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Abstract
This paper is concerned with classification and criteria of the limit cases for singular
second-order linear equations on time scales. By the different cases of the limiting set,
the equations are divided into two cases: the limit-point and limit-circle cases just like
the continuous and discrete cases. Several sufficient conditions for the limit-point
cases are established. It is shown that the limit cases are invariant under a bounded
perturbation. These results unify the existing ones of second-order singular
differential and difference equations.
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1 Introduction
In this paper, we consider classification and criteria of the limit cases for the following
singular second-order linear equation:

–
(
p(t)y�(t)

)� + q(t)yσ (t) = λw(t)yσ (t), t ∈ [
ρ(),∞) ∩T, (.)

where p�, q, and w are real and piecewise continuous functions on [ρ(),∞)∩T, p(t) �= 
and w(t) >  for all t ∈ [ρ(),∞)∩T; λ ∈C is the spectral parameter; T is a time scale with
ρ() ∈ T and supT = ∞; σ (t) and ρ(t) are the forward and backward jump operators in T;
y� is the �-derivative of y; and yσ (t) := y(σ (t)).
The spectral problems of symmetric linear differential operators and difference oper-

ators can both be divided into two cases. Those defined over finite closed intervals with
well-behaved coefficients are called regular. Otherwise, they are called singular. In ,
Weyl [] gave a dichotomy of the limit-point and limit-circle cases for the following sin-
gular second-order linear differential equation:

–y′′(t) + q(t)y(t) = λy(t), t ∈ [,∞), (.)

where q is a real and continuous function on [,∞), λ ∈ C is the spectral parameter.
Later, Titchmarsh, Coddington, Levinson etc. developed his results and established the
Weyl-Titchmarsh theory [, ]. Their work has been greatly developed and generalized
to higher-order differential equations and Hamiltonian systems, and a classification and
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some criteria of limit cases were formulated [–]. Singular spectral problems of self-
adjoint scalar second-order difference equations over infinite intervals were firstly stud-
ied by Atkinson []. His work was followed by Hinton, Jirari etc. [, ]. In , some
sufficient and necessary conditions and several criteria of the limit-point and limit-circle
cases were obtained for the following formally self-adjoint second-order linear difference
equations with real coefficients []:

–∇(
p(n)�y(n)

)
+ q(n)y(n) = λw(n)y(n), n ∈ {n}∞n=, (.)

where ∇ and � are the backward and forward difference operators respectively, namely
∇y(n) := y(n) – y(n – ) and �y(n) := y(n + ) – y(n); p(n), q(n), and w(n) are real numbers
withw(n) >  for n ∈ [,∞) and p(n) �=  for n ∈ [–,∞); λ is a complex spectral parameter.
In , Shi [] established the Weyl-Titchmarsh theory of discrete linear Hamiltonian
systems. Later, several sufficient conditions and sufficient and necessary conditions for
the limit-point and limit-circle cases were established for the singular second-order linear
difference equation with complex coefficients (see []).
In the past twenty years, a lot of effort has been put into the study of regular spectral

problems on time scales (see [–]). But singular spectral problems have started to be
considered only quite recently. In , we employedWeyl’s method to divide the follow-
ing singular second-order linear equations on time scales into two cases: limit-point and
limit-circle cases []:

–y��(t) + q(t)yσ (t) = λyσ (t), t ∈ [
ρ(),∞) ∩T,

where q is real and continuous on [ρ(),∞)∩T, λ ∈ C is the spectral parameter. By using
the similarmethod,Huseynov [] studied the classification of limit cases for the following
singular second-order linear equations on time scales:

–
(
p(t)y�(t)

)∇ + q(t)y(t) = λy(t), t ∈ (a,∞)∩T,

as well as of the form

–
(
p(t)y�(t)

)� + q(t)yσ (t) = λyσ (t), t ∈ [a,∞)∩T, (.)

where p∇ (or p�) and q are real and piecewise continuous functions in (a,∞) ∩ T (or
[a,∞) ∩ T), p(t) �=  for all t, and λ ∈ C is the spectral parameter. Obviously, let w(t) ≡ 
and ρ() = a, then (.) is the same as (.). In , by using the properties of the Weyl
matrix disks, Sun [] established the Weyl-Titchmarsh theory of Hamiltonian systems
on time scales. It has been found that the second-order singular differential and difference
equations can be divided into limit-point and limit-circle cases. We wonder whether the
classification of the limit cases holds on time scales. In the present paper, we extend these
results obtained in [] to Eq. (.) and establish several sufficient conditions and sufficient
and necessary conditions for the limit-point and limit-circle cases for Eq. (.).
This paper is organized as follows. In Section , some basic concepts and a fundamen-

tal theory about time scales are introduced. In Section , a family of nested circles which
converge to a limiting set is constructed. The dichotomy of the limit-point and limit-circle
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cases for singular second-order linear equations on time scales is given by the geometric
properties of the limiting set. Finally, several criteria of the limit-point case are established,
and the invariance of the limit cases is shown under a bounded perturbation for the po-
tential function q in Section .

