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Abstract

Background: Understanding the interactions between antibodies and the linear epitopes that they recognize is an
important task in the study of immunological diseases. We present a novel computational method for the design of
linear epitopes of specified binding affinity to Intravenous Immunoglobulin (IVIg).

Results: We show that the method, called Pythia-design can accurately design peptides with both high-binding
affinity and low binding affinity to IVIg. To show this, we experimentally constructed and tested the computationally
constructed designs. We further show experimentally that these designed peptides are more accurate that those
produced by a recent method for the same task. Pythia-design is based on combining random walks with an
ensemble of probabilistic support vector machines (SVM) classifiers, and we show that it produces a diverse set of
designed peptides, an important property to develop robust sets of candidates for construction. We show that by
combining Pythia-design and the method of (PloS ONE 6(8):23616, 2011), we are able to produce an even more
accurate collection of designed peptides. Analysis of the experimental validation of Pythia-design peptides indicates
that binding of IVIg is favored by epitopes that contain trypthophan and cysteine.

Conclusions: Our method, Pythia-design, is able to generate a diverse set of binding and non-binding peptides, and
its designs have been experimentally shown to be accurate.
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Background
Antibody-protein interactions play a major role in infec-
tious diseases, autoimmune diseases, oncology, vaccina-
tion and therapeutic interventions. Antibodies present
in human blood interact with antigens (i.e. pro-
tein/polypeptides epitopes) with different affinities and in
a sequence- and structure-specific manner. When study-
ing protein-antibody interactions, two types of epitopes
are to be distinguished: (i) conformational and (ii) linear
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epitopes. In this study we focus on linear epitopes; see a
recent review [1] for a discussion of conformational epi-
topes. All potential linear epitopes of a protein can be
represented by short peptides derived from the primary
amino acid sequence.
The binding site of an epitope covered by an antibody

typically includes a minimal stretch of 8 to 9 amino acids.
If peptides of 15 amino acids in length are incubated with
one specific antibody, that antibody will bind to its epi-
tope independently of the physical position of the binding
motif within the peptide. Motifs running from position 1
to position 9 up to motifs running from position 7 to posi-
tion 15 would be possible. This uncertainty results in dif-
ficulties for determining consensus binding sites as well as
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meaningful position weight matrices (PWM). Individual
amino acids within epitope binding sites may have differ-
ent impact on antibody recognition not only due to the
nature of amino acids involved in binding (physicochem-
ical properties) but also because of the specific position
of the amino acid within the whole peptide sequence
(context).
Here, we present a method, Pythia-design, for design-

ing novel peptides with a desired binding affinity (either
high or low). This method is built upon a success-
ful, novel discriminative classifier called Pythia (Section
“Discriminative classifier for predicting binding and
non-binding epitopes”) that can accurately label a given
peptide as either a high- or low-affinity binder. To test
the quality of the designs that Pythia-design produces, we
experimentally constructed our designed peptides (and
those of a recent alternative method, Barbarini et al.
[2], designed for the same task) and tested their bind-
ing affinity. We show that Pythia-design more accurately
designs such peptides than Barbarini et al. [2]. We fur-
ther show that Pythia-design produces a more diverse set
of designed peptides, which is important for generating a
varied set for experimental construction. Finally, we show
that the two methods of Pythia-design and Barbarini et al.
[2] can be combined, exploiting the relative strengths of
both, to achieve even higher accuracy in epitope design.
While there is less prior work on epitope design (e.g.

[2, 3]), much previous work has focused on the task of pre-
dicting binding affinity of a given peptide to various target
molecules [4], e.g. antibodies [5], to MHC class I and
class II complexes alone or in concert with T cell receptor
binding [6–8]. Machine learning classifiers such as artifi-
cial neural networks [9, 10], hidden Markov models [11],
and support vector machines [12] and other approaches
have been explored in tackling the problem of predict-
ing Human Leukocyte Antigen (HLA) binding peptides
[13, 14]. Much work has also focused on the prediction
of T-cell and B-cell binding peptides [15–26]. Zhao et al.
[16] explore various classifiers to predict peptide T-cell
binding. Using a 10-dimensional feature vector to repre-
sent each amino acid, they discover that SVMs provide the
best classification performance in their task. Huang and
Dai [17] also explore the classification of peptide binding
to T-cells using a support vector machine classifier. They
present a novel peptide feature based on combining a
20-dimensional indicator vector with amino acid similar-
ity information encoded by the BLOSUM50 [27] matrix.
Nanni and Lumini [28] introduced the MppS system
that relies on an ensemble of support vector machines,
trained on various physicochemical properties, to clas-
sify peptide binding to HIV-protease and T-cells. They
use sequential floating forward selection [29] to select
a subset of features, and combine the individual classi-
fier predictions using the max rule [30]. More recently,

