
Research Article
Energy and Delay Optimization of Heterogeneous
Multicore Wireless Multimedia Sensor Nodes by Adaptive
Genetic-Simulated Annealing Algorithm

Xing Liu ,1,2 Haiying Zhou,3 Jianwen Xiang ,1 Shengwu Xiong ,1 Kun Mean Hou,2

Christophe de Vaulx,2 Huan Wang,1 Tianhui Shen,1 and Qing Wang1

1Hubei Key Laboratory of Transport Internet of Things, School of Computer Science and Technology,
Wuhan University of Technology, Wuhan, China
2LIMOS Laboratory, UMR 6158 CNRS (Centre National de la Recherche Scientifique), Clermont-Ferrand, France
3School of Electrical & Information, Hubei University of Automotive Technology, Shiyan, China

Correspondence should be addressed to Shengwu Xiong; xiongsw@whut.edu.cn

Received 1 September 2017; Accepted 17 October 2017; Published 22 January 2018

Academic Editor: Jun Huang

Copyright © 2018 Xing Liu et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Energy efficiency and delay optimization are significant for the proliferation of wireless multimedia sensor network (WMSN). In
this article, an energy-efficient, delay-efficient, hardware and software cooptimization platform is researched tominimize the energy
cost while guaranteeing the deadline of the real-time WMSN tasks. First, a multicore reconfigurable WMSN hardware platform
is designed and implemented. This platform uses both the heterogeneous multicore architecture and the dynamic voltage and
frequency scaling (DVFS) technique. By this means, the nodes can adjust the hardware characteristics dynamically in terms of the
software run-time contexts. Consequently, the software can be executedmore efficiently with less energy cost and shorter execution
time. Then, based on this hardware platform, an energy and delay multiobjective optimization algorithm and a DVFS adaption
algorithm are investigated. These algorithms aim to search out the global energy optimization solution within the acceptable
calculation time and strip the time redundancy in the task executing process. Thus, the energy efficiency of the WMSN node
can be improved significantly even under strict constraint of the execution time. Simulation and real-world experiments proved
that the proposed approaches can decrease the energy cost bymore than 29% compared to the traditional single-coreWMSN node.
Moreover, the node can react quickly to the time-sensitive events.

1. Introduction

Modern technological advances prompt the emergence of
small-size, low-cost, and high-resolution visual information
collection modules, which results in the rapid development
of wireless multimedia sensor network (WMSN). WMSN is
composed of a set of wirelessly interconnected tiny smart
devices which retrieve the multimedia data pervasively from
the surrounding environment and transmit them to the des-
tinations wirelessly. Nowadays, WMSN technique is applied
widely in diverse application domains and plays a significant
role in the daily life [1].

Energy efficiency and delay optimization are critical and
challenging issues for the proliferation of the WMSN. On

the one hand, WMSN nodes are commonly powered by
the energy-limit batteries and are deployed in remote and
inaccessible areas where it is inconvenient or impossible
to recharge the nodes. Thus, the nodes need to utilize the
residual energy efficiently so as to keep a long lifetime.
On the other hand, real-time responsiveness is required by
manyWMSN applications, for example, the industrial engine
control. In these applications, the missing of the deadline
can cause serious disasters. Therefore, the delay optimization
is essential to ensure that the time-sensitive tasks can be
completed within the deadline.

In the past, many research works were done to optimize
the energy and delay of theWMSN. Data compression [2–4],
data aggregation [5, 6], topology control [7, 8], energy-aware

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 7494829, 13 pages
https://doi.org/10.1155/2018/7494829

http://orcid.org/0000-0003-0824-5830
http://orcid.org/0000-0001-8440-4181
http://orcid.org/0000-0002-4006-7029
https://doi.org/10.1155/2018/7494829