2 Preliminaries
In this section, some basic concepts and fundamental results on time scales are intro-
duced.
Let T ⊂ R be a non-empty closed set. The forward and backward jump operators σ ,ρ :

T → T are defined by

σ (t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

respectively, where inf∅ = supT, sup∅ = infT. A point t ∈ T is called right-scattered, right-
dense, left-scattered, and left-dense if σ (t) > t,σ (t) = t,ρ(t) < t, and ρ(t) = t separately.
Denote Tk := T if T is unbounded above and T

k := T \ (ρ(maxT),maxT] otherwise. The
graininess μ : T → [,∞) is defined by

μ(t) := σ (t) – t.

Let f be a function defined on T. f is said to be �-differentiable at t ∈ T
k provided

there exists a constant a such that, for any ε > , there is a neighborhood U of t (i.e.,
U = (t – δ, t + δ)∩T for some δ > ) with

∣∣f (σ (t)) – f (s) – a
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈U .

In this case, denote f �(t) := a. If f is �-differentiable for every t ∈ T
k , then f is said to be

�-differentiable on T. If f is �-differentiable at t ∈ T
k , then

f �(t) =

⎧⎨
⎩
lims→t

s∈T
f (t)–f (s)

t–s , if μ(t) = ,
f (σ (t))–f (t)

μ(t) , if μ(t) > .
(.)

If F�(t) = f (t) for all t ∈ T
k , then F(t) is called an anti-derivative of f on T. In this case,

define the �-integral by

∫ t

s
f (τ )�τ = F(t) – F(s) for all s, t ∈ T.

For convenience, we introduce the following results ([, Chapter ] and [, Chapter ]),
which are useful in this paper.

Lemma . Let f , g : T →R and t ∈ T
k .

(i) If f is �-differentiable at t, then f is continuous at t.
(ii) If f and g are �-differentiable at t, then fg is �-differentiable at t and

(fg)�(t) = f σ (t)g�(t) + f �(t)g(t) = f �(t)gσ (t) + f (t)g�(t).

http://www.boundaryvalueproblems.com/content/2012/1/103
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(iii) If f and g are �-differentiable at t, and f (t)f σ (t) �= , then f –g is �-differentiable at
t and

(
gf –

)�(t) =
(
g�(t)f (t) – g(t)f �(t)

)(
f σ (t)f (t)

)–.
A function f defined on T is said to be rd-continuous if it is continuous at every

right-dense point in T and its left-sided limit exists at every left-dense point in T. The
set of rd-continuous functions f : T → R is denoted by Crd(T) = Crd(T,R). The set of
kth �-differentiable functions with rd-continuous kth derivative is denoted by Ck

rd(T) =
Ck
rd(T,R).

Lemma . If f , g are rd-continuous functions on T, then
(i) f σ is rd-continuous and f has an anti-derivative on T;
(ii)

∫ σ (t)
t f (τ )�τ = μ(t)f (t) for all t ∈ T.

(iii) (Integration by parts)
∫ b
a f σ (τ )g�(τ )�τ = f (b)g(b) – f (a)g(a) –

∫ b
a f �(τ )g(τ )�τ .

(iv) (Hölder’s inequality [, Lemma .(iv)]) Let r, s ∈ T with r ≤ s, then

∫ s

r

∣∣f (τ )g(τ )∣∣�τ ≤
{∫ s

r

∣∣f (τ )∣∣p�τ

} 
p
{∫ s

r

∣∣g(τ )∣∣q�τ

} 
q
,

where p >  and q = p/(p – ).

Let

Lw
(
ρ(),∞)

:=
{
yσ :

[
ρ(),∞) → C

∣∣∣
∫ ∞

ρ()
w(t)

∣∣yσ (t)
∣∣�t <∞

}
.

A function g : T→R is called regressive if

 +μ(t)g(t) �=  for all t ∈ T.

Higer [] showed that for any given t ∈ T and for any given rd-continuous and regres-
sive g , the initial value problem

y�(t) = g(t)y(t), y(t) = 

has a unique solution

eg(t, t) = exp

{∫ t

t
ξμ(τ )

(
g(τ )

)
�τ

}
,

ξh(z) =

⎧⎨
⎩

Log(+hz)
h , if h �= ,

z, if h = .

(.)

Lemma . ([, Theorem .]) Let y, f ∈ Crd(T) and g ∈R+ := {g ∈ Crd(T) :  +μ(t)g(t) >
, t ∈ T}. Then

y�(t) ≤ g(t)y(t) + f (t), ∀t ∈ T,

http://www.boundaryvalueproblems.com/content/2012/1/103
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implies

y(t) ≤ y(t)eg(t, t) +
∫ t

t
eg

(
t,σ (τ )

)
f (τ )�τ , ∀t ∈ T.

We define the Wronskian by

W [x, y](t) = p(t)
[
x(t)y�(t) – x�(t)y(t)

]
, x, y ∈ C

rd(T). (.)

The following result is a direct consequence of the Lagrange identity [, Theorem .].

