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Abstract
In this paper, we introduce the concept of the rank game and propose a
mathematical model for it. By a discrete fixed point theorem, we give the existence
results of rank equilibria.
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1 Introduction
In [, ], Nash has proved the existence of an equilibrium for the non-cooperative game
by using the fixed point theorem, which is called a Nash equilibrium. In a Nash game
each player always maximizes his payoff value and does not pay attention to how much
the other player’s payoff values are. In other words, each player looks after a high absolute
number of his payoff value only and does not care about the rank of his payoff value. But the
above assumption is often not true in practice when there exist competitive relationships
among players. Since the stronger one is always in an advantageous position in a future
game, each player often cares more about his rank of payoff value among all players than
the payoff value itself. The game in which each player cares for his rank of payoff value
among all players more than the payoff value is said to be a rank game. In this paper, we
introduce the concept of the rank game and propose its mathematical model. By a discrete
fixed point theorem, we give the existence results of rank equilibria. For other results of
the rank game, we refer to [], and for discrete fixed point theorems, we refer to [–] and
references therein.
() Four basic factors of the rank game.
The rank game belongs to the category of the non-cooperative game. The player, strategy

set, and payoff function are three basic factors in a non-cooperative game, thus they are
also essential factors in a rank game. Moreover, in a rank game, the payoff of each player is
assumed to have an initial value before the game, which is called the initial payoff value of
each player. Clearly, the stronger (the bigger of the initial payoff value) and the weaker (the
smaller of the initial payoff value) have different options in a rank game; in other words, in
a rank game, the choice of each player is not only related to the payoff value in the game,
but it also is related to the initial payoff value before the game. Thus the initial payoff value
of each player is the fourth key factor in a rank game.
() Several basic concepts of the rank game.
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Let I = {, , . . . ,n} denote the set of players. For each i ∈ I , let Ki, f i denote the strategy
set and initial payoff value of player i, respectively, and let the real function fi : K �→ R
denote the payoff function of player i. Denote K =

∏n
i=Ki, K̂i =

∏n
j �=i,j=Kj. For each x ∈ K ,

we can write x = (xi, x̂i). For each i ∈ I , x ∈ K , let Qi = {j ∈ I : f j + fj(x) > f i + fi(x)}, Pi = {j ∈
I : f j + fj(x) = f i + fi(x)}, mi = |Qi| + , li = |Pi|, where | · | denotes the element number of
the set, and let

hi =
li – 
li

, ui =mi + hi.

Clearly, mi and li both are integer and n ≥ mi, li,ui ≥  > hi ≥ . Denote f  = (f  , f  , . . . ,
f n ), f (x) = (f(x), f(x), . . . , fn(x)) (briefly, f = (f, f, . . . , fn)), F(x) = (F(x),F(x), . . . ,Fn(x)) =
f  + f (x) = (f  + f(x), f  + f(x), . . . , f n + fn(x)) (briefly, F = (F,F, . . . ,Fn)), ∀x ∈ K . Note that
for each i ∈ I , x ∈ K , ui(x) = ui(f , f (x)).

Definition . For each i ∈ I , x ∈ K , mi, hi, and ui are called the rank-integer, the
rank-remainder, and the rank of player i at x ∈ K , respectively. For each x ∈ K , u(x) =
(u(x),u(x), . . . ,un(x)) (briefly, u = (u,u, . . . ,un)), f (x), and F(x) are called the rank vec-
tor, the payoff vector, and the accumulated payoff vector of players at x ∈ K , respectively.
If for each j (n ≥ j ≥ ), there is i ∈ I such that ui = j, (u,u, . . . ,un) is called a complete
rank vector, otherwise a noncomplete rank vector of players.

It is easy to verify that for each i, j ∈ I , x ∈ K , ui = (<, >)uj if and only if Fi(x) = (>, <)Fj(x).
() The rank game’s principle.
The rank game’s principle: each player always minimizes the number of players ranking

before him (those accumulated payoff values are bigger than that of him) and, after this
condition is satisfied, each player always minimizes the number of players ranking the
same as he (those accumulated payoff values are the same as that of him), and after these
two conditions are satisfied, each player always maximizes his payoff value. Equivalently,
the rank game’s principle can also be expressed as follows: each player always minimizes
the number of players ranking before himself, and after this condition is satisfied, each
player always maximizes the number of players ranking after himself (those accumulated
payoff values are less than that of his), and after these two conditions are satisfied, each
player always maximizes his payoff value.
The rank game is a class of non-cooperative games. Thus, these assumptions of the non-