2 Wireless Communications and Mobile Computing

protocol [9–15], data prediction [16], and sink mobility
[17, 18] were commonly applied to conserve the energy, while
delay-aware routing [10, 19] and delay-aware MAC [20, 21]
were widely used to optimize the response delay. These past
works improved the energy and delay performance of the
WMSN significantly. However, some limitations still exist:(1) Most of the past research works focused on the software
optimization works but ignored the hardware optimization
strategies. However, without the hardware cooptimization,
the energy and delay challenges cannot be addressed com-
pletely; for example, there are diverse WMSN applications,
but most WMSN hardware platforms are not reconfigurable.
If the hardware characteristic does not match the software
features, the software cannot be executed efficiently even
if the software optimization strategy is applied. Thus, it is
essential to investigate an energy-efficient, delay-efficient,
and reconfigurable hardware architecture in WMSN. (2)
Most past works focused on reducing the energy cost of
the wireless transmission but ignored the energy cost of the
microcontrollers. This is because the wireless transmission is
commonly considered to be high energy cost, yet there exist
many cases in which the energy cost of the microcontrollers
is also high and cannot be neglected; for example, in the
plant disease monitoring application, the nodes capture
the leaf image and perform signal processing to judge
whether the plants have an infected disease or not. If yes, the
image packet will be transmitted to the sink. Otherwise, no
packet will be transmitted. In this kind of applications, the
predominant energy cost derives from the data collection
and signal processing on theWMSNmicrocontrollers, rather
than the wireless transmission. In these cases, the energy
optimization of the microcontrollers is critical. (3) Energy
conservation and delay optimization are both significant to
theWMSN. However, many past works did research on these
two issues independently. As the development ofWMSN, the
research of an energy and delay multiobjective optimization
mechanism becomes indispensable.

Regarding the research limitations above, the work in this
article aims to investigate an energy-efficient, delay-efficient,
hardware and software integrated optimization platform
which canminimize the energy cost of theWMSNnodewhile
guaranteeing the deadline of the real-time WMSN tasks.
Frist, a new energy-efficient, delay-efficient, reconfigurable
WMSN hardware architecture is designed. This architecture
uses both the heterogeneous multicore technique and the
DVFS technique. By these techniques, the WMSN nodes
can adapt the hardware characteristics dynamically in terms
of the software contexts. Consequently, the software can
be executed efficiently with less energy cost and shorter
execution time. Second, an energy and delay multiobjective
optimization algorithm is investigated. This algorithm
incorporates the genetic algorithm with the simulated
annealing algorithm so that the global optimization solution
can be reached within acceptable calculation time. With
this algorithm, the energy cost of the WMSN node can be
decreased at themost while the deadline of the time-sensitive
tasks can also be met. By combining the above hardware
architecture and software optimization strategies, both the

energy efficiency and the delay performance of the WMSN
node can be promoted significantly.

The works in this article are based on two general
assumptions. One is that the tasks can be duplicated to each
microcontroller, which means each task can be executed on
anymicrocontroller equipped on theWMSNnode.The other
is that the task model is deterministic; that is, the execution
time and the relationship between the tasks are preknown.

The rest of this paper is organized as follows. Section 2
introduces the overview of the related works. Section 3
designs a new energy-efficient, delay-efficient, reconfigurable
heterogeneous multicore WMSN hardware architecture.
With this architecture, the software algorithms presented
in Sections 4 and 5 can achieve better optimization per-
formance. Section 4 builds the energy and delay models of
heterogeneous multicore system and investigates an energy
and delay multiobjective optimization algorithm GASA.
Section 5 presents the DVFS adaption algorithm which can
strengthen the performance of WMSN further on the basis
of GASA optimization results. Section 6 evaluates the opti-
mization performance by simulation. Section 7 implements a
real-world multicore WMSN node in terms of the hardware
architecture proposed in Section 4 and then evaluates its
performance by real-world experiments. Section 8 concludes
this article.