Lemma . Let x and y be any two solutions of (.). Then W [x, y](t) is a constant in
[ρ(),∞)∩T.

3 Classification
In this section, we focus on the classification of the limit cases for singular second-order
linear equations on time scales.
Let y(t,λ) and y(t,λ) be the two solutions of (.) satisfying the following initial condi-

tions:

y
(
ρ(),λ

)
= p

(
ρ()

)
y�

(
ρ(),λ

)
= ,

p
(
ρ()

)
y�

(
ρ(),λ

)
= y

(
ρ(),λ

)
= ,

respectively. Since their Wronskian is identically equal to , these two solutions form a
fundamental solution system of (.). We form a linear combination of y(t,λ) and y(t,λ)

y(t,λ,m) := y(t,λ) +my(t,λ). (.)

Let b ∈ (ρ(),∞)∩T, k ∈R, λ = μ + iν with ν �= , and let (.) satisfy

p(b)y�(b,λ,m) + ky(b,λ,m) = . (.)

Then

m = –
p(b)y�

 (b,λ) + ky(b,λ)
p(b)y�

 (b,λ) + ky(b,λ)
. (.)

It can be verified that the integral identity

[
y(t,λ)p(t)y�(t,λ)

]∣∣t
t
–

∫ t

t
p(t)

∣∣y�(t,λ)
∣∣�t+

∫ t

t

[
λw(t)–q(t)

]∣∣yσ (t,λ)
∣∣�t =  (.)

holds for any solution y(t,λ) of (.) and for any t, t ∈ [ρ(),∞) ∩ T. Setting y(t,λ) =
y(t,λ), t = ρ(), t = b in (.) and taking its imaginary part, we obtain

�[
y(b,λ)p(b)y�

 (b,λ)
]
= –ν

∫ b

ρ()
w(t)

∣∣yσ
 (t,λ)

∣∣�t. (.)

http://www.boundaryvalueproblems.com/content/2012/1/103
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So

�
(
p(b)y�

 (b,λ)
y(b,λ)

)
=

�[y(b,λ)p(b)y�
 (b,λ)]

|y(b,λ)| �= .

It follows from (.) and k ∈R that k �= – p(b)y� (b,λ)
y(b,λ)

. Hence, the denominator in (.) is not
equal to zero, and consequently,m is well defined.
Next, we will show that (.) describes a circle for any fixed b. It follows from (.) and

(.) that

y
(
ρ(),λ,m

)
p
(
ρ()

)
y�

(
ρ(),λ,m

)
=m

and

y(b,λ,m)p(b)y�(b,λ,m) = –k
∣∣y(b,λ,m)

∣∣ ∈R.

By (.) and the above two relations, we have

�(m) = ν

∫ b

ρ()
w(t)

∣∣yσ (t,λ,m)
∣∣�t, (.)

which implies thatm lies in the upper half-plane if ν > . It follows from (.) that

k = –
p(b)y�(b,λ,m)

y(b,λ,m)
,

which, together with k ∈R, yields that

p(b)
[
y�(b,λ,m)y(b,λ,m) – y�(b,λ,m)y(b,λ,m)

]
= .

It is equivalent to

W [y, y](b,λ,m) = . (.)

By using (.), (.) can be expanded as

|m|W [y, y](b,λ) +mW [y, y](b,λ) + m̄W [y, y](b,λ) +W [y, y](b,λ) = . (.)

Moreover, setting m = u + iv, we have

W [y, y](b,λ) = iA, W [y, y](b,λ) = iD, –W [y, y](b,λ) = B + iC. (.)

It follows from the last relation in (.) that we haveW [y, y](b,λ) = B– iC. By using (.)
and (.), it can be verified that

B +C – AD

= (B + iC)(B – iC) + (iA)(iD)

http://www.boundaryvalueproblems.com/content/2012/1/103
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=
[
W [y, y](b,λ) ·W [y, y](b,λ) –W [y, y](b,λ) ·W [y, y](b,λ)

]
=

[
W [y, y](b,λ) ·W [y, y](b,λ)

]
=

∣∣W [y, y](b,λ)
∣∣ > . (.)

It follows from the first relation in (.) and (.) that we haveA = ν
∫ b
ρ()w(t)|yσ

 (t,λ)|�t �=
. Then (.) becomes

(
u –

C
A

)

+
(
v –

B
A

)

=
B +C – AD

A , (.)

which implies that (.) forms a circle Cb as k varies. It is evident that the center of Cb is

z =
C + iB
A

= –
B – iC
iA

= –
W [y, y](b,λ)
W [y, y](b,λ)

.

It follows from Lemma . and (.) that

B +C – AD =
∣∣W [y, y](b,λ)

∣∣ = ∣∣W [y, y]
(
ρ(),λ

)∣∣ = .

From (.), (.), (.), and (.) we have that the radius of Cb is

rb =
∣∣∣∣B

 +C – AD
A

∣∣∣∣



= |iA|–

=
∣∣W [y, y](b,λ)

∣∣–

=
[
|ν|

∫ b

ρ()
w(t)

∣∣yσ
 (t,λ)

∣∣�t
]–

. (.)

