is a positive constant.
The main idea of the next results was used in [] for the investigation of bounded so-

lutions.
Let us show that this problem can be solved with the use of the following operator equa-

tion for generating amplitudes:

F(c) =U(w)
∫ w


U–(τ )Z

(
ϕ(τ , c), τ , 

)
dτ = . ()

Theorem  (Necessary condition) Suppose that the nonlinear boundary-value problem
(), () has a generalized solution ϕ(·, ε) that becomes one of the solutions ϕ(t, c) of the
generating equation (), () with constant c = c and ϕ(t, ) = ϕ(t, c) for ε = . Then this
constant must satisfy the equation for generating amplitudes ().

Proof If the boundary-value problem (), () has classical generalized solutions, then,
by Lemma , the following solvability condition must be satisfied:

U(w)
(

α +
∫ w


U–(τ )

{
f (τ ) + εZ

(
ϕ(τ , ε), τ , ε

)}
dτ

)
= . ()

By using condition (), we establish that condition () is equivalent to the following:

U(w)
∫ w


U–(τ )Z

(
ϕ(τ , ε), τ , ε

)
dτ = .

Since ϕ(t, ε) → ϕ(t, c) as ε → , we finally obtain [by using the continuity of the operator
function Z(ϕ, t, ε)] the required assertion.
To find a sufficient condition for the existence of solutions of the boundary-value prob-

lem (), (), we additionally assume that the operator function Z(ϕ, t, ε) is strongly dif-
ferentiable in a neighborhood of the generating solution (Z(·, t, ε) ∈ C[‖ϕ – ϕ‖ ≤ q]).
This problem can be solved with the use of the operator

B =
dF(c)
dc

∣∣∣∣
c=c

=U(w)
∫ w


U–(t)A(t)dt :H →H ,

where A(t) = Z(v, t, ε)|v=ϕ,ε= (Fréchet derivative). �

http://www.boundaryvalueproblems.com/content/2014/1/4
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Theorem  (Sufficient condition) Suppose that the operator B satisfies the following con-
ditions:
() The operator B is Moore-Penrose pseudoinvertible;
() PN(B*)

U(w) = .
Then, for an arbitrary element c = c ∈ HT satisfying the equation for generating ampli-

tudes (), there exists at least one solution of (), ().
This solution can be found by using the following iterative process:

vk+(t, ε) = εG
[
Z
(
ϕ

(
τ , c

)
+ vk , τ , ε

)
,α

]
(t),

ck = –B+
U(w)

∫ w


U–(τ )

{
A(τ )vk(τ , ε) +R

(
vk(τ , ε), τ , ε

)}
dτ ,

R
(
vk(t, ε), t, ε

)
= Z

(
ϕ

(
t, c

)
+ vk(t, ε), t, ε

)
– Z

(
ϕ

(
t, c

)
, t, 

)
–A(t)vk(t, ε),

R(, t, ) = , R
x(, t, ) = ,

vk+(t, ε) =U(t)U(w)ck + vk+(t, ε),

ϕk(t, ε) = ϕ
(
t, c

)
+ vk(t, ε), k = , , , . . . , v(t, ε) = ,ϕ(t, ε) = lim

k→∞
ϕk(t, ε).

1.2 Relationship between necessary and sufficient conditions
First, we formulate the following assertion:

Corollary Suppose that a functional F(c) has the Fréchet derivative F ()(c) for each element
c of the Hilbert space H satisfying the equation for generating constants (). If F(c) has
a bounded inverse, then the boundary-value problem (), () has a unique solution for
each c.

Remark  If the assumptions of the corollary are satisfied, then it follows from its proof
that the operatorsB and F ()(c) are equal. Since the operator F ()(c) is invertible, it follows
that assumptions  and  of Theorem  are necessarily satisfied for the operator B. In this
case, the boundary-value problem (), () has a unique bounded solution for each c ∈
HT satisfying (). Therefore, the invertibility condition for the operator F(c) expresses
the relationship between the necessary and sufficient conditions. In the finite-dimensional
case, the condition of invertibility of the operator F ()(c) is equivalent to the condition of
simplicity of the root c of the equation for generating amplitudes [].