2. Related Works

Energy cost of WMSN can be optimized by many mecha-
nisms such as the data compression, data aggregation, topol-
ogy control, energy-aware protocol, data prediction, and sink
mobility. Data compression is critical to conserve the energy
as it can reduce the packet size and the wireless transmission
time. Since the computational capability and communication
bandwidth in the WMSN is constrained, specific audio and
image compression techniques need to be developed for the
WMSN devices [2–4]. Data aggregation technique enables
the nodes located along a path towards the sink to perform
the data fusion. It decreases the amount of data forwarded in
the WMSN and results in lower energy cost [5, 6]. Topology
control technique controls over some parameters of the
network such as the transmission power of the nodes and the
role of the nodes. By modifying these network parameters,
least nodes can be selected to maintain the connectivity of
topology, whereas the other nodes can fall asleep to conserve
the energy [7, 8]. Energy-aware protocols are popularly
researched in the WMSN, including the energy-aware rout-
ing, energy-efficient MAC, and cross-layer protocol. Energy-
aware routing achieves the energy conservation by reducing
the routing hops or decreasing the broadcast count [9, 10].
Energy-efficient MAC protocols lower the energy waste by
decreasing the count of retransmissions, minimizing the
interference, or maximizing the concurrency and reliability
[11, 12]. Cross-layer protocols improve the communication
performance by merging the information of different layers
jointly; for example, the network layer can decide how to
route by incorporating the congestion information from the
transport layer and the link quality value from the MAC
layer. This incorporation of different layers improves the

Wireless Communications and Mobile Computing 3

communication quality and maximizes the network lifetime
[13–15]. Data prediction technique builds the prediction
model which describes the data evolution of the sensed
phenomenon within certain error bounds. It enables the user
to acquire the information of the sensor nodes directly from
the sink by prediction. It decreases the amount of data to
be transmitted and optimizes the transmission energy cost
[16]. Sink mobility is the technique which uses a mobile
base station moving around the network to collect the node
information. It balances the load of the WMSN nodes and
prevents the nodes located closely to the sink from depleting
the energy quickly. It can be used on the energy-constrained
WMSN nodes to prolong the lifetime of the whole network
[17, 18]. Delay optimization is commonly realized by the
delay-aware routing and delay-aware MAC protocols in the
WMSN. Delay-aware routing optimizes the delay by search-
ing for the shortest path to the destination [10, 19], while
delay-awareMACprotocol decreases the end-to-end delay by
reducing the collision and packet retransmission [20, 21].

3. Energy-Efficient and Delay-Efficient
Hardware Architecture Design

In this section, the design of an energy-efficient, delay-
efficient, and reconfigurableWMSN hardware architecture is
presented. Based on this hardware architecture, the WMSN
hardware and software can match each other better. Conse-
quently, the software optimization schemes can take effect
more efficiently.

As the development of WMSN technique, the WMSN
applications become more and more diverse. However, most
WMSN hardware platforms are still inflexible that they
cannot address the challenge of application diversity in
WMSN. On the one hand, most WMSN hardware platforms
are single-core architecture with only one type of microcon-
troller equipped. One type microcontroller can be efficient
to run several kinds of applications but may not be efficient
when running the other kinds. On the other hand, most
WMSN hardware platforms are not reconfigurable. They
cannot adjust their characteristics dynamically in terms of the
software contexts. As a result, the software cannot be executed
efficiently, and this degrades the energy efficiency and delays
performance of the WMSN nodes.

One way to address the above challenge is to design a
WMSN hardware platform which has the following features:(1) It equips more than one type of microcontrollers on
the node. Each equipped microcontroller has differential
specialties and is appropriate to run particular kinds of tasks.
During the run-time, each software task can be assigned
to the most appropriate microcontroller to be executed.
By doing this, the software and hardware can match each
other better. (2) It makes each microcontroller configurable,
that is, enables the hardware to adjust its characteristic
dynamically in terms of the software contexts.With the above
mechanisms, the WMSN hardware can be highly context
aware of the software running on it. Consequently, the energy
and delay performance of the WMSN can be improved.

To realize the design concepts above, the heterogeneous
multicore hardware architecture (Section 3.1) and the DVFS
technique (Section 3.2) can be applied on the WMSN node.

3.1. Heterogeneous Multicore Design for Energy and Delay
Optimization. Heterogeneous multicore hardware architec-
ture can lower the energy cost and improve the delay per-
formance if compared to the traditional single-core WMSN
architecture.

(i) Lower energy cost: heterogeneous multicore platform
is equipped with different types of microcontrollers.
Since different microcontrollers have differential fea-
tures and are good at executing a given kind of
WMSN tasks [22–24], each WMSN task can be
scheduled to the microcontroller which is the most
energy efficient to run it. By doing this, the energy
resources can be utilized more efficiently.

(ii) Higher delay performance: as several WMSN tasks
can be executed concurrently by different microcon-
trollers in the multicore system, the completion time
of the tasks can be shortened greatly if compared to
the time cost of the traditional single-core system.

