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CMV-specific T cell isolation from G-CSF mobilized
peripheral blood: depletion of myeloid progenitors
eliminates non-specific binding of MHC-multimers
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Abstract

Background: Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic
Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells
have classically been manufactured from steady-state apheresis samples collected from the donor in an additional
harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the
periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting,
which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL)
manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the
isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces
the purity of the cellular product.

Methods: In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell
subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using
pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples.

Results: After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced.
Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved.

Conclusions: G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells
with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in
the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the
antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product,
thereby reducing the clinical negative effects associated with undesired alloreactive cell infusion.

Keywords: Allogeneic hematopoietic stem cell transplantation, Cytomegalovirus-specific cytotoxic T cells,
MHC-multimers, Granulocyte-colony stimulating factor, Immunotherapy
Background
Allogeneic hematopoietic stem cell transplantation
(allo-HSCT) allows the recovery of a sick hematopoietic
system affected by congenital or acquired severe disor-
ders [1]. Peripheral blood stem cells (PBSCs) are the
main hematopoietic stem cell source [2], recombinant
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granulocyte-colony stimulating factor (G-CSF; Filgrastim)
being clinically used for the mobilization of hematopoietic
stem cells (HSCs) to the periphery. This treatment en-
riches the sample in neutrophils, monocytes, lymphoid
and myeloid progenitor cells at different stages of matur-
ation that will be differentiated into monocytic and gran-
ulocytic lineages [3-5].
Studies of immune reconstitution after allo-HSCT have

identified a decisive role of CD8+ cytotoxic T lymphocyte
(CTL) recovery in preventing the development of viral
diseases [6]. Amongst them, CMV infection remains a
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major complication in recipients following allo-HSCT,
and the adoptive transfer of CMV-specific T cells has
shown successful clinical results [7-12]. Several strategies
have been used for anti-CMV T cell manufacture [13-17].
MHC-multimers allow the direct selection of antigen-
specific CD8+ T cells with no need for long-term in vitro
culture, offering a direct and fast selection strategy [18].
This avoids the functional damaging effects of the expan-
sion, thereby preserving the survival potential and cellular
properties of the therapeutic product [19-21].
Historically, the manufacture of virus-specific T cells for

adoptive immunotherapy has involved the use of donor
lymphocytes collected from a steady-state leukapheresis
obtained from an additional apheresis prior to the G-CSF
administration for HSC mobilization. G-CSF has previ-
ously been shown to induce immunologic tolerance; it
promotes T helper type 2 (Th2) and regulatory T cell dif-
ferentiation and downregulates genes associated with Th1
cells, cytotoxicity, antigen presentation and graft versus
host disease (GvHD) [22-25]. In spite of the above de-
scribed immunosuppressive effects of G-CSF treatment,
recently some authors have successfully generated compe-
tent CMV-specific T cells from G-CSF mobilized apheresis
samples [26,27]. CMV-specific T cell manufacture from
the same G-CSF mobilized collection used to obtain HSCs
would abrogate the need for successive donations, assur-
ing the availability of an anti-viral cell product in the unre-
lated donor setting while minimizing costs and discomfort
for the donor.
Therefore, we aimed to improving CMV-specific T cell

isolation from G-CSF mobilized donors using MHC-
multimers. In the present study, we have developed a
method to avoid non-specific binding of multimers to
potentially damaging cell subsets by using a physical
procedure based on plastic adherence [28]. In this way,
we have managed to minimize the non-specific binding
of multimers and eventually obtain a more pure cellular
product safer for infusion.

Methods
Donor population and ethical statement
This study was approved by the Institutional Review
Board at Complejo Hospitalario de Navarra (CHN), and
all donors gave informed consent prior to enrolment.
11 subjects who were stem cell donors at CHN for

allo-HSCT were recruited. All were CMV-seropositive
and carried the HLA-A*02:01 allele. HLA-I typing was
done in the Immunology Unit and the serological
analysis for CMV was obtained from the Microbiology
Service of the CHN.

PBSC mobilization and collection
Cells were collected from donors who received 10
μg/kg/day of recombinant G-CSF (Filgrastim, Sandoz
Biopharmaceuticals, Paris, France) every 12 hours starting
five days before collection. Leukapheresis were performed
with a COBE Spectra continuous flow blood cell sep-
arator (COBE Spectra apheresis system, Caridian BCT,
Lakewood, CO, USA). Cell products, anticoagulated
with ACD-A, were collected with a 1.1 ml/min flux in a
500 ml container, from which an aliquot of 0.5 ml was used
to perform the experiments. Peripheral blood mononuclear
cells (PBMCs) were isolated by Ficoll-Paque density gradi-
ent centrifugation (GE Healthcare Bio-Sciences, Uppsala,
Sweden) and counted in Neubauer hemocytometer using
0.4% trypan blue staining (Gibco, Carlsbad, CA).