In this way, wemodify the well-known Lyapunov-Schmidt method. It should be empha-
sized that Theorems  and  give us a condition for the chaotic behavior of () and ()
[].

1.3 Example
We now illustrate the obtained assertion. Consider the following differential equation in
a separable Hilbert space H :

ÿ(t) + Ty(t) = ε
(
 –

∥∥y(t)∥∥)ẏ(t), ()

y() = y(w), ẏ() = ẏ(w), ()

http://www.boundaryvalueproblems.com/content/2014/1/4
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where T is an unbounded operator with compact T–. Then there exists an orthonormal
basis ei ∈H such that y(t) =

∑∞
i= ci(t)ei and Ty(t) =

∑∞
i= λici(t)ei, λi → ∞. In this case, the

operator system (), () for the boundary-value problem (), () is equivalent to the
following countable system of ordinary differential equations (ck(t) = xk(t)):

ẋk(t) =
√

λkyk(t), k = , , . . . ,

ẏk(t) = –
√

λkxk(t) + ε
√

λk

(
 –

∞∑
j=

xj (t)

)
yk(t), ()

xk() = xk(w), yk() = yk(w). ()

We find the solutions of these equations in the space W 
 ([;w]) that, for ε = , turn into

one of the solutions of the generating equation. Consider the critical case λi = πi/w,
i ∈ N . Let w = π . In this case, the set of all periodic solutions of (), () has the form

xk(t) = cos(kt)ck + sin(kt)ck,

yk(t) = – sin(kt)ck + cos(kt)ck

for all pairs of constants ck , ck ∈ R, k ∈ N . The equation for generating amplitudes () is
equivalent in this case to the following countable systems of algebraic nonlinear equations:

(
ck

) + 
∑
j=,j 
=k

(
ck

(
cj

) + ck
(
cj

)) + ck
(
ck

) – ck = ,

(
ck

) + 
∑
j=,j 
=k

(
ck

(
cj

) + ck
(
cj

)) + (
ck

)ck – ck = , k ∈N .

Then we can obtain the next result.

Theorem  (Necessary condition for the van der Pol equation) Suppose that the bound-
ary-value problem (), () has a bounded solution ϕ(·, ε) that becomes one of the solutions
of the generating equations with pairs of constants (ck , ck), k ∈ N . Then only a finite num-
ber of these pairs are not equal to zero. Moreover, if (cki , c

ki
 ) 
= (, ), i = ,N , then these

constants lie on an N-dimensional torus in the infinite-dimensional space of constants:

(
cki

) + (
cki

) = (
√

N – 

)

, i = ,N .

Remark Similarly, we can study the Schrödinger equation with a variable operator and
more general boundary conditions (as noted in the introduction).

Consider the differential Schrödinger equation

dϕ(t)
dt

= –iH(t)ϕ(t) + f (t), t ∈ J ()

in a Hilbert space H with the boundary condition

Qϕ(·) = α, ()

http://www.boundaryvalueproblems.com/content/2014/1/4
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where, for each t ∈ J ⊂ R, the unbounded operatorH(t) has the formH(t) =H+V (t),H =
H*

 is an unbounded self-adjoint operator with domain D =D(H) ⊂ H , and the mapping
t → V (t) is strongly continuous. The operator Q is linear and bounded and acts from the
Hilbert space H to H. As in [], we define the operator-valued function

Ṽ (t) = eitHV (t)e–itH .

In this case, Ṽ (t) admits the Dyson representation [, p.]; denote its propagator by
Ũ(t, s). IfU(t, s) = e–itHŨ(t, s)eisH , then ψs(t) =U(t, s)ψ is a weak solution of () with the
condition ϕs(s) = ψ in the sense that, for any η ∈D(H), the function (η,ψs(t)) is differen-
tiable and

d
dt

(
η,ψs(t)

)
= –i

(
Hη,ψs(t)

)
– i

(
V (t)η,ψs(t)

)
+

(
f (t),ψs(t)

)
, t ∈ J .

A detailed study of the boundary-value problem (), () will be given in a separate paper.
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