Let Cb denote the closed disk bounded by Cb. We are going to show that the circle se-
quence {Cb}(ρ() < b < ∞) is nested.
Set

U + iV = ν

∫ b

ρ()
w(t)yσ

 (t,λ)yσ
 (t,λ)�t.

From the first relation in (.), we have

A = ν

∫ b

ρ()
w(t)

∣∣yσ
 (t,λ)

∣∣�t.

Similarly,

D = ν

∫ b

ρ()
w(t)

∣∣yσ
 (t,λ)

∣∣�t.

So, it follows from (.) that

v = A
(
u + v

)
+ Uu + Vv +D. (.)

http://www.boundaryvalueproblems.com/content/2012/1/103
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In the case of ν > , the point m = u + iv is interior to the circle if v > A(u + v) + Uu +
Vv +D. This shows thatm ∈ Cb if and only if

�(m) ≥ ν

∫ b

ρ()
w(t)

∣∣yσ (t,λ,m)
∣∣�t.

Let b,b ∈ [ρ(),∞) ∩ T with b < b and consider the corresponding disks Cb and Cb .
For anym ∈ Cb , we have

�(m) ≥ ν

∫ b

ρ()
w(t)

∣∣yσ (t,λ,m)
∣∣�t ≥ ν

∫ b

ρ()
w(t)

∣∣yσ (t,λ,m)
∣∣�t.

Hence,m ∈ Cb . This yields that Cb ⊂ Cb . Therefore, {Cb} is nested. Consequently, there
are the following two alternatives:
() rb →  as b → ∞. In this case there is one point m =m(λ) which is common to all

the disks Cb, b ∈ [ρ(),∞) ∩ T. This is called the limit-point case. It follows from (.)
that this case occurs if and only if

∫ ∞

ρ()
w(t)

∣∣yσ
 (t,λ)

∣∣�t = ∞. (.)

() rb → r∞ >  as b → ∞. In this case there is a disk C∞ contained in all the disks Cb,
b ∈ [ρ(),∞) ∩ T. This is called the limit-circle case. It follows from (.) that this case
occurs if and only if the integral in (.) is convergent, i.e., y(·,λ) ∈ Lw(ρ(),∞).

Theorem . For every non-real λ ∈ C, Eq. (.) has at least one non-trivial solution in
Lw(ρ(),∞).

Proof In the limit-circle case, it follows from the above discussion that y(·,λ) ∈
Lw(ρ(),∞).
Next, we will show that y(·,λ) +m(λ)y(·,λ) ∈ Lw(ρ(),∞) in the limit-point case. Let

{bn} ⊂ T with  < bn < bn+ → ∞ and choose any mn ∈ Cbn . Then mn → m(λ) as n → ∞
and yσ (t,λ,mn) uniformly converges to yσ (t,λ,m(λ)) on any finite interval [ρ(),ω] ∩ T,
ω ∈ T. Since the sequence {�(mn)} is bounded from above and its upper bound is denoted
by y, then for bn > ω,

y ≥ �(mn) = ν

∫ bn

ρ()
w(t)

∣∣yσ (t,λ,mn)
∣∣�t ≥ ν

∫ ω

ρ()
w(t)

∣∣yσ (t,λ,mn)
∣∣�t.

Hence, by the uniform convergence of yσ (t,λ,mn), we have

y ≥ ν

∫ ω

ρ()
w(t)

∣∣yσ
(
t,λ,m(λ)

)∣∣�t

for all ω. Therefore, y(·,λ,m(λ)) = y(·,λ) +m(λ)y(·,λ) ∈ Lw(ρ(),∞). This completes the
proof. �

Remark . Similar to the proof of Theorem ., it can be easily verified that y(·,λ,m) ∈
Lw(ρ(),∞) for any m ∈ C∞ with �(λ) �=  in the limit-circle case. Clearly, y(t,λ,m) and

http://www.boundaryvalueproblems.com/content/2012/1/103
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y(t,λ) are linearly independent. Hence, all the solutions of Eq. (.) belong to Lw(ρ(),∞)
for any λ ∈C with �(λ) �=  in the limit-circle case.

Remark . It follows from (.) and Theorem . that Eq. (.) has exactly one linearly
independent solution in Lw(ρ(),∞) in the limit point case for any λ ∈C with �(λ) �= .

Theorem . If Eq. (.) has two linearly independent solutions in Lw(ρ(),∞) for some
λ ∈C, then this property holds for all λ ∈C.

Proof Suppose that Eq. (.) has two linearly independent solutions in Lw(ρ(),∞) for
λ = λ ∈ C. Then y(t,λ) and y(t,λ) are in Lw(ρ(),∞). For briefness, denote

u(t) = y(t,λ), u(t) = y(t,λ).

For any λ ∈C, let v(t) be an arbitrary non-trivial solution of (.), and let u(t) be the solu-
tion of (.) with λ = λ and with the initial values

u(a) = v(a), u�(a) = v�(a), a ∈ (,∞)∩T.