Nanni and Lumini [31] have explored the use of a novel
peptide-encoding scheme that relies on the use of non-
linear dimensionality reduction to extract the informa-
tion encoded across a large number of physicochemical
properties. They demonstrate that this novel feature rep-
resentation, when used in conjunction with a support
vector machine classifier, exhibits state-of-the-art perfor-
mance in predicting peptide T-cell binding. Wang et al.
[32] also showed that combining multiple classifiers using
a consensus approach improved the classification ofMHC
class II peptide binding predictions. Others [33] have used
motif mining for MHC I andMHC II peptides. Recently, a
flexible T cell receptor docking algorithm achieved near-
native predictions for 80 % of the TCR/pMHC cases [8].
Zhang et al. [18] use 3D features and a random forest clas-
sifier to predict B-cell epitopes. Lin et al. [19] provide a
method for B-cell epitope prediction that exploits phy-
logenetic information. Yao et al. [34] introduce an SVM
approach called SVMTriP for B-cell linear epitope pre-
diction. Yao et al. [1] compare various methods to find
conformational epitopes of B-cells. El-Manzalawy et al.
[23, 35] used support vector machines in combination
with a subsequence kernel reaching a AUC of 0.812 and an
accuracy of 73.37 % to predict peptide/epitope-antibody-
binding [5].
Our novel discriminating classifier upon which our

design method is based uses an ensemble of support
vector machines (SVMs) to classify design candidates.
This classifier is broadly similar to that of Nanni and
Lumini [28]. However, we use probabilistic SVMs with
Platt’s extension [36], along with a different set of fea-
tures. In addition, no other previous work deals with such
a wide variety of paratopes — the regions of antibodies
which recognize antigens — as is found in intravenous
immunoglobulin fractions, as we do here.
As our experiments below show, a diverse set of

IVIg-binding peptides can be computationally designed
using Pythia-design with high accuracy. In addition, our
random-walk strategy for ensuring diversity is general and
could be applied to any accurate discriminative classifier.
These computational techniques, and the collection of
designed and validated IVIg binders and non-binders, will
be useful both for gaining a more thorough understand-
ing of IVIg binding properties and the diversity of possible
epitopes.

Methods
Overview
The Pythia-design method has two main parts. The
first part is a machine learning classifier that is
trained to predict whether a given peptide is a
high-affinity or low-affinity binder. We designed this
classifier, which we refer to as Pythia, to use an ensem-
ble of probabilistic support vector machines (Section
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“Discriminative classifier for predicting binding and
non-binding epitopes”) trained on various sequence,
chemical, and structural features. The features used in
the classifiers are described in (Section “Features used in
the classifiers”). For features where we did not compute
the kernel directly, we used a radial basis function kernel.
The second part of Pythia-design is a method for using
random walks to generate candidate peptides with novel
sequences to feed into the classifier. This is described in
Section “Generating novel peptides that bind to IVIg”.

Discriminative classifier for predicting binding and
non-binding epitopes
We here describe a method for predicting whether a
given peptide (epitope) is going to be a low-affinity or
high-affinity binder. Motivated by the success of pre-
vious work in various protein-related prediction tasks
[12, 16, 28, 31, 37], we use Support Vector Machines
(SVM) as our classifiers within the ensemble. We trained
these SVMs via the libsvm software [38]. For all features,
the optimal SVM parameters were discovered via a grid
search (using libsvm’s ‘grid.py’ script) and 5-fold cross-
validation. The parameters were selected based entirely
on a training set without the availability of the subsequent
testing set, which was held hidden from method develop-
ers until after predictions were made. For a given SVM
model, the cross-validation accuracy for the optimal set
of parameters is used as a weight to combine the cor-
responding model’s predictions with the others from the
ensemble.
During standard SVM classification, instances are

assigned a hard label, as belonging to the negative (low-
binding) or positive class (high-binding), denoted by C−
and C+ respectively. Such a hard labeling poses no prob-
lem when only a single classifier is used to label test data.
However, when an ensemble of classifiers is used, it is use-
ful to have extra information about the degree to which
the label assigned by each individual classifier should be
trusted.
For this reason, we chose to use Platt’s extension [36],

which provides probabilistic outputs for a support vector
machine’s classifications. Instead of receiving a 0/1 label,
each instance is given an a posteriori estimate of the prob-
ability with which it belongs to the positive class. Thus, we
expect that instances that clearly belong to the negative
class will be given a value close to 0, while instances that
belong to the positive class will be given values close to 1.
Having a probabilistic interpretation of the classification

for data instances makes it possible to combine the out-
put of different classifiers. We used a variant of the sum
rule, where the predictions of the individual classifiers are
summed and normalized to yield the prediction of the
ensemble. Specifically, the prediction of the ensemble for
a particular instance xi was computed using

pens+
(
xi

) = 1
A

M∑
j=1

ajpj+
(
xi

)
, (1)

where xi is a feature vector representing the ith peptide,
constructed using some subset of the features described in
Section “Features used in the classifiers” (M = 7), pj+

(
xi

)
is the a posteriori probability output by classifier j that the
peptide with features xi is a high-affinity binder, and aj is
classifier j’s cross-validation accuracy.A is a normalization
factor equal to

∑M
j=0 aj. We can then take pens+ to be the

probability with which the ensemble predicts xi to belong
to the positive class, or we can use it to obtain a discrete
class prediction with the decision rule:

xi ∈
{
C+ if pens+

(
xi

) ≥ τ ,
C− otherwise.