3.2. DVFS Technique for Context Awareness. DVFS is a power
management technique with which the operating voltage
and frequency of the hardware can be adjusted dynamically
in terms of the performance requirement of the active
application scenario [25, 26]. By decreasing the frequency,
the executing time of the tasks will be prolonged linearly,
whereas the energy cost can be reduced quadratically. Due
to this functionality, the DVFS technique can be used in
WMSN to conserve the energy under the delay constraint
by balancing the tradeoff between the energy cost and the
execution time: (1) If the real-time tasks cannot be completed
before the deadline, the frequency of this microcontroller
can be improved to shorten the execution time of these
tasks. In this case, the delay performance is enhanced at the
cost of lower energy efficiency. (2) If the real-time tasks are
schedulable, the frequency of this microcontroller can be
decreased gradually until the task completion time is near
the deadline. In this case, the energy cost is reduced at the
most under the constraint of the deadline. With the above
adaptionmechanism, the energy cost of theWMSNnode can
be optimized as much as possible. Moreover, the deadline of
the time-sensitive tasks can also be guaranteed.

Figure 1 depicts the design diagram of the heterogeneous
multicore WMSN platform. Several different types of micro-
controllers are equipped. Tasks assigned to different micro-
controllers can be executed concurrently, and the hardware
characteristic of each microcontroller can be adjusted by the
DVFS regulators during the run-time. The multiobjective
optimization algorithm and the DVFS adaption algorithm
can calculate each task’s assignment and each microcon-
troller’s working frequency. If no tasks are assigned to a
microcontroller, this microcontroller can enter the ultralow-
power idle status to save energy. If a microcontroller does not
need to run any task for a long time, it can be powered off
directly to avoid wasting the energy.

4 Wireless Communications and Mobile Computing

Processor
1Local queue

Processor
2Local queue DVFS

regulator

Processor
3Local queue DVFS

regulator

Task
model

Energy
model

Delay
model

Multiobjective
optimization

algorithm

Task queue

DVFS adaption
strategy

DVFS
regulator

Task
assignment

Heterogeneous multicore WMSN node
Off-line multiobjective optimization

decision-making System

Figure 1: Elementary diagram of the energy-efficient, delay-efficient, context-aware heterogeneous multicore WMSN platform.

4. Energy and Delay Multiobjective
Optimization Algorithm

In this section, we first build the energy and delay models
of the heterogeneous multicore system in Section 4.1. Then,
we state the energy and delay multiobjective optimization
problem in Section 4.2. Finally, we investigate an energy and
delay multiobjective optimization algorithm in Section 4.3.

4.1. Energy and Delay Models of Heterogeneous Multicore
WMSN Node. The tasks on the heterogeneous multicore
WMSN node can be modeled by the directed acyclic graph
(DAG), where the vertexes represent the tasks and the edges
represent the links between the tasks.

Define the parameters in DAG as follows:

(i) 𝑇𝑖 (𝑖 = 1, 2, . . . , 𝑛) represents the WMSN tasks, where𝑛 is the task number.
(ii) 𝑃𝑗 (𝑗 = 1, 2, . . . , 𝑚) represents the microcontrollers

equipped on the multicore WMSN node, where 𝑚 is
the microcontroller number.

(iii) 𝑋𝑖𝑗 represents themulticore task scheduling results. If
task 𝑇𝑖 is assigned to the microcontroller 𝑃𝑗, 𝑋𝑖𝑗 will
be 1. Otherwise, it will be zero.

(iv) 𝐿tsk𝑖𝑗 represents the execution load of task 𝑇𝑖 on
microcontroller 𝑃𝑗. Its value depends on the software
programming and the compiler.

(v) 𝑅run
𝑖𝑗 represents the energy consumption rate when

executing task 𝑇𝑖 on microcontroller 𝑃𝑗.
(vi) 𝑉run

𝑖𝑗 represents the execution speed when running
task 𝑇𝑖 on microcontroller 𝑃𝑗.

(vii) 𝐿trans𝑖𝑗 represents the communication load between 𝑃𝑖
and 𝑃𝑗. It will be zero if tasks assigned to 𝑃𝑖 do not
need to communicate with the tasks assigned to 𝑃𝑗.