Enrichment of lymphocyte populations by plastic
adherence
2.25 × 107 cells were suspended in 45 ml of X-VIVO 15
Serum-free cell medium w/o supplements (Lonza, Basel,
Switzerland) in a sterile 225 cm2 A/N flask with Cell-
BIND Surface (Corning, Corning, NY) for 1 hour at 37°
C and 5% CO2. Non-adherent cells were carefully col-
lected by aspiration to avoid the disruption of the adher-
ent cellular populations. Obtained cells were washed
with Dulbecco’s phosphate buffered saline (dPBS, Sigma-
Aldrich, St. Louis, MO) before quantification and cyto-
metric analysis.

Phenotypic characterization of unmanipulated PBMCs and
non-adherent cell product
Fresh G-CSF mobilized PBMCs and the cellular harvest
obtained after adherent cell removal were phenotypically
characterized.

Characterization of leukocyte subpopulations
1 × 106 cells were stained with anti-human CD3-V450
(BD Biosciences, San Jose, USA), CD8-FITC (BioLegend,
San Diego, USA), CD14-PE (BioLegend), CD45-PerCP-
Cy5.5 (BioLegend), and CD4-APC (BioLegend). Incuba-
tion was carried out for 15 minutes in the dark, cells
were washed once and resuspended in dPBS prior to cyt-
ometer acquisition.

CMV-specific CD8+ T cell quantification
5 μl of PE-labelled Pentamer (PM; HLA-A*0201/CMV
Pentamer, Proimmune, Oxford, United Kingdom) was
added to 1 × 106 cells in a final volume of 50 μl. After an
incubation of 10 minutes in the dark, cells were stained
with CD3-V450, CD8-FITC, 7-AAD (BD), and CD45-
APC-H7 (BD). Samples were incubated with monoclonal
antibodies for 15 minutes in the dark, washed once and
resuspended in dPBS prior to cytometer acquisition.

CMV-specific T cell selection
From 5 G-CSF mobilized PBMCs before and after the ad-
herent cell removal, 1 × 107 cells were stained with 50 μl
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PE-labelled PM during 20 minutes at 4°C in the dark.
After a wash, 20 μl of anti-PE microbeads (Miltenyi
Biotec, Bergisch Gladbach, Germany) were added to a
final volume of 80 μl, followed by 20 minute incubation at
4°C in the dark. Afterwards, PM+ cells were isolated using
a Possel_ds selection program on an AutoMACS Pro
separator (Miltenyi Biotec).

Acquisition and analysis by Flow Cytometry
Samples were acquired in a FACSCanto II equipment
(BD), FACSDiva 6.0 software (BD) was used for acquisition
process and FlowJo version 10 (TreeStar Inc., Ashland,
OR, USA) for cellular analysis. For the quantification
of leukocyte subpopulations 50,000 total events were
acquired, and CD3+CD8+, CD3+CD4+, and CD14+ fre-
quencies were defined. For the CMV-specific T cell quanti-
fication 500,000 total events were acquired, and frequencies
of total AAD+ and PM+CD3+CD8+ were determined.
Only cells clustering with forward and side scatter
properties of leukocyte subpopulations were included
in the analysis, and the percentages were given from
the CD45+ cell gate.

Statistical analysis
Data are represented as median (IQR). Wilcoxon signed-
rank test was used for paired comparisons and the sig-
nificance level was fixed to p < 0.05. Statistical analysis
was done using SPSS17 software package.

Results
CD8+ cell enrichment and unwanted cell depletion after
adherence
47.8% (36.0 – 55.0) of all PBMCs present in the mobilized
apheresis expressed the CD14 marker. After the adher-
ence process, CD14+ cells were significantly reduced to
2.1% (1.3 – 6.1) (p = 0.005).
In the original sample, 24.0% (18.0 – 37.1) expressed