In our experiments, we set τ = 0.5, but other values
may be reasonable. In fact, one may even learn the value
of τ which yields the best performance by using a held-out
subset of the training data, though we do not explore that
here.
Each SVM model will yield a prediction for each pep-

tide in the testing set. We combined the predictions for
all of the classifiers in the ensemble using a variation on
the approach presented by Nanni and Lumini [28], which
is itself an extension of the sum-rule. We normalized the
predictions for each classifier to have a standard deviation
of 1. Next, we combined the predictions from each of the
j classifiers according to Eq. 1. By sorting the peptides in
the testing set according to this value, we can produce a
rank ordered list of the peptides in order of the likelihood
that they belong to the positive (high binding affinity)
class.

Features used in the classifiers
Numerically encoded sequence features
There are two distinct types of sequence features that
we encode numerically. First, we used a simple varia-
tion on the peptide encoding scheme presented by Huang
and Dai [17]. We encoded each amino acid in the pep-
tide by replacing its single letter code with its corre-
sponding row in the BLOSUM50 matrix. The BLOSUM50
matrix contains empirically derived log-odds scores that
encode the frequency of different amino acid substitu-
tions and is commonly used to measure the similarity
between different amino acids. Let the peptide of length
d be given as p = (a0, a1, . . . , ad), where ai is the amino
acid in the ith position of the peptide. Further, let row(a)
map the amino acid a to its corresponding row in the
BLOSUM50 matrix. We encoded the peptide as enc(p) =
(rowa0, rowa1, . . . , rowad). For the length d peptide p,
enc(p) will be a 20d dimensional feature vector. In addi-
tion to BLOSUM50, we use the same type of encoding



Patro et al. BMC Bioinformatics  (2016) 17:155 Page 4 of 13

with matrices nlf and sa introduced by Nanni and Lumini
[31]. These matrices are derived by performing dimen-
sionality reduction on a large, rectangular (i.e. 20 × k
with k � 20) matrix where each row corresponds to an
amino acid and each column to some physicochemical
property. The goal of the dimensionality reduction is to
decorrelate the physicochemical properties, reducing the
column space of the matrix significantly. The nlfmatrix is
a 20 × 18 matrix obtained using a nonlinear fisher trans-
form, while the samatrix is a 20×10matrix obtained using
a combination of clustering and principal component
analysis.
The second type of sequence feature that we encode

numerically involves various physicochemical properties
of the constituent amino acids of each peptide. We ana-
lyze the amino acid properties present in the Amino Acid
Index (AAIndex) [39]. Each AAIndex property provides a
mapping from each of the 20 amino acids to a numeri-
cal scale measuring some physicochemical attribute (e.g.
hydrophobicity, antigenicity). The AAIndex listed 544 dif-
ferent amino acid properties. We use an approach based
on a sliding window and histograms to turn each AAIn-
dex property into a numerical feature vector for a peptide.
Consider a single AAIndex property AAIj, and let AAIj(a)
represent the numerical value to which the amino acid a
is mapped under AAIndex property j. To form a represen-
tation for the entire peptide p under the property AAIj,
we used a window of length w sliding across the peptide
to produce a (d − w + 1)-dimensional vector where entry
i in this vector is the average value of the AAIndex prop-
erty over the window starting at position i. By varying
w, we can change the coarseness of this representation.
Through a process of experimenting with different values
of w for this classification task (using only training data),
we computed these features for w ∈ [3, 5].

String kernel features
String kernels are used to evaluate the sequence similar-
ity between peptides. There are many different varieties
of string kernels, ranging from the somewhat simple k-
spectrum kernel, which essentially counts the occurrence
of all length k substrings in each peptide, to themore com-
plex substring-mismatch kernel [40], which considers all
shared subsequences between two peptides, allowing for
gaps andmismatches.We use the k-spectrum string kernel
[37] for k = 3, 4, 5, 6, the SSSK kernel [41] with parameter
d = 6, and the bounded range substring kernel [42] with
parameter r = 8. The output of each of these methods is
a matrix, known as the kernel matrix, in which the entry
at row i and column j is the result of the kernel evaluation
between peptides i and j. To train a SVMmodel for each of
these string kernels, we simply compute the kernel matrix,
and then make use of the ability of libsvm to train a model
using a precomputed kernel.

Structure features
We use rigid docking to estimate the binding affinity
between IVIg and a candidate peptide. We computed a
hypothesized 3-dimensional structure for each peptide
using the Biochemical Algorithms Library (BALL) [43].
We built a starting model for each peptide p by posi-
tioning the side chains for each amino acid by choosing
the most frequently occurring rotamer position from a
rotamer library. We then optimized this initial structure
by performing an energy minimization using the AMBER
[44] force field. This relaxes the structure until a (possibly
local) energy minimum is achieved.
We also obtained an experimentally measured 3D

structure for IgG1 [45], the most prevalent class of
IgG antibody present in intravenous immunoglobulin.
We measure the conformational complementarity of
each of our hypothesized peptide structures with the
immunoglobulin structure. To compute this complemen-
tarity, we performed a protein-protein docking simulation
for each of the constructed peptides against IgG1 using
the ZDock software [46]. Each ZDock run produces a list
of the 2000 top-ranked (according to ZDock’s criteria)
docking predictions for each peptide. The ZDock score
provides a measure of the complementarity of the peptide
and immunoglobulin conformation in the docking region
and is used as a proxy for the overall quality of the docking.
For each peptide, we formed a histogram from the 2000
ZDock scores, and use this histogram as a feature vector
with which to train the SVMmodel. Intuitively, we expect
peptides whose ZDock score distributions are skewed
toward high scores to have better shape complementar-
ity and, therefore, to be more likely binders than peptides
whose ZDock score distributions are skewed toward low
scores.

