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Abstract
In this paper we use the limiting approach to solve the minimization problem of the
Dirichlet eigenvalues of Sturm-Liouville equations when the L1 norm of integrable
potentials is given. The construction of an approximating problem in this paper can
simplify the analysis in the limiting process.
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1 Introduction
Extremal problems for eigenvalues are important in applied sciences like optimal control
theory, population dynamics [–] and propagation speeds of traveling waves [, ]. These
are also interesting mathematical problems [–], because the solutions are applied in
many different branches ofmathematics. The aimof this paper is to solve theminimization
problem of the Dirichlet eigenvalues of Sturm-Liouville equations when the L norm of
integrable potentials is given.
For  ≤ p≤ ∞, letLp := Lp([, ],R) denote the Lebesgue space of real functionswith the

Lp norm ‖·‖p = ‖·‖Lp[,]. Given a potential q ∈Lp, we consider Sturm-Liouville equations

ÿ +
(
λ + q(t)

)
y = , t ∈ [, ], (.)

with the Dirichlet boundary condition

y() = y() = . (.)

It is known that problem (.)-(.) has countably many eigenvalues (see [, ]). They are
denoted by λj, j = , , . . . , and ordered in such a way that

–∞ < λ(q) < λ(q) < · · · < λn(q) < · · · , and lim
n→∞λn(q) = +∞.

For r ∈ (,∞), denote

Bp[r] =
{
q ∈Lp : ‖q‖p ≤ r

}
.
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In this paper, we study the following minimization problem:

L(r) := inf
q∈B[r]

λ(q). (.)

Note that theminimization problems in [, , ] are taking over order intervals of poten-
tials/weights which are compact in the weak topologies, and therefore always have mini-
mizers. For example, Krein studied in [] the minimization problem of weighted Dirichlet
eigenvalues of

ÿ + λw(t)y = , t ∈ [, ].

Given constants  < r ≤H < ∞, denote

S :=
{
w ∈L∞ : ≤ w ≤H ,

∫ 


w(t) dt = r

}
.

The problem is to find

L̃ := inf
w∈Sλ(w). (.)

Using compactness of the class S and continuity of the eigenvalues in the weak topolo-
gies, problem (.) can be realized by some optimal weight w. However, our problem (.)
is taking over L balls, which are not compact even in the weak topology w. In order to
overcome this difficulty in topology, we first solve the following approximating minimiza-
tion problem of eigenvalues.

Theorem . Let

L(r,H) := inf
q∈B[r]∩B∞[H]

λ(q), (.)

where r,H ∈ (,∞).We have that
(i) If r ≥H , then

L(r,H) = π –H . (.)

Moreover, L(r,H) is attained for

q =H . (.)

(ii) If r < H , then L(r,H) ∈ (–∞,π – r) is the unique solution of Zr,H(x) = . Here, the
function Zr,H : (–∞,π – r)→R is defined as

Zr,H(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 +
√
–x–H√
–x tanh

√
–xH–r

H tanh
√
–x –H r

H for x ∈ (–∞, –H),

 –
√
x+H√
–x tanh

√
–xH–r

H tan
√
x +H r

H for x ∈ [–H , ),

 – H–r

√
H
tan r


√
H

for x = ,

 –
√
x+H√
x tan

√
xH–r

H tan
√
x +H r

H for x ∈ (,π – r).

(.)
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Moreover, L(r,H) is attained for

q(t) =

⎧⎪⎪⎨
⎪⎪⎩
 for t ∈ [, H–r

H ],

H for t ∈ (H–r
H , H+r

H ),

 for t ∈ [H+r
H , ].

(.)

Then, using the continuous dependence of eigenvalues on potentials with respect to the
weak topologies (see [–]), we obtain a complete solution for minimization problem
(.).

Theorem . The following holds:

L(r) = lim
H→+∞L(r,H) = Z–(r). (.)

Here, the function Z : (–∞,π] → [,∞) is defined as

Z(x) =

⎧⎪⎪⎨
⎪⎪⎩

√
–x coth(

√
–x/) for x ∈ (–∞, ),

 for x = ,


√
x cot(

√
x/) for x ∈ (,π].

(.)

This paper is organized as follows. In Section , we give some preliminary results on
eigenvalues. In Section , we first consider the approximating minimization for eigenval-
ues and obtain Theorem .. Then, by the limiting analysis, we give the proof of Theo-
rem ..
We end the introduction with the following remark. In [, ], the authors first con-

sidered the approximating minimization for eigenvalues on the corresponding Lp balls,
 < p < ∞. Then minimization problem (.) can be solved by complicated limiting anal-
ysis of p ↓ . In this paper, we study a different approximating problem, which also has a
sense from mathematical point of view. Such a construction can simplify the analysis in
the limiting process.