cooperative game, for example, each player is rational, the information is symmetrical, and
so on, are still necessary in the rank game. The main differences between a Nash game
and the rank game are: in a Nash game, each player always maximizes his payoff value and
does not care about how much the other player’s payoff values are, but in a rank game,
each player always minimizes his rank, and after his rank reached minimum, the player
always maximizes his payoff value.
A Nash game is suitable for the case that competitive relationships do not exist among

players, and the rank game is suitable for the case that there exist competitions among
players.
() The mathematical model of the rank game.
For each i ∈ I , let Ki, f i , fi denote the strategy set and initial payoff value and payoff

function of player i, respectively.

http://www.journalofinequalitiesandapplications.com/content/2014/1/416


Lin Journal of Inequalities and Applications 2014, 2014:416 Page 3 of 6
http://www.journalofinequalitiesandapplications.com/content/2014/1/416

The rank game is: find x∗ = (x∗
 ,x∗

, . . . ,x∗
n) ∈ K such that for each i ∈ I , yi ∈ Ki,

ui
(
f  + f

(
x∗
i ,x

∗
î

))
= min

yi∈Ki
ui

(
f  + f

(
yi,x∗

î

))
,

and if ui(f  + f (x∗
i ,x∗

î
)) = ui(f  + f (yi,x∗

î
)), then

fi
(
x∗
i ,x

∗
î

) ≥ fi
(
yi,x∗

î

)
.

x∗ is called a rank equilibrium point (briefly, rank equilibrium) of the rank game. A rank
game is denoted by � = {Ki, f i , fi}i∈I .
For each i ∈ I , if Ki is a finite set, then fi may be denoted by matrices, which are called

the payoff matrices; in this case, the rank game � is called a finite rank game, otherwise
an infinite rank game.

2 Preliminaries
Throughout this paper, unless otherwise specified, assume that for each i ∈ I , the strategy
set is Ki = {, , . . . ,ki} of player i, where ki denotes a positive integer. K is equipped with
a sign component-wise order, i.e., I is divided into two subsets (possibly empty) I+ and I–,
λj =± are allocated to j ∈ I+ and j ∈ I– respectively, and for each x = (xi)i∈I , y = (yi)i∈I ∈ K ,
x 	 y is defined by λjxj ≤ λjyj for each j ∈ I . For each i ∈ I , K̂i =

∏
j∈I,j �=i Kj is also equipped

with the sign component-wise order. It is easy to verify that the sign component-wise order
	 is a partial order. The symbol x≺ ymeans x	 y and x �= y.
Consider the rank game � = {Ki, f i , fi}i∈I . For each i ∈ I , let ρi(x̂i) = {xi ∈ Ki : ui(f  +

f (xi,xî)) =minyi∈Ki ui(f  + f (yi,xî))}, and the best responses map Si : K̂i �→ Ki of player i is
defined by

Si(x̂i) =
{
xi ∈ Ki : f (xi,xî) = max

yi∈ρi(x̂i)
fi(yi,xî)

}
,

where Ki denotes the family of all nonempty subsets of Ki.
The best responses map S : K �→ K of the rank game � is defined by

S(x) =
∏
i∈I

Si(x̂i).

Note that for each i ∈ I , x ∈ K , ρi(x̂i) �= ∅, Si(x̂i) �= ∅, thus S(x) �= ∅. Clearly x∗ ∈ K is a rank
equilibrium point if and only if x∗ ∈ S(x∗).
We have the following lemma; see [] (Theorem .).

Lemma. Let (V ,	) be a partially ordered set and g : V �→ V a set-valuedmap.Assume
that
() there exist x ∈ V and x ∈ g(x) such that x 	 x and {x ∈ V : x 	 x} is finite;
() for each x ∈ V and y ∈ g(x),

x≺ y ⇒ ∃z ∈ g(y) s.t. y 	 z.

Then g has a fixed point x∗ ∈ g(x∗).
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3 The existence of equilibrium points for the rank game
Definition . (Monotonicity) A rank game� is calledmonotone if, for each i ∈ I , xî ,x


î ∈

K̂i with xî ≺ xî and for each xi ∈ Si(xî ), there exists x

i ∈ Si(xî ) such that λixi ≤ λixi .