Generating novel peptides that bind to IVIg
Pythia-design builds upon the classifier described above
by first generating many peptide sequences and then
assigning them a reactivity category high (H), medium
(M), or low (L) according to the predictions of our classi-
fier. We generated the de novo sequences using a sampling
approach that corresponds to a seeded random walk in
sequence space. To obtain a sequence for reactivity class
C, we choose a random seed sequence s ∈ C (such as H)
from the training set, and randomly mutate its constituent
amino acids until it adheres to several required sequence
diversity rules, in order to ensure that the novel pep-
tide sequences that are generated are sufficiently different
from those in the training set. Specifically, the designed
sequences predicted to be in the high- or low-reactivity
category could not share any 4-mer, or exhibit a sequence
identity of greater than 6 amino acids in any subsequence
of length 11, with any sequence in the same reactivity cat-
egory in the training set. Further, the peptides generated
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by the Pythia-design method were required to adhere to
the same set of constraints with respect to the peptides in
the original experiment’s testing set.
We seeded our peptide generator with 6000 sequences

from the training set — 3000 sequences with the highest
experimentally measured reactivity and 3000 sequences
with the lowest experimentally measured reactivity. Run-
ning the random walks then produced 6000 candidate
peptides that we classified using Pythia and sorted accord-
ing to their probability of belonging to the positive class.
There were 2468 peptides with an probability greater
than or equal to 0.5, and 3542 with an probability less
than 0.5. The 1500 sequences with the highest proba-
bilities were predicted belong to the high-affinity class
H, while the 1500 sequences with the lowest probabili-
ties were predicted to belong to the low-affinity class L.
The remaining 3000 peptides, with probabilities closest
to 0.5, were predicted to belong to the medium-affinity
classM.

Training and testing sets of peptides for classifier
To train and test our discriminative classifier, we used
the data set of Luštrek et al. [5] (included as Additional
file 1: Table S1), in which 75,534 peptides were incubated
with commercially available intravenous immunoglobu-
lin (IVIg) fractions, which was originally presented as
part of the DREAM5 challenge 1 (https://www.synapse.
org/#!Synapse:syn2820433/wiki/71017). IVIg is a mixture
of naturally occurring human antibodies isolated from
up to 100,000 healthy individuals. From this dataset,
high-confidence negative and positive pools of recognized
peptides were determined based on epitope-antibody-
reactivities (EAR) of more than 75,000 different peptides
subjected to a huge number of structurally different anti-
bodies present in IVIg. (See [5] as well.) The training and
test datasets for the discriminative classifier were assem-
bled from these peptide pools (Additional file 2: Table
S2 and Additional file 3: Table S3). From the collection
of all the peptides incubated with human IVIg, a pool
of 6,841 epitope-containing peptide sequences reactive
with human immunoglobulins (signal intensity > 10, 000)
was experimentally identified. This was called the pos-
itive set. From the same original collection of peptides
20,437 peptides were identified that showed no antibody
binding activity in any of the triplicate assays (signal
intensity < 1, 000). This peptide set was called the nega-
tive set. The training set was formed by random sampling
of 3,420 peptides from the positive set and 10,218 pep-
tides from the negative set. The training set thus created
contained 13,638 peptides and their respective binding
reactivities. The test set was created by joining together
the remaining 3,421 peptides from the positive set and
the remaining 10,219 peptides from the negative set, for a
total of 13,640 peptides.

Selection of designed peptides for experimental validation
Pythia-design was used to generate 1500 peptides pre-
dicted to be reactive (high binding affinity) as well as 1500
predicted not to be reactive. Themethod of Barbarini et al.
[2] was also used to generate 1100 peptides of each class.
To select a subset to experimentally construct and vali-
date, the designed peptides were re-categorized by select-
ing 400 high binders and 200 non-binders as follows. A
stratified instead of a randomized sampling procedure was
chosen in particular to investigate whether the designed
peptides are robust to existing classification methods [5]
as well as position weight matrix (PWM) analysis. The
initial peptide set were subgrouped by using PWM and
SVM analyses as described in [5]; see categories in leg-
end of Additional file 4: Table S4 (column F). Categories
(n = 8) were determined from a linear scale represent-
ing PWM and Lustrek classification scores of the original
data sets (Pythia: n = 1500; Pavia: n = 1100) from min-
max sampling of the classifiers was used. The stratified
quota sampling was restricted to 50 peptide sequences in
case of binding peptides (in case of non-binders N = 25).
In total, 400 peptides predicted to be bound and 200 pre-
dicted not being bound by IVIg were taken from each
of Pythia-design and Barbarini et al. [2] and subjected to
experimental testing.