2 Auxiliary lemmas
In the Lebesgue spaces Lp, p ∈ [,∞], besides the Lp norms ‖ · ‖p, one has the following
weak topologies []. For p ∈ [,∞), we use wp to indicate the topology of weak conver-
gence in Lp, and for p =∞, by considering L∞ as the dual space of (L,‖ · ‖), we have the
topology w∞ of weak∗ convergence. In a unified way, qm → q in (Lp,wp) iff

∫
I
f (t)qm(t) dt →

∫
I
f (t)q(t) dt ∀f ∈Lp∗ .

Here, p∗ := p/(p – ) ∈ [,∞] is the conjugate exponent of p.
To solve problem (.), let us quote from [, ] some important properties on eigen-

values.

Lemma . As nonlinear functionals, λn(q) are continuous in q ∈ (Lp,wp), p ∈ [,∞].
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By the continuity result above, we show that extremal problem (.) can be attained in
B[r]∩ B∞[H].

Lemma . There exists q ∈ B[r]∩ B∞[H] such that L(r,H) = λ(q).

Proof Notice that B∞[H] is compact and B[r]∩L∞ is closed in (L∞,w∞). Hence B[r]∩
B∞[H] is compact in (L∞,w∞). Consequently, the existence of minimizers of (.) can be
deduced from Lemma . in a direct way. �

Eigenvalues possess the following monotonicity property [].

Lemma .

q,q ∈L, q ≤ q ⇒ λn(q) ≥ λn(q). (.)

Moreover, if, in addition, q(t) < q(t) holds on a subset of [, ] of positive measure, the
conclusion inequality in (.) is strict.

Next, we use the theory of Schwarz symmetrization as a tool. For a given nonnegative
function f defined on the interval [, ], we denote by f + (resp., f –) the symmetrically
increasing (resp., decreasing) rearrangement of f .We recall that the function f + is uniquely
defined by the following conditions:

(i) f + and f are equimeasurable on [, ]. That is, for all s ≥ ,

m
({
t : f +(t)≥ s

})
=m

({
t : f (t) ≥ s

})
.

(ii) f + is symmetric about t = /.
(iii) f + is decreasing in the interval [, /].

Similarly, f – is (uniquely) defined by (i), (ii) and (iii)’: f – is increasing in the interval [, /].
For more information on rearrangements, see [] and [].
We can compare the first eigenvalue of q with the first eigenvalue of its rearrangement.

Lemma . For any q ∈Lp, we have λ(q) ≥ λ(|q|–).

Proof Let y(t) be a positive eigenfunction corresponding to λ(q). By [, Theorem ]
and [, Section ], we have

λ(q) =
∫ 
 y

′
 dt –

∫ 
 qy


 dt∫ 

 (y
–
 ) dt

≥
∫ 
 y

′
 dt –

∫ 
 |q|y dt∫ 

 (y
–
 ) dt

≥
∫ 
 y

′
 dt –

∫ 
 |q|–(y– ) dt∫ 

 (y
–
 ) dt

≥
∫ 
 ((y

–
 )′) dt –

∫ 
 |q|–(y– ) dt∫ 

 (y
–
 ) dt

≥ λ
(|q|–). �
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3 Main results
Now we are ready to prove the main results of this paper. First, we solve the minimization
problem for eigenvalues when potentials q ∈ B[r]∩ B∞[H].

Proof of Theorem . (i) If r ≥ H , then B[r] ∩ B∞[H] = B∞[H]. From the monotonicity
property (.) of eigenvalues, we have that the minimizer q =H and then L(r,H) = π –H
by computing directly.
(ii) When r < H . By Lemma ., Lemma . and Lemma ., there exists a minimizer

 ≤ q ∈ B[r] ∩ B∞[H] such that L(r,H) = λ(q) and q(t) = q– (t) for a.e. t. Let y(t) be
a positive eigenfunction corresponding to the first eigenvalue λ(q). We have from the
proof of Lemma. that y– (t) is also an eigenfunction corresponding to the first eigenvalue
λ(q), which implies that y = y– because

∫ 
 y dt =

∫ 
 y

–
 dt.

Then, we have that for each q ∈ B[r]∩ B∞[H],

∫ 
 y

′
 dt –

∫ 
 qy


 dt∫ 

 y

 dt

= λ(q) = L(r,H) ≤ λ(q) ≤
∫ 
 y

′
 dt –

∫ 
 qy


 dt∫ 

 y

 dt

.