CD3+, from which 17.7% (6.8 – 25.1) were CD8+ and
12.5% (11.4 – 19.4) were CD4+ cells. In the non-adherent
cellular product CD3+ cells were significantly increased to
69.9% (31.9 – 79.2) (p = 0.007) and CD8+ subpopulation
accordingly rose to 35.2% (23.8 – 45.2) (p = 0.009). CD4+
cell percentage remained at 19.3% (16.6 – 29.6), without
reaching statistical significance (p > 0.05) (Figure 1a,b,
Table 1).
Percentages of different cell population recovery rates

were calculated comparing the absolute number before
adherence and the cells recovered in the non-adherent
cellular fraction. 98.5% (96.3 – 99.6) of CD14+ cells from
the unmanipulated PBMC sample were lost after the ad-
herence process. In comparison, 63.7% (33.9 – 70.0) of
the T lymphocyte population were collected in the non-
adherent fraction, while 65.1% (31.9 – 81.3) and 53.2%
(29.2 – 62.6) of the CD8+ and CD4+ cells were reco-
vered, respectively.
7-AAD dye was used to assess cell viability before and

after adherence. In the original mobilized sample 98.0%
(95.6 – 98.5) of cells were viable, whereas after adherence
the viability was similar, 96.0% (93.4 – 97.8) (p > 0.05).

CMV-specific T cell enrichment and non-specific binding
loss by plastic adherence
Prior to adherence 0.14% (0.06 – 0.62) of PBMCs were
specific for CMV (CD3+CD8+PM+), whereas after the ad-
herence process this subpopulation was enriched to 0.65%
(0.24 – 1.51) (p = 0.003) in the non-adherent fraction
(Figure 2, Table 1). The recovery rate of CMV-specific
CTLs in the adherence process was 84.6% (56.3 – 88.7).
In the same way, the non-specific binding of multimers

to unwanted CD8- cells was diminished. In the original
apheresis sample 0.56% (0.41 – 0.86) CD8-PM+ were de-
tected, while after adherence the non-specific CD8-PM+
cells were reduced to 0.16% (0.12 – 0.37) (p = 0.003).

Optimization of CMV-specific T cell isolation by magnetic
selection
The purity of the obtained sample was determined as
the percentage of PM+ cells in the product, and the yield
was defined as the absolute number of PM+ cells present
in the positive fraction as a proportion of the absolute
number of PM+ cells in the sample before isolation.
Using unmanipulated PBMCs, the median purity of the
cellular product was 20.8% (6.9 – 61.7) and the yield was
38.6% (32.9 – 44.8). In comparison, the purity of the
positive fraction of the isolation using the non-adherent
fraction was significantly increased to 76.0% (32.7 –
83.7) (p = 0.043) while the yield was 42.1% (23.4 – 84.1)
(p > 0.05) (Figure 3a,b, Table 1).

Discussion
Alloreactive donor effector cells have been identified as
key players in the GvH reaction [29,30]. In this sense,
donor derived monocytes have been implicated in the
pathophysiology of clinical GvHD [31,32]. Therefore, it
is important to assure that the product to be adoptively
transferred contains a pure virus-specific T cell popula-
tion with high specificity.
Since the generation of anti-viral cell products from

G-CSF mobilized apheresis samples offers great logistical
advantages especially in the unrelated donor setting, we
assessed the direct isolation of CMV-specific CTL from
G-CSF mobilized PBMCs using MHC-multimers. Do-
nors that participated in this study were mobilized with
a biosimilar of G-CSF, with similar effects in comparison
to original G-CSF [33]. However, in our first approaches
we found a high proportion of MHC-multimer binding
to CD8- cells and a low purity in the isolated cell



Figure 1 Phenotypic analysis of cells before and after the adherence process. Plastic adherence method was applied to PBMCs from
G-CSF mobilized donors (n = 11) and CD14, CD3, CD8, CD4 and 7-ADD expression of the unmanipulated PBMCs and the non-adherent cells
were analyzed by flow cytometry (a). Representative figure of the products before and after the adherent process (b). Cells are presented from
the CD45+ cell gate.
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product. In this sense, recent studies have shown that
background levels of multimer staining are higher in G-
CSF mobilized samples compared to non-mobilized ones
[22]. Multimers can join non-specifically to Fc receptors
(FcRs) [34], that are mainly expressed on monocytes,
dendritic cells, neutrophils, and eosinophils [35]. The up-
regulation of FcRI and FcRIII in neutrophils and mono-
cytes induced by G-CSF treatment [36,37] could explain
the high background levels described in MHC-multimer
staining when G-CSF mobilized samples are used. Fur-
thermore, multimers have been described to bind non-
specifically to CD14+ cells [34,38], and G-CSF treatment
in healthy individuals results in an increased expression of
Table 1 Phenotypic characterization and CMV-specific CTL iso
fraction

Unmanipulated P

CD14+ cells 47.8% (36.0 – 55.0)

T lymphocytes (CD3+) 24.0% (18.0 – 37.1)

CTLs (CD3 + CD8+) 17.7% (6.8 – 25.1)

Helper T cells (CD3 + CD4+) 12.5% (11.4 – 19.4)