Results
Overview
The test set of peptides was withheld from the algorithm
designers until after the algorithm was finalized. Only the
training set was used in the design and initial evaluation
of the Pythia classifier. Once finalized, Pythia was then
evaluated on the held-out test set of peptides to validate
the classifier component of Pythia-design. Finally, Pythia-
design was used to generate a collection of new likely
binder and non-binder peptides, a subset of which were
then experimentally validated.

Validation of the Pythia affinity classifier
Although our goal is to produce a peptide design method,
we first validate that our peptide classifier is accurate.
This classifier is based on an ensemble of learners that
aggregates the prediction of many individual classifiers,
each of which was trained on a set of features. Analyz-
ing the AUC for the individual classifiers in the Pythia
ensemble (Table 1) on the test peptides, we observe that
many of the classifiers show similar performance, with the
exception of the structural classifier which displays sig-
nificantly lower classification performance. The ensemble,
however, yields superior performance compared to any of
its constituent classifiers with an AUROC of 0.893. At any
given false positive rate, the ensemble classifier will obtain
a higher true positive rate than any of the other classi-
fiers. The precision-recall curve presents a related view

https://www.synapse.org/#!Synapse:syn2820433/wiki/71017
https://www.synapse.org/#!Synapse:syn2820433/wiki/71017
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Table 1 Performance of the various classifiers used within the
Pythia method

Features AUROC AUPR �AUROC �AUPR

k-spectrum 0.85 0.70 −0.043 −0.072

Sparse Spatial Sample 0.87 0.73 −0.023 −0.042

Nonlinear Fisher Mat. 0.86 0.69 −0.024 −0.082

Statistical Analysis Mat. 0.85 0.67 −0.025 −0.102

BLOSUM Encoding 0.86 0.70 −0.024 −0.072

Local Compositiona 0.88 0.74 −0.013 −0.032

Structure 0.74 0.53 −0.153 −0.242

Ensemble 0.89 0.77
athe best single classifier under both the AUROC and AUPR metrics
Boldface indicates the best solution

of classifier performance to the ROC curve. It measures
how the precision changes as the recall is increased. For
very small recall values (i.e. recall≤ 0.1), the sparse spatial
sample and k-spectrum string kernels yield the best (and
very similar) precision. However, for the vast majority of
recall values, the ensemble classifier yields the highest
precision. Just as was the case with the ROC curves, the
ensemble again achieved the maximum area under the PR
curve. While the AUPRs were generally lower than the
AUROCs, we did observe that the benefit of the ensem-
ble was larger with respect to the PR curves than the ROC
curves.
Because the test and training sets of peptides were cho-

sen randomly, it is possible that overlapping or shared
sequences between the test and training set partially leads
to this high performance. Nevertheless, our ultimate aim
is to design novel peptides, and this analysis suggests that
Pythia has reasonable performance identifying low- and
high-affinity binding peptides.

Accuracy of predicted affinity of computationally designed
peptides
Pythia-design was used to generate a number of probable
high-affinity binding peptides (H), probable low-affinity
binding peptides (L), and medium-affinity binding pep-
tides (M). In addition, the method of Barbarini et al. [2]
was used to generate the same number of peptides. A
subset of designed peptides of both the Pythia-design
and Barbarini et al. [2] methods were experimentally
constructed (Section “Selection of designed peptides for
experimental validation”). The binding affinities of these
designed peptides were then experimentally measured.
Additional file 4: Table S4 gives the designed peptides and
their measured affinities.
Figure 1 gives the distributions of the measured affini-

ties for the predicted high- and low-affinity designed
peptides for Pythia-design and for the Barbarini et al. [2]
method. Both approaches are able to design low-binding
peptides well. This is presumably the easier task as one

would expect there to be many more non-binding pep-
tides than high-affinity binders. For design of binders,
the presumably more challenging problem, the predicted
high-binding affinity designs of Pythia-design tended to
have much higher measured binding affinities than those
produced by Barbarini et al. [2].
To quantify the degree to which the methods are able to

generate binders and non-binders effectively, we use the
method of Ojala and Garriga [47] to compute a P-value
indicating the probability of the observed high- and low-
binding separation. To do this, we compute the standard
F1-score of the predictions, then randomly permute the
labels 1000 times to get a distribution of F1-scores. For
both Pythia-design and Pavia, the true F1-score is always
better than the randomized score, meaning that for each
method P < 0.001. This indicates that the approaches are
both truly designing peptides better than random.
Using specific binding defined by a factor 10 above

control measures (secondary antibody measures) plus a
minimum signal of above 1000, the designed peptides
were categorized as truly or falsely predicted as outlined
in Additional file 4: Table S4. Using these categoriza-
tions, we computed precision, recall, and accuracy for
the two methods. Since we do not have a hard thresh-
old to define high or low affinity measurements, and such
threshold cannot be detected from the distribution of
measurements itself, we used a two-valued cutoff cen-
tered at 5500, themiddle of the excluded range of intensity
measurements. The cutoff was chosen to be 5500 ± δ,
(0 ≤ δ ≤ 5449), to define the high (measurements greater
than 5500+ δ) and low (measurements less than 5500− δ)
affinity thresholds, thus leaving out of consideration those
predicted peptides with measurements that fall in the
“grey” zone of [ 5500 − δ, 5500 + δ]. When δ = 0, we
take into account all the measurements, when δ = 4500
we have a grey zone of peptides with signal intensities
between 1000 and 10000. Figure 2 shows the performance
(precision and recall) as well as the fraction of excluded
peptides for both methods as well as the aggregate predic-
tion as a function of δ. From Fig. 2 top-left panel, we can
see that the precision of the method of Barbarini et al. [2]
at δ = 4500 is around 0.5, much lower than the precision
of close to 0.95 of Pythia-design. ROC curves showing the
same conclusion are presented in Fig. 3.