Theorem . Any monotone n-person rank game � has a rank equilibrium point.

Proof The following proof is analogous to that of Lemma ..
Since K is a finite set and it has a minimum element, the condition () of Lemma .

is trivially satisfied. In the following we verify that the condition () of Lemma . is also
satisfied.
Assume that x ∈ K and x ∈ S(x) satisfy x ≺ x. Let I = {i ∈ I : xî = xî }, I = {i ∈ I :

xî ≺ xî }. Then I ∩ I = ∅, I = I ∪ I. Note that I �= ∅, otherwise x = x, a contradiction.
Assumewithout loss of generality that I �= ∅. For each i ∈ I, by x ≺ x, we have λixi < λixi .
Take xi = xi , then xi = xi ∈ Si(xî ) = Si(xî ). For each i ∈ I, we have xî ≺ xî and xi ∈ Si(xî ),
thus, by monotonicity, there exists xi ∈ Si(xî ) such that λixi ≤ λixi . Hence x = (xi )i∈I ∈
S(x) and x 	 x, i.e., the condition () of Lemma . is satisfied. By Lemma ., there
exists x∗ ∈ S(x∗). �

Definition . For i ∈ I , a sequence {xjî}tj= ⊂ K̂i, where t is a positive integer, is called a
total-ordered sequence if, for each j, j ∈ {, , . . . , t} with j < j, then xjî ≺ xjî .

Definition . A sequence {xj}tj= is called a subsequence of {yj}tj= if {xj}tj= ⊂ {yj}tj= and
t < t.

Definition . For i ∈ I , a sequence {xjî}tj= ⊂ K̂i is called a maximal total-ordered se-
quence (briefly, MTOS) if: () it is a total-ordered sequence; () there is no total-ordered
sequence {yjî}Tj= ⊂ K̂i such that {xjî}tj= is a subsequence of {yjî}Tj=.

Definition . For i ∈ I , let {xjî}tj= ⊂ K̂i is a MTOS. For each j ∈ {, , . . . , t}, let wj
i =

maxyj∈Si(xjî)
{yj}, vji =minyj∈Si(xjî)

{yj}. {wj
i}tj= and {vji}tj= are called a best responsemaximal ele-

ment sequence (briefly, BRMAES) and a best responseminimal element sequence (briefly,
BRMIES) of {xjî}tj=, respectively.

Note that for each i ∈ I , there exists at least a MTOS in K̂i, and each MTOS has unique
BRMAES and BRMIES.

Lemma . The rank game � = {Ki, f i , fi}i∈I is monotone iff for each i ∈ I , each BRMAES
is nondecreasing when i ∈ I+, and each BRMIES is nonincreasing when i ∈ I–.

Proof ‘⇒’ For each i ∈ I , assume that {xjî}tj= ⊂ K̂i is a MTOS.
() i ∈ I+, and in the case, λi = . Let {wj

i}tj= denote the BRMAES of {xjî}tj=. For each
j ∈ {, , . . . , t–}, xjî ≺ xj+î ,wj

i ∈ Si(x
j
î), since� ismonotone, there existswi

j+ ∈ Si(x
j+
î ) such

that λiw
j
i ≤ λiwi

j+, i.e., wj
i ≤ wi

j+. Note that wi
j+ ≤ wj+

i , thus wj
i ≤ wj+

i , i.e., the sequence
{wj

i}tj= is nondecreasing.
() i ∈ I–, and in the case, λi = –. Let {vji}tj= denote the BRMIES of {xjî}tj=. For each

j ∈ {, , . . . , t –}, xjî ≺ xj+î , vji ∈ Si(x
j
î), since � is monotone, there exists vij+ ∈ Si(x

j+
î ) such

that λiv
j
i ≤ λivij+, i.e., v

j
i ≥ vij+. Note that vij+ ≥ vj+i , thus vji ≥ vj+i , i.e., the sequence {vji}tj=

is nonincreasing.
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‘⇐’ For each i ∈ I , assume that x̂i ≺ ŷi, xi ∈ Si(x̂i). There exists a MTOS {xjî}tj= ⊂ K̂i such
that x̂i, ŷi ∈ {xjî}tj=. Denote x̂i = xtî , ŷi = xtî . By x̂i ≺ ŷi, we have t < t.
() i ∈ I+ and we have the case λi = . Let {wj

i}tj= be the BRMAES of {xjî}tj= and wt
i ∈

Si(xtî ), w
t
i ∈ Si(xtî ). Since {wj

i}tj= is nondecreasing, we have wt
i ≤ wt

i . Note that xi ≤ wt
i ,

thus xi ≤ wt
i , i.e., λixi ≤ λiwt

i , which implies that the rank game � is monotone.
() i ∈ I– and we have the case λi = –. Let {vji}tj= be the BRMIES of {xjî}tj= and vti ∈