(viii) 𝑅trans
𝑖𝑗 represents the energy consumption rate of the

communication between 𝑃𝑖 and 𝑃𝑗.
(ix) 𝑉trans

𝑖𝑗 represents the data transmission speed between𝑃𝑖 and 𝑃𝑗.

(x) 𝑅idle
𝑗 represents the energy consumption rate of 𝑃𝑗

when it is in idle status. Its value depends on the
microcontroller hardware characteristic.

Based on the task model, the energy and delay models of
the heterogeneous multicore WMSN system can be built.

4.1.1. Energy Model of Heterogeneous Multicore WMSN Node.
Energy cost consists of three parts: one is the 𝐸run which is
consumed when the microcontroller is active, one is the 𝐸idle

which is consumed when the microcontroller is idle, and the
other is the𝐸trans which is consumed by the data transmission
among the microcontrollers.

𝐸run can be expressed as

𝐸run (𝑋𝑖𝑗) = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑋𝑖𝑗𝑅run
𝑖𝑗 𝑡run𝑖𝑗 = 𝑛∑

𝑖=1

𝑚∑
𝑗=1

𝑋𝑖𝑗𝑅run
𝑖𝑗 × 𝐿tsk𝑖𝑗𝑉run

𝑖𝑗

, (1)

where 𝑡run𝑖𝑗 represents the execution time of task 𝑇𝑖 on
microcontroller 𝑃𝑗.𝐸idle can be expressed as

𝐸idle (𝑋𝑖𝑗) = 𝑚∑
𝑗=1

𝑅idle
𝑗 𝑡idle𝑗

= 𝑚∑
𝑗=1

𝑅idle
𝑗 × (𝑡end − 𝑛∑

𝑖=1

𝑋𝑖𝑗𝑡run𝑖𝑗)

= 𝑚∑
𝑗=1

𝑅idle
𝑗 × (𝑡end − 𝑛∑

𝑖=1

𝑋𝑖𝑗 × 𝐿tsk𝑖𝑗𝑉run
𝑖𝑗

) ,
(2)

where 𝑡idle𝑗 represents the idle time of microcontroller 𝑃𝑗, and𝑡end represents the task completion time. Task completion
time can be calculated by the time model in (7).𝐸trans can be expressed as

𝐸trans (𝑋𝑖𝑗) = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑅trans
𝑖𝑗 𝑡trans𝑖𝑗 = 𝑛∑

𝑖=1

𝑚∑
𝑗=1

𝑅trans
𝑖𝑗 × 𝐿trans𝑖𝑗𝑉trans

𝑖𝑗

. (3)

Wireless Communications and Mobile Computing 5

In terms of (1) to (3), the total energy cost of the
heterogeneous multicore WMSN node can be expressed as

𝐸 (𝑋𝑖𝑗) = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑋𝑖𝑗𝑅run
𝑖𝑗 × 𝐿tsk𝑖𝑗𝑉run

𝑖𝑗

+ 𝑚∑
𝑗=1

𝑅idle
𝑗 × (𝑡end − 𝑛∑

𝑖=1

𝑋𝑖𝑗 𝐿
tsk
𝑖𝑗𝑉run
𝑖𝑗

)

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑅trans
𝑖𝑗 × 𝐿trans𝑖𝑗𝑉trans

𝑖𝑗

.

(4)

4.1.2. Delay Model of Heterogeneous Multicore WMSN Node.
Suppose the task set of the multicore WMSN node 𝑄 is
expressed as follows:

𝑄 = 𝑄seq ∪ 𝑄con, (5)

where 𝑄seq represents the set of the tasks which should
be executed in sequence and 𝑄con represents the set of
the tasks which can be executed concurrently on different
microcontrollers.

Based on the task scheduling result 𝑋𝑖𝑗, the task set 𝑄con
can be divided into a serial of subset as follows:

𝑄con = 𝑄𝑃1con ∪ 𝑄𝑃2con ∪ ⋅ ⋅ ⋅ ∪ 𝑄𝑃𝑚con, (6)

where 𝑄𝑃𝑖con represents the tasks assigned to the microcon-
troller 𝑃𝑖.