Hence,

∫ 


qy dt ≥

∫ 


qy dt, ∀q ∈ B[r]∩ B∞[H]. (.)

Let η := H–r
H ∈ (, /) and ξ := y(η) > . Since y is symmetric about t = / and increas-

ing in [, /], we have that

 < y(t)≤ ξ for t ∈ (,η)∪ ( – η, ),

y(t) ≥ ξ for t ∈ (η,  – η).

Define

qη :=

⎧⎨
⎩
 for t ∈ [,η]∪ [ – η, ],

H for t ∈ (η,  – η).

We claim that

∫ 


qηy dt ≥

∫ 


qy dt. (.)

In fact,

∫ 


qηy dt –

∫ 


qy dt

=
∫ –η

η

(H – q)y dt –
(∫ η


+

∫ 

–η

)
qy dt

≥ ξ 
∫ –η

η

(H – q) dt – ξ 
(∫ η


+

∫ 

–η

)
q dt
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= ξ 
(
r –

∫ 


q dt

)

≥ .

Notice that qη ∈ B[r]∩B∞[H]. Comparing (.) and (.), we know that the equality holds
in (.) and y(t) is an eigenfunction corresponding to λ(qη). Since (.) is an equality, we
have from the proof that λ(q) = λ(qη) and q(t) = qη(t) for a.e. t.
Let μ := λ(q). Now, (.) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ÿ +μy =  for t ∈ (,η)∪ ( – η, ),

ÿ + (μ +H)y =  for t ∈ (η,  – η),

y() = y() = ,

y(η) = y( – η) = ξ .

(.)

We can find that the solution y of (.) is given by

y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a sin√
μ(t – η) + ξ cos

√
μ(t – η) for t ∈ [,η],

ξ

cos
√

μ+H r
H

cos
√

μ +H(t – /) for t ∈ (η,  – η),

–a sin√
μ(t –  + η) + ξ cos

√
μ(t –  + η) for t ∈ [ – η, ],

(.)

where a = ξ
√

μ+H√
μ

tan
√

μ +H r
H . Since y() = y() =  andμ ≤ π –r, we get from (.)

that μ is the unique solution of Zr,H(x) = , where Zr,H(x) is as in (.). �

Finally, we use the limiting approach to obtain a complete solution for the minimization
problem of eigenvalues when the L norm of integrable potentials is given.

Proof of Theorem . By the definitions of Zr,H in (.) and Z in (.), we have that

lim
H→+∞Zr,H(x) =  –

r
Z(x)

,

which implies that

lim
H→+∞L(r,H) = Z–(r).

Since B[r] ⊃ B[r]∩ B∞[H], we have that L(r) ≤ L(r,H) and then

L(r) ≤ lim
H→+∞L(r,H). (.)

On the other hand, since λ(q) is continuous in q ∈ (L,w), λ(q) is continuous in q ∈
(L,‖ · ‖). Notice that B[r] ⊂ ⋃

H>(B[r]∩ B∞[H]), where the closure is taken in the
L space (L,‖ · ‖). We have that for arbitrary ε >  and q ∈ B[r], there exist H and
qH ∈ B[r]∩ B∞[H] such that

∣∣λ(qH ) – λ(q)
∣∣ < ε.

http://www.boundaryvalueproblems.com/content/2013/1/220
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Hence,

λ(q) + ε > λ(qH ) ≥ L(r,H) ≥ lim
H→+∞L(r,H).

Because q ∈ B[r] is arbitrary, it holds that

L(r) + ε ≥ lim
H→+∞L(r,H).

Therefore, we have that

L(r) ≥ lim
H→+∞L(r,H) (.)

since ε >  is arbitrary.
By (.) and (.), the proof is complete. �

Remark . Fix r > . Assume that qH ∈ B[r]∩B∞[H] is as in (.) when r ≥H and as in
(.) when r <H . Then L(r,H) = λ(qH ). Moreover, we have that

qH → rδ/ in
((
C[, ]

)∗,w∗)

as H → +∞. In fact, for any f ∈ C[, ], it holds that

∫ 


fqH dt = H

∫ H+r
H

H–r
H

f dt

= rf (t̃)
(
where t̃ ∈

[
H – r
H

,
H + r
H

])

→ rf (/)

=
∫ 


frδ/ dt

as H → +∞.
Notice that rδ/ is not in the L space. So, we get the so-called measure differential

equations. For some basic theory for eigenvalues of the second-order linear measure dif-
ferential equations, see [].
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