Si(xtî ), v
t
i ∈ Si(xtî ). Since {vji}tj= is nonincreasing, we have vti ≥ vti . Note that xi ≥ vti , thus

xi ≥ vti , i.e., λixi ≤ λivti , which implies that the rank game � is monotone. �

Theorem . For the rank game �, assume that each BRMAES is nondecreasing when i ∈
I+ and each BRMIES is nonincreasing when i ∈ I–, then for� there exists a rank equilibrium
point.

Proof By Lemma ., the rank game � is monotone. By Theorem ., the result follows.
�

Example . Consider the following -persons rank game �, where K = K = {, , },
f  = , f  = , and the payoff matrices are

Gf =

⎛⎜⎝(, ) (, ) (, )
(, ) (, ) (–, )
(, ) (, ) (, )

⎞⎟⎠ .

Thus the accumulated payoff matrices are

GF =

⎛⎜⎝(, ) (, ) (, )R

(, ) (, ) (, )
(, ) (, ) (, )

⎞⎟⎠ .

Take (λ,λ) = (–, ). For i = , there exists an uniqueMTOS {, , } in K̂ = K. It is easy
to verify that ρ() = {}, S() = {}, ρ() = {, }, S() = {, }, ρ() = {, }, S() = {}.
Thus, the BRMIES {v} = {, , }, and it is a nonincreasing sequence.
For i = , there exists an uniqueMTOS {, , } in K̂ = K. It is easy to verify that ρ() =

{}, S() = {}, ρ() = {, }, S() = {}, ρ() = {, , }, S() = {}. Thus, the BRMAES
{w} = {, , }, and it is a nondecreasing sequence.

By Theorem ., for � there exists a rank equilibrium. It is easy to verify that (, ) is a
rank equilibrium.

Example . Consider the following -persons rank game �, where K = K = K = {, },
f  = , f  = , f  = , and the payoff matrices are

when player  chooses strategy , Gf =

(
(, , ) (–, ,–)
(, , –) (, , )

)
,

when player  chooses strategy , Gf =

(
(, , ) (, , )
(, , ) (, , )

)
.
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Thus the accumulated payoff matrices are

when player  chooses strategy , GF =

(
(, , ) (–, ,–)
(, ,–) (, , )

)
,

when player  chooses strategy , GF =

(
(, , ) (, , )
(, , ) (, , )R

)
.

Take (λ,λ) = (, , ). For i = , there exist twoMTOS {(, ), (, ), (, )} and {(, ), (, ),
(, )} in K̂. It is easy to verify that ρ(, ) = {}, S(, ) = {}, ρ(, ) = {}, S(, ) = {},
ρ(, ) = {}, S(, ) = {}, ρ(, ) = {, }, S(, ) = {, }. Thus, their BRMAES {w} =
{w} = {, , }, and it is a nondecreasing sequence.
For i = , there exist two MTOS {(, ), (, ), (, )} and {(, ), (, ), (, )} in K̂ . It is

easy to verify that ρ(, ) = {, }, S(, ) = {}, ρ(, ) = {, }, S(, ) = {}, ρ(, ) = {},
S(, ) = {}, ρ(, ) = {}, S(, ) = {}. Thus, for MTOS {(, ), (, ), (, )}, the BR-
MAES {w} = {, , }, and for MTOS {(, ), (, ), (, )}, the BRMAES {w} = {, , }.
Clearly, {w} and {w} are nondecreasing sequences.
For i = , there exist two MTOS {(, ), (, ), (, )} and {(, ), (, ), (, )} in K̂. It is

easy to verify that ρ(, ) = {, }, S(, ) = {}, ρ(, ) = {}, S(, ) = {}, ρ(, ) = {},
S(, ) = {}, ρ(, ) = {}, S(, ) = {}. Thus, their BRMAES {w} = {w} = {, , }, and
it is a nondecreasing sequence.

By Theorem ., for � there exists a rank equilibrium. It is easy to verify that (, , ) is
a rank equilibrium.
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