From the variation of constants [, Theorem .], we have

v(t) = u(t) + (λ – λ)
∫ t

a

[
u(t)uσ

 (s) – u(t)uσ
 (s)

]
w(s)vσ (s)�s, t ∈ [a,∞)∩T. (.)

Replacing t with σ (t) in (.) and using (ii) of Lemma ., we obtain

w

 (t)vσ (t)

= w

 (t)uσ (t) + (λ – λ)

∫ σ (t)

a

[
w


 (t)uσ

 (t)w

 (s)uσ

 (s)

–w

 (t)uσ

 (t)w

 (s)uσ

 (s)
]
w


 (s)vσ (s)�s

= w

 (t)uσ (t) + (λ – λ)

∫ t

a

[
w


 (t)uσ

 (t)w

 (s)uσ

 (s)

–w

 (t)uσ

 (t)w

 (s)uσ

 (s)
]
w


 (s)vσ (s)�s,

which implies by the Hölder inequality in Lemma . that

∣∣w 
 (t)vσ (t)

∣∣ ≤ ∣∣w 
 (t)uσ (t)

∣∣ + |λ – λ|
∣∣w 

 (t)uσ
 (t)

∣∣

×
[∫ t

a
w(s)

∣∣uσ
 (s)

∣∣�s
∫ t

a
w(s)

∣∣vσ (s)
∣∣�s

] 


+ |λ – λ|
∣∣w 

 (t)uσ
 (t)

∣∣[∫ t

a
w(s)

∣∣uσ
 (s)

∣∣�s
∫ t

a
w(s)

∣∣vσ (s)
∣∣�s

] 

.

It follows from the inequality

(A + B +C) ≤ 
(
A + B +C),

http://www.boundaryvalueproblems.com/content/2012/1/103
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where A, B, C are non-negative numbers, that



w(t)

∣∣vσ (t)
∣∣ ≤ w(t)

∣∣uσ (t)
∣∣ + |λ – λ|

[
w(t)

∣∣uσ
 (t)

∣∣ ∫ t

a
w(s)

∣∣uσ
 (s)

∣∣�s

+w(t)
∣∣uσ

 (t)
∣∣ ∫ t

a
w(s)

∣∣uσ
 (s)

∣∣�s
]∫ t

a
w(s)

∣∣vσ (s)
∣∣�s.

Integrating the two sides of the above inequality with respect to t from a to τ ∈ (a,∞)∩T,
we get




∫ τ

a
w(t)

∣∣vσ (t)
∣∣�t ≤

∫ τ

a
w(t)

∣∣uσ (t)
∣∣�t

+ |λ – λ|
∫ τ

a

[
w(t)

∣∣uσ
 (t)

∣∣ ∫ t

a
w(s)|uσ

 (s)|�s

+w(t)
∣∣uσ

 (t)
∣∣ ∫ t

a
w(s)

∣∣uσ
 (s)

∣∣�s
]∫ t

a
w(s)

∣∣vσ (s)
∣∣�s�t,

which yields that




∫ τ

a
w(t)

∣∣vσ (t)
∣∣�t

≤
∫ ∞

a
w(t)

∣∣uσ (t)
∣∣�t

+ |λ – λ|
∫ ∞

a
w(t)

∣∣uσ
 (t)

∣∣�t
∫ ∞

a
w(t)

∣∣uσ
 (t)

∣∣�t
∫ τ

a
w(t)

∣∣vσ (t)
∣∣�t.

Hence,
(
 – |λ – λ|

∫ ∞

a
w(t)

∣∣uσ
 (t)

∣∣�t
∫ ∞

a
w(t)

∣∣uσ
 (t)

∣∣�t
)∫ τ

a
w(t)

∣∣vσ (t)
∣∣�t

≤ 
∫ ∞

a
w(t)

∣∣uσ (t)
∣∣�t. (.)

The constant a can be chosen in advance so large that

|λ – λ|
∫ ∞

a
w(t)

∣∣uσ
 (t)

∣∣�t
∫ ∞

a
w(t)

∣∣uσ
 (t)

∣∣�t < .

It follows from (.) that v ∈ Lw(a,∞) and hence v ∈ Lw(ρ(),∞). Therefore, all the solu-
tions of Eq. (.) are in Lw(ρ(),∞). The proof is complete. �

At the end of this section, from the above discussions we present the classification of the
limit cases for singular second-order linear equations over the infinite interval [ρ(),∞)∩
T on time scales.

Definition . If Eq. (.) has only one linear independent solution in Lw(ρ(),∞) for
some λ ∈C, then Eq. (.) is said to be in the limit-point case at t = ∞. If Eq. (.) has two
linear independent solutions in Lw(ρ(),∞) for some λ ∈ C, then Eq. (.) is said to be in
the limit-circle case at t = ∞.
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4 Several criteria of the limit-point and limit-circle cases
In this section, we establish several criteria of the limit-point and limit-circle cases for
Eq. (.).
We first give two criteria of the limit-point case.