Viability (7-AAD-) 98.0% (95.6 – 98.5)

PM stain

CMV-specific CTLs (CD3 + CD8 + PM+) 0.14% (0.06 – 0.62)

Non-specific PM binding (CD8-PM+) 0.56% (0.41 – 0.86)

Purity 20.8% (6.9 – 61.7)

Yield 38.6% (32.9 – 44.8)

Cell subsets, CMV-specific CTLs and non-specific PM staining were analyzed in the u
specific CTLs were isolated from unmanipulated PBMCs and non-adherent fraction,
Comparison was done with the Wilcoxon signed-rank test and significance level wa
the CD14 antigen on neutrophils while maintaining its ex-
pression on monocytes [39,40]. Therefore, we found the
necessity to develop an approach that could avoid the
non-specific binding of multimers and the subsequent iso-
lation of potentially alloreactive cells.
A simple process based on plastic adherence reduced

all unwanted cellular subsets from mobilized samples
due to the fact that hematopoietic progenitors [41], mono-
cytes [42], and neutrophils [39,43], enriched in peripheral
blood in response to G-CSF treatment, have the ability to
adhere to plastic surfaces. At the same time the propor-
tion of CTLs, which do not adhere to the plastic, was sig-
nificantly increased in the non-adherent product.
lation of unmanipulated PBMCs and the non-adherent

BMCs Non-adherent fraction p

Leukocyte subpopulations

2.1% (1.3 – 6.1) 0.005

69.9% (31.9 – 79.2) 0.007

35.2% (23.8 – 45.2) 0.009

19.3% (16.6 – 29.6) 0.208

96.0% (93.4 – 97.8) 0.066

ing: specific and non-specific binding

0.65% (0.24 – 1.51) 0.003

0.16% (0.12 – 0.37) 0.003

CMV-specific CTL isolation

76.0% (32.7 – 83.7) 0.043

42.1% (23.4 – 84.1) 0.893

nmanipulated PBMC sample and in the non-adherent cells (n = 11). CMV-
and purity and yield of the obtained cellular product were determined (n = 5).
s fixed to p < 0.05.



Figure 2 PM staining before and after the adherence process. Plastic adherence method was applied to PBMCs from G-CSF mobilized
donors (n = 11) and PM+ cells were quantified in unmanipulated PBMCs and the non-adherent cell fraction. Specific (CD3+CD8+PM+) and
non-specific (CD8-PM+) PM binding was analyzed. Percentages were analyzed from CD45+ cell gate.
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Accordingly, after the adherence process the sample was
enriched in CMV-specific CTLs and the binding of the
multimers to CD8- cells was reduced, which consequently
provoked an increase in the efficacy of the subsequent
CMV-specific T cell magnetic selection process.
Clinical protocols that infused CMV-specific CTLs ob-

tained through MHC-multimer isolation to avoid CMV
reactivation after allo-HSCT have described that an infu-
sion of less than 1 × 104 cells/kg resulted in a consider-
able expansion of CMV-specific CTLs in vivo and was
able to control CMV viremia [11,12]. According to our
results, these cell numbers could be manufactured from
an aliquot of the original G-CSF mobilized PBSC graft
(approximately 5 ml, depending on the cellularity and
CMV-specific T cell percentage in the G-CSF mobilized
harvest). However, for the routine applicability of the
method described in this study, the adherence process
would be more easily performed using Hyperflask de-
vices (Corning), with a median of 8 flasks (range 2–13)
necessary to obtain the required CMV-specific CTL
numbers. At the same time, after the adherence process
the multimer quantity required to isolate the same
amount of specific cells would be reduced, with the as-
sociated decrease in the cost of the procedure.
Conclusions
In the present study we have addressed the high non-
specificity present in the CMV-specific T cell isolation
using MHC-multimers from G-CSF mobilized donors
using an easy, safe and cheap physical procedure, which is
readily translatable into the clinic by using Hyperflask de-
vices and GMP grade MHC-multimers. The implementa-
tion of this simple method to use G-CSF mobilized
PBMCs as starting material for the manufacture of anti-
viral cells, apart from reducing costs, would facilitate the
accessibility of antigen-specific cellular products for adop-
tive immunotherapy following allo-HSCT, widening the



Figure 3 CMV-specific CTL isolation using Pentamer. CMV-specific CTLs were isolated from unmanipulated PBMCs and the non-adherent
fraction using PM (n = 5) and the purity and yield of the process were determined (a). Representative histograms of CMV-specific CTL isolation
(b). Displayed cells were previously gated on CD45+ cells.
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number of patients that could benefit from this successful
therapy.
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