Diversity of designed peptides
It is important that a design method is able to generate
many diverse peptides rather than a small number of very
similar peptides. This allows for a greater sampling of the
space of binding peptides and allows for more effective
screening based on downstream criteria. The set of pep-
tides produced using the Pythia-design approach is much
more diverse than the set generated by the Barbarini et al.
[2] approach (Fig. 4). To quantify the diversity, we create
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a b

Fig. 1 Quality of designed peptides from two approaches. The distribution of measured affinities for the designed peptides predicted to belong to
the low (L) and high (H) binding affinity classes for the (a) Pythia-design method, and (b) method of Barbarini et al. [2]. The horizontal line at 10,000
indicates the binding affinity cutoff above which a peptide is considered to have a high binding affinity. Both methods produce a statistically
significant separation of high- and low- binders (P < 0.001), but Pythia-design is much better at generating high-affinity binders

a graph G from the set of predicted high and low binding
affinity peptides, where each peptide is a vertex in G and
two different peptides are connected by an edge if they
have fewer than a specified number c of differences under
the Hamming distance (which counts the number of dis-
agreeing amino acids across all positions). For each vertex
v, we compute a maximal independent set that contains

v. An independent set is a subset of vertices such that no
two are connected by an edge. This yields nmaximal inde-
pendent sets, where n is the order of the graph. The size
of the independent set containing v is a measure of how
dissimilar v is to the other designed peptides. We com-
pute the average size of these maximal independent sets,
and observe how this value changes as we vary the cutoff

Fig. 2 a Precision, b recall and c accuracy of peptide design. Performance of Pythia-design, the method of [2] (labeled Pavia), and the aggregate
formed by taking the positives from Pythia-design and the negatives from [2] is shown. In (a), the lines for Pythia and the aggregate overlap. The
x-axis δ is a measure of the activities from the high- and low-binding affinities (see text), and (d) shows the fraction of peptides excluded for a given δ
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Fig. 3 Performance of the Pythia-design and Barbarini et al. [2] method (labeled Pavia) for designing peptides with desired reactivities. ROC curves
were determined from predicted peptides incubated with IVIg (5 mg/ml) diluted to 1:100, 1:400 and 1:1000, and epitope-antibody reactivities (EAR)
determined as described by Lustrek et al. 2013

Fig. 4 Diversity of the designed, predicted high- and low-binding affinity peptides. The sequence diversity among the Pythia-design peptides is
significantly higher than the approach of [2]. The y-axis gives a measure of diversity of a set of designed peptides (see text) under a particular
Hamming-distance threshold defining similar peptides (x-axis). Almost all the Pythia-designed peptides differ in at least 9 of their 15 possible
positions
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parameter c defining the edges of the graph. At a given cut-
off level c, if the average size of the maximal independent
sets is larger, then there are more independent peptides
and these peptides have, by construction, c or more differ-
ences. Pythia-design peptides exhibit substantially more
diversity (Fig. 4) than the designs of Barbarini et al. [2].
Until a distance cutoff of 9, almost all of the Pythia-design
peptides (in both the high and low affinity sets) belong to a
single independent set that spans the entire graph, mean-
ing that nearly all the peptides are dissimilar in at least
9 of their positions. The designed peptides of Barbarini
et al. [2], however, share a great deal of sequence similarity,
representing a very dense sampling of the sequence space
near only a few particular points.

Aggregation of two strategies for constructing binding
and non-binding peptides
We also created an aggregate approach for de novo peptide
design to assess how Pythia-design complements previ-
ous methods. Pythia-design and the method of Barbarini
et al. [2] take different approaches to the design prob-
lem. Pythia-design generates dissimilar random peptides
and classifies them, while the Barbarini et al. [2] method
extracts some motifs from clusters of positive and nega-
tive peptides and then generates new peptide sequences.
The method of Barbarini et al. [2] produces a high num-
ber of peptides that, even though they were predicted
positives, are actually non-reactive. On the other hand
Pythia has very few non-reactive peptides in its positive
set. A confusion matrix (Table 2) comparing the binding
by IVIg dilutions of peptides from Pythia-design and the
method of Barbarini et al. [2], showing dilutions of 1:100,
1:400, 1:1000, underline that the Pythia-design method
does preferentially select peptides that show high affinity
binding to IVIg.
To combine the strengths of each method, we used the

strategy of Barbarini et al. [2] for generating low-affinity
peptides and Pythia-design for generating high-affinity
predictions. The accuracy of the aggregate method, with