Theorem . Let w(t) ≡  and p(t) >  for all t ∈ [ρ(),∞) ∩ T. If there exists a positive
�-differentiable function M(t) on [a,∞)∩T for some a ≥ ρ() and two positive constants
k and k such that for all t ∈ [a,∞)∩T,

(i) q(t)≥ –kMσ (t),
(ii) p 

 (t)|M�(t)|(M(t))–(Mσ (t))– 
 ≤ k,

(iii)
∫ ∞
a (p(t)Mσ (t))– 

 �t = ∞,
then Eq. (.) is in the limit-point case at t = ∞.

Proof Suppose that Eq. (.) is in the limit-circle case at t = ∞. By Theorem ., all the
solutions of

–
(
p(t)y�(t)

)� + q(t)yσ (t) = , t ∈ [
ρ(),∞) ∩T (.)

are in Lw(ρ(),∞). Let y(t) and y(t) be the solutions of (.) satisfying the following initial
conditions:

y
(
ρ()

)
= p

(
ρ()

)
y�

(
ρ()

)
= , p

(
ρ()

)
y�

(
ρ()

)
= y

(
ρ()

)
= . (.)

It is evident that y(t) and y(t) are two linearly independent solutions of (.) in
Lw(ρ(),∞). By Lemma .,W [y, y](t)≡  for all t ∈ [ρ(),∞)∩T. Hence, we have

y(t)
{
p


 (t)y�

 (t)
(
Mσ (t)

)– 

}
– y(t)

{
p


 (t)y�

 (t)
(
Mσ (t)

)– 

}

=
(
p(t)Mσ (t)

)– 
 , t ∈ [a,∞)∩T.

It follows from the Hölder inequality and assumption (iii) that

∫ ∞

a

p(τ )(y�
 (τ ))

Mσ (τ )
�τ or

∫ ∞

a

p(τ )(y�
 (τ ))

Mσ (τ )
�τ

are divergent. Suppose

∫ ∞

a

p(τ )(y�
 (τ ))

Mσ (τ )
�τ = ∞.

From (.) and assumption (i), we have

∫ t

a

yσ
 (τ )[p(τ )y�

 (τ )]�

Mσ (τ )
�τ =

∫ t

a

q(τ )(yσ
 (τ ))

Mσ (τ )
�τ

≥ –k
∫ t

a

(
yσ
 (τ )

)
�τ . (.)
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Applying integration by parts in Lemma ., by (iii) in Lemma ., we get

∫ t

a

yσ
 (τ )[p(τ )y�

 (τ )]�

Mσ (τ )
�τ

=
[
y(t)p(t)y�

 (t)
M(t)

] ∣∣∣∣
t

a
–

∫ t

a

p(τ )(y�
 (τ ))

Mσ (τ )
�τ +

∫ t

a

y(τ )p(τ )y�
 (τ )M�(τ )

M(τ )Mσ (τ )
�τ . (.)

Again applying the Hölder inequality, from condition (ii), we have

∣∣∣∣
∫ t

a

y(τ )p(τ )y�
 (τ )M�(τ )

M(τ )Mσ (τ )
�τ

∣∣∣∣ ≤
{∫ t

a

p(τ )(M�(τ ))y (τ )
M(τ )Mσ (τ )

�τ

} 

H


 (t)

≤ k
{∫ ∞

a
y (τ )�τ

} 

H


 (t), (.)

where

H(t) :=
∫ t

a

p(τ )(y�
 (τ ))

Mσ (τ )
�τ .

Since

∫ ∞

a

(
yσ
 (τ )

)
�τ >

∫ t

a

(
yσ
 (τ )

)
�τ ,

it follows from (.)-(.) that

y(t)p(t)y�
 (t)

M(t)

>
y(a)p(a)y�

 (a)
M(a)

+H(t) – k
{∫ ∞

a
y (τ )�τ

} 

H


 (t) – k

∫ ∞

a

(
yσ
 (τ )

)
�τ .

It follows from the assumption that H(t) → ∞ as t → ∞. From the above relation and
p(t) >  for all t ∈ [ρ(),∞) ∩ T, we have that y(t)y�

 (t) is ultimately positive. Therefore,
y(t)�  as t → ∞; and consequently, y(t) does not belong to Lw(ρ(),∞). This contra-
dicts the assumption that all the solutions of (.) are in Lw(ρ(),∞). Then Eq. (.) has
at least one non-trivial solution outside of Lw(ρ(),∞). It follows from Theorem . that
Eq. (.) is in the limit-point case at t = ∞. This completes the proof. �

Remark . Since R and N are two special time scales, Theorem . not only contains
the criterion of the limit-point case for second-order differential equations [, Chapter ,
Theorem .], but also the criterion of the limit-point case for second-order difference
equation (.) [, Theorem .].

The following corollary is a direct consequence of Theorem . by setting M(t) ≡  for
t ∈ [ρ(),∞)∩T.