Table 2 Confusion matrix for designed peptides

Barbarini et al. [2] Pythia-design

Binder Nonbinder Binder Nonbinder

Bound (1:100) 261 25 387 117

Not bound (1:100) 139 175 13 83

Bound (1:400) 128 7 325 40

Not bound (1:400) 272 193 75 160

Bound (1:1000) 99 3 270 18

Not bound (1:1000) 301 197 130 182

Six hundred peptides representing 400 binders and 200 non-binders of each of
Pythia-design and the method of Barbarini et al. were incubated with IVIg. The
confusion matrix below indicates that the peptides selected by Pythia-design bind
antibodies with higher affinity than the peptides designed by Barbarini et al.

an AUROC of 0.959–0.983, is better than either of the
two methods (Fig. 2 vs. Fig. 5). One caveat, however, is
that this combined method produces a set of non-binders
with lower diversity than that produced by Pythia-design
in isolation.

Inclusion of citrulline, cysteine, and tryptophan in
designed peptides
Pythia-design was allowed to include the citrulline amino
acid (denoted Z) in its designed peptides. Many of the
designed peptides included this non-standard amino acid
(Table 3). Citrulline was included with high prevalence in
both the tested high and low binders (318/400 ≈ 80 %
tested high binders and 185/200 ≈ 92 % of tested low-
binders). Since both high and low binders included them,
we do not see a significant effect on binding in general
with the inclusion of these amino acids. It is likely they
were included with such high prevalence because such
peptides are able to satisfied the imposed peptide diver-
sity constraints. Similarly, peptides with cysteine (C) are
over-represented in the Pythia-design peptides (Table 3),
likely for partially similar reasons. This interpretation is
further supported by the fact that C and Z were under-
represented in the training and test sets used to train the
Pythia discriminative classifier on which Pythia-design is
based (Additional file 5: Figure S1). It is also consistent
with the implementation of the classifier, which omit-
ted features for which no training data (such as amnio
acid chemical properties) were available. In particular,
all of the propensity to include or exclude Z in Pythia-
design comes from the string kernel and structural fea-
tures extracted from the training set. Figure 6 shows that
the true positive designed peptides often include trypto-
phan (W) and cysteine (C), which are relatively uniformly
over-represented along the entire length of the designed
peptides.

Discussion
One caveat of epitope mapping experiments is the nature
of how peptides are presented e.g. in solution or fixed to
a support and/or whether the peptides are fixed amino-
or carboxyterminally. The peptides that we analyzed were
coupled via the aminoterminal end to glass slides [5, 48].
The nature of how peptides are presented in solution or
fixed to a platform might influence the binding affini-
ties obtained. This experimental restriction may affect
their binding properties, and if peptides were bound via
the carboxyterminal end, their binding affinities may
change. Hecker et al. [48] have demonstrated that the
epitopes found via the experimental protocol used here
represent epitopes that are functional in other assay
systems as well, so it is likely that the predictive meth-
ods and their results will be robust to the experimental
assay. In addition, naturally the experiments reported
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Fig. 5 Performance of a method that combines Pythia-design and Barbarini et al. [2] (labeled Pavia)

here are specific to the IVIg sets selected. Performance
on additional sets is a promising direction for future
work.
Another caveat of the experimental validation per-

formed here is the non-random selection procedure
used for choosing which peptides were experimentally

Table 3 The presence of citrulline and cysteine in the designed
peptides and the training and test sets

Total With Z With C With Z and C

Training set High 3420 8 906 3

Training set Low 10218 326 1971 71

Test set High 3421 5 944 3

Test set Low 10219 356 2032 93

Pythia-design “H” 1500 1286 1302 1093

Pythia-design “M” 3000 2885 2365 2253

Pythia-design “L” 1500 1484 1044 1029

Pythia-design “H” tested 400 318 344 265

Pythia-design “L” tested 200 185 150 136

Barbarini et al. [2] “H” 1100 0 420 0

Barbarini et al. [2] “L” 1100 0 628 0

Barbarini et al. [2] “H” tested 400 0 196 0

Barbarini et al. [2] “L” tested 200 0 110 0

The prevalence of citrulline and cysteine is likely due to the fact that citrulline and
cystiine were less represented in the peptides used in the training data sets, allowing
these designed peptides to more easily satisfy the imposed diversity requirements

validated. Because stratified minmax sampling was used,
the designed peptides were chosen so that they repre-
sented both high- and low- predicted binders of two
other computational methods. We find post-selection
that the peptides designed by Pythia-design fell rela-
tively uniformly across these categories, so the sampling
represents a mostly unbiased sampling of the designed
peptides (Additional file 5: Figure S2A). The binders
designed by Barbarini et al. [2] displayedmore bias toward
appearing in only a few sampling categories (Additional
file 5: Figure S2B), and so it is possible that this has
led to a bias under-representing that method’s overall
performance.
Another caveat is our interpretation of the use of cit-

rulline in our high-binding designed peptides. Although
it appears that citrulline is primarily included only to
increase peptide diversity, it is possible that the predicted
peptides are only reactive to the subset of antibodies
within the IVIg serum that bind to citrullinated peptides.
In this case, the predicted results are still of interest, since
they represent a high-binding set of peptides, but to this
more restrictive class of antibodies.
Despite its high performance, there is room for

improvement of the Pythia method for affinity bind-
ing prediction that is at the core of Pythia-design. In
particular, ZDock [46], which is used to compute the
structural features, considers only rigid docking of the
peptides to immunoglobulin. The structural features may
change significantly if we use a non-rigid docking pro-
cedure, where conformational changes in the paratope,
epitope, or both are allowed. It is actually quite surprising
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Fig. 6 Position-specific peptide propensity within true positive Pythia-design peptides (at dilution 1:1000) divided by the PWM of the negative set of
peptides. PWM segments in red indicate amino acids that are predicted to interfere with antibody binding. Green highlights amino acids that favor
binding of antibodies present in IVIg. An over-representation of cysteine (C) and tryptophan (W) in all positions is seen

that, using only a single IgG1 structure model and using
only perfectly rigid docking, the structure-based classi-
fier obtained such respectable performance. This indi-
cates that improving the computation of the structural
features is a promising way to increase prediction accu-
racy. The integration of additional structural information
might guide and improve computational processes study-
ing epitope binding. Not all immunogobulins necessarily
use similar or comparable binding modes [5]. As such,
knowing the structural heterogeneity of immunoglobulins
found in one human individual might lead to the descrip-
tion of different types of epitope-antibody recognition
modes [5]. Another potential source of improvement is
the inclusion of phylogenetic information as was done in
Lin et al. [19].
An important direction for future work is the determi-

nation in greater detail, from the SVM weights, which
sequence features are particularly indicative of binding or
non-binding. For a machine learning method to be rea-
sonable, the testing and training peptides should be drawn
from the same distribution, as we have done here. The
peptides used to train and test the Pythia classifier were
randomly chosen (in vitro) from a large set of bound and
non-bound peptides, and randomly divided into testing
and training. Given the very high level of performance
on the random set, it is unlikely that performance is

driven by any small number of sequence patterns. Further,
and most importantly, the generalizability of the Pythia
classifier was tested in a particularly strong way: it was
used to design novel, sequence-dissimilar peptides and the
accuracy on that task is very good, and provides strong
evidence that the developed models are not specific to any
single sequence pattern.

Conclusion
We have provided a method, Pythia-design, for the design
of peptides with specific reactivity properties (either high-
or low-affinity binding), showing experimentally that the
designs accurately exhibit the desired affinities. In addi-
tion to producing more accurate designs than previous
approaches, Pythia-design is able to sample the space
of possible designed peptides more completely, creating
many dissimilar designs rather than variations on a few
similar peptides. Again, combination of two dissimilar
methods shows improved performance.
Understanding antibody binding patterns is crucial for

understanding the immune response for many human dis-
eases. We show that diverse sets of peptides that exhibit
the desired binding properties can be computationally
designed. This work moves us closer to understanding the
interplay and interactions between human antibodies and
the targets to which they bind.
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Additional files

Additional file 1: Table S1. Binding training data. Training set of
measured binding affinities. This collection of peptides was used to train
the Pythia classifier. (TXT 260 kb)

Additional file 2: Table S2. Classification Test Binders. Set of binders in
the test set including computational analysis. The peptides in Column A
represent the test data set, sorted by Column B. The highest measured
values (MaxIVIG) are given in Column B, in Column C (mBuffer) the mean of
secondary antibody control, and in Column D (mIVIG) the mean of all IVIG
measures. In Column E, the sum of all computational methods are
summed up whose predictions were correct as outlined in the remaining
columns, where the EL-Manzalawy, Luštrek, PWM, Pythia, Barbarini et al. [2]
(Pavia), and PWM2 methods are given. (XLS 1218 kb)

Additional file 3: Table S3. Classification Test Non-Binders. Set of
non-binders in the test set including computational analysis. The peptides
in Column A represent the test data set, sorted by Column B. The highest
measured values (Max IVIG) are given in Column B, in Column C (mBuffer)
the mean of secondary antibody control, and in Column D (mIVIG) the
mean of all IVIG measures. In Column E, the sum of all computational
methods are summed up whose predictions were correct as outlined in
the remaining columns, as in Additional file 2: Table S2. (XLS 1218 kb)

Additional file 4: Table S4. Designed peptides and their experimental
validation. Data set of the designed peptides including computational
analysis. The peptides in Column A were further categorized as outlined in
Material and Methods, see Column E and F. The Columns B, C, D show the
computational assessment based onmethods used in [5]. The experimental
data are given in Column J, K, and L using dilutions 1:100. 1:400 and 1:1000
of IVIG purchased from Omrix. Column M gives the background values to
the binding of the secondary antibody to the peptides. Columns G, H, and I
outlines whether binding occurred (True) or not (False). The first Excel data
sheet shows the potential binders, the second Excel sheet the non-binders.
(XLS 408 kb)

Additional file 5: Figure S1. Distribution of amino acids within training
and testing sets. Figure S2. Selection bias of validated peptides.
(PDF 2017 kb)
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