Corollary . If w(t) ≡ , p(t) > , q(t) is bounded below in [ρ(),∞) ∩ T, and∫ ∞
ρ()(p(t))

– 
 �t = ∞, then Eq. (.) is in the limit-point case at t = ∞.
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Theorem . If

∫ ∞

ρ()

μσ (t)[w(t)wσ (t)] 
|pσ (t)| �t = ∞, (.)

then Eq. (.) is in the limit-point case at t = ∞.

Proof On the contrary, suppose that Eq. (.) is in the limit-circle case at t = ∞. Let y(t)
and y(t) be two linearly independent solutions of (.) in Lw(ρ(),∞) satisfying the initial
conditions (.). By Lemma ., we have

W [y, y](t) =W [y, y]
(
ρ()

) ≡ , t ∈ [ρ(),∞)∩T,

which, together with (.), implies that

p(t)y(t)yσ
 (t) – y(t)yσ

 (t)

= y(t)p(t)
(
μ(t)y�

 (t) + y(t)
)
– y(t)p(t)

(
μ(t)y�

 (t) + y(t)
)

= μ(t)p(t)
[
y(t)y�

 (t) – y(t)y�
 (t)

]
= μ(t)W [y, y](t) = μ(t), t ∈ [ρ(),∞)∩T.

So, we get

∣∣y(t)∣∣∣∣yσ
 (t)

∣∣ + ∣∣y(t)∣∣∣∣yσ
 (t)

∣∣ ≥ μ(t)
|p(t)| , t ∈ [ρ(),∞)∩T,

which implies

[
w(t)wσ (t)

] 

[∣∣yσ

 (t)
∣∣∣∣yσ

 (t)
∣∣ + ∣∣yσ

 (t)
∣∣∣∣yσ

 (t)
∣∣]

≥ μσ (t)[w(t)wσ (t)] 
|pσ (t)| , t ∈ [ρ(),∞)∩T, (.)

where yσ (t) = yσ (σ (t)). By the Hölder inequality and the assumption that y, y ∈
Lw(ρ(),∞), one has

∫ ∞

ρ()

[
w(t)wσ (t)

] 

[∣∣yσ

 (t)
∣∣∣∣yσ

 (t)
∣∣ + ∣∣yσ

 (t)
∣∣∣∣yσ

 (t)
∣∣]�t

≤
(∫ ∞

ρ()
w(t)

∣∣yσ
 (t)

∣∣�t
) 


(∫ ∞

ρ()
wσ (t)

∣∣yσ
 (t)

∣∣�t
) 



+
(∫ ∞

ρ()
w(t)

∣∣yσ
 (t)

∣∣�t
) 


(∫ ∞

ρ()
wσ (t)

∣∣yσ
 (t)

∣∣�t
) 


<∞.

Hence, it follows from (.) that

∫ ∞

ρ()

μσ (t)[w(t)wσ (t)] 
|pσ (t)| �t < ∞,
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which is a contradiction to the assumption (.). Therefore, Eq. (.) is in the limit-point
case at t = ∞. This completes the proof. �

Remark . Let T = N, Theorem . is the same as that obtained by Chen and Shi for
second-order difference equations [, Corollary .].

Next, we study the invariance of the limit cases under a bounded perturbation for the
potential function q. Let f (t) =M and p(t) = f (t) in [, Theorem .(i)]. It follows from
[, Theorem .(i)], [, Theorem .(i)], and [, Theorem .(i)] that we have the
following lemma, which is useful in the subsequent discussion.

Lemma . (Gronwall’s inequality) Let y, f ∈ Crd(T) be two non-negative functions on
[ρ(),∞)∩T and M be a non-negative constant. If

y(t) ≤ M +
∫ t

ρ()
f (τ )y(τ )�τ for all t ∈ [

ρ(),∞) ∩T, (.)

then

y(t) ≤ Mef
(
t,ρ()

)
for all t ∈ [

ρ(),∞) ∩T,

where ef (t, s) is defined as in (.).

The following result shows that if Eq. (.) is in the limit-circle case, so is it under a
bounded perturbation for the potential function q.

Lemma . Let q(t) = d(t) + e(t) for all t ∈ [ρ(),∞)∩T and e(t) be bounded with respect
to w(t) on [ρ(),∞)∩T; that is, there exists a positive constant M such that

∣∣e(t)∣∣ ≤ Mw(t), t ∈ [
ρ(),∞) ∩T. (.)

Then Eq. (.) is in the limit-circle case at t = ∞ if and only if the equation

–
(
p(t)y�(t)

)� + d(t)yσ (t) = λw(t)yσ (t) (.)

is in the limit-circle case at t = ∞.

Proof Suppose that (.) is in the limit-circle case at t = ∞. To show that Eq. (.) is
in the limit-circle case, it suffices to show that each solution (.) is in Lw(ρ(),∞) by
Theorem ..
Let y(t) and y(t) be two solutions of the equation

–
(
p(t)y�(t)

)� + d(t)yσ (t) =  (.)

satisfying the initial conditions (.). Then y(t), y(t) are two linearly independent solu-
tions in Lw(ρ(),∞) by Theorem ..
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Let y(t) be any solution of (.). Then

–
(
p(t)y�(t)

)� + d(t)yσ (t) = r(t) for all t ∈ [
ρ(),∞) ∩T,

where r(t) := –e(t)yσ (t). By the variation of constants [, Theorem .] there exist two
constants α and β such that

y(t) = αy(t) +βy(t) +
∫ t

ρ()
r(τ )

(
yσ
 (τ )y(t) – yσ

 (τ )y(t)
)
�τ for all t ∈ [

ρ(),∞)∩T.

Hence, replacing t by σ (t) and by (ii) in Lemma ., we get

yσ (t) = αyσ
 (t) + βyσ

 (t) +
∫ t

ρ()
r(τ )

(
yσ
 (τ )y

σ
 (t) – yσ

 (τ )y
σ
 (t)

)
�τ . (.)

From (.) and (.), we have

∣∣yσ (t)
∣∣ ≤ |α|∣∣yσ

 (t)
∣∣ + |β|∣∣yσ

 (t)
∣∣

+M
∫ t

ρ()

(∣∣yσ
 (τ )

∣∣∣∣yσ
 (t)

∣∣ + ∣∣yσ
 (τ )

∣∣∣∣yσ
 (t)

∣∣)w(τ )∣∣yσ (τ )
∣∣�τ . (.)

Since y(t), y(t) are solutions of Eq. (.), which satisfy the initial conditions (.), it fol-
lows from the existence-uniqueness theorem that |yσ

 (t)|+ |yσ
 (t)| �=  for all t ∈ [ρ(),∞)∩

T. Let

yσ
 (t) :=

|yσ (t)|
|yσ

 (t)| + |yσ
 (t)|

for all t ∈ [
ρ(),∞) ∩T.

From (.), we have

yσ
 (t) ≤ |α||yσ

 (t)| + |β||yσ
 (t)|

|yσ
 (t)| + |yσ

 (t)|

+M
∫ t

ρ()

(|yσ
 (τ )||yσ

 (t)| + |yσ
 (τ )||yσ

 (t)|)w(τ )|yσ (τ )|
|yσ

 (t)| + |yσ
 (t)|

�τ

≤ |α| + |β| +M
∫ t

ρ()

(∣∣yσ
 (τ )

∣∣ + ∣∣yσ
 (τ )

∣∣)w(τ )∣∣yσ (τ )
∣∣�τ

= |α| + |β| +M
∫ t

ρ()

(∣∣yσ
 (τ )

∣∣ + ∣∣yσ
 (τ )

∣∣)w(τ )∣∣yσ
 (τ )

∣∣�τ

≤ |α| + |β| + M
∫ t

ρ()

(∣∣yσ
 (τ )

∣∣ + ∣∣yσ
 (τ )

∣∣)w(τ )∣∣yσ
 (τ )

∣∣�τ .

It follows from (i) of Lemma . that yσ
 (·) ∈ Crd(T). By Lemma ., we have

yσ
 (t) ≤ (|α| + |β|)e[Mw(|yσ |+|yσ |)]

(
t,ρ()

)

=
(|α| + |β|) exp

[∫ t

ρ()
ξμ(τ )

(
Mw(τ )

(∣∣yσ
 (τ )

∣∣ + ∣∣yσ
 (τ )

∣∣))�τ

]

=
(|α| + |β|) exp

[∫ t

ρ()


μ(τ )

Log
(
 +μ(τ )Mw(τ )

(∣∣yσ
 (τ )

∣∣ + ∣∣yσ
 (τ )

∣∣))�τ

]
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≤ (|α| + |β|) exp
[∫ t

ρ()
Mw(τ )

(∣∣yσ
 (τ )

∣∣ + ∣∣yσ
 (τ )

∣∣)�τ

]

≤ (|α| + |β|) exp
[∫ ∞

ρ()
Mw(τ )

(∣∣yσ
 (τ )

∣∣ + ∣∣yσ
 (τ )

∣∣)�τ

]
=: C < ∞,

which implies that |yσ (t)| ≤ C(|yσ
 (t)| + |yσ

 (t)|). Hence, y(·) ∈ Lw(ρ(),∞); and conse-
quently, Eq. (.) is in the limit-circle case at t = ∞.
On the other hand, using

–
(
p(t)y�(t)

)� + d(t)yσ (t) = –
(
p(t)y�(t)

)� +
(
q(t) – e(t)

)
yσ (t)

one can easily conclude that if Eq. (.) is in the limit-circle case, then Eq. (.) is in the
limit-circle case. This completes the proof. �

Theorem. Let q(t) = d(t)+e(t) for all t ∈ [ρ(),∞)∩T and e(t) be boundedwith respect
to w(t) on [ρ(),∞)∩T. Then the limit cases for Eq. (.) are invariant.

Remark . Lemma . extends the related result [, Lemma .] for the singular
second-order difference equation to the time scales. In addition, let T =R in Lemma .,
then we can directly prove [, Theorem .] with the similar method.
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