In terms of (5) and (6), the timemodel of running task on
the heterogeneous multicore WMSN node can be expressed
as follows:

𝑡 = 𝑡 (𝑄seq) + 𝑡 (𝑄con)
= 𝑡 (𝑄seq) +max (𝑡 (𝑄𝑃1con) , 𝑡 (𝑄𝑃2con) , . . . , 𝑡 (𝑄𝑃𝑚con)) , (7)

where 𝑡(𝑄seq) and 𝑡(𝑄𝑃𝑗con) represent the time of running the
task set 𝑄seq and task set 𝑄𝑃𝑗con, respectively; for example, if
𝑄𝑃𝑗con is equal to {𝑇1, 𝑇2, . . . , 𝑇𝑘}, then 𝑡(𝑄𝑃𝑗con)will be as follows:

𝑡 (𝑄𝑃𝑗con) = 𝑘∑
𝑖=1

(𝐿run𝑖𝑗𝑉run
𝑖𝑗

+ 𝐿trans𝑖𝑗𝑉trans
𝑖𝑗

) . (8)

4.2. Problem Statement. Theresearch objective is tominimize
both the energy cost (i.e., (4)) and the execution time
(i.e., (7)) of the WMSN node, and this is a multiobjective
optimization problem. To simplify the calculation complexity
of the multiobjective optimization problem, we convert it
to the single objective optimization problem by making the
energy the predominant optimization objective whereas the
time is the constraint, depicted as follows:

Minimize 𝐸 (𝑋𝑖𝑗) = 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑋𝑖𝑗𝑅run
𝑖𝑗 × 𝐿 𝑖𝑗𝑆𝑗 +

𝑚∑
𝑗=1

𝑅idle
𝑗 × (𝑡end − 𝑛∑

𝑖=1

𝑋𝑖𝑗𝑡run𝑖𝑗) + 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑅trans
𝑖𝑗 × 𝐿trans𝑖𝑗𝑉𝑖𝑗

subject to 𝑡 = 𝑡 (𝑄seq) +max (𝑡 (𝑄𝑃1con) , 𝑡 (𝑄𝑃2con) , . . . , 𝑡 (𝑄𝑃𝑚con)) < 𝑡dln,
(9)

where 𝑡 represents the execution time of the tasks and 𝑡dln
represents the deadlines of the tasks.

4.3. Genetic-Simulated Annealing Algorithm for Energy and
Delay Multiobjective Optimization. The multicore task
scheduling problem is known as the NP-complete problem
[27]. Since this problem is computationally intractable
even if the assumptions are simplified [28], the heuristic
algorithms such as the genetic algorithm (GA) and the
simulated annealing (SA) algorithm are commonly applied
to obtain the optimal and suboptimal solutions to this kind
of problem.

GA is a metaheuristic inspired by the process of natural
selection. It is commonly used to generate high-quality
solutions to optimization and search problems by bioinspired
operators such as mutation, crossover, and selection [29]. GA
can obtain the optimization solution quickly, but it is prone
to trap into the local optima. Fortunately, the SA algorithm,
another metaheuristic to approximate global optimization
of a given function in a large search space, has the ability
to jump out of the local optimization and reaches the best
optimization [30]. Thus, the GA is incorporated with SA in

this article, named as GASA. By means of GASA, the global
optima can be searched out within acceptable time.

The flow chart of the GASA algorithm is illustrated in
Figure 2. First, the GA is applied to rapidly search for an
optimal solution within the solution space. Then, the SA is
used to further search for a better solution based on the GA
result.

4.3.1. GA Encoding and Decoding. Each GA chromosome𝐶𝑘 (𝑘 = 1, 2, . . . , 𝑝𝑜𝑝𝑆𝑖𝑧𝑒) represents one feasible mul-
ticore scheduling scheme, where popSize is the num-
ber of chromosomes in the generation. Suppose 𝑛 tasks(𝑇1, 𝑇2, . . . , 𝑇𝑛) are to be executed on 𝑚 microcontrollers(𝑃0, 𝑃1, . . . , 𝑃𝑚−1).Then, each chromosome can be encoded as𝐶𝑘 = [𝑆1, 𝑆2, . . . , 𝑆𝑛], where 𝑆𝑖 represents the microcontroller
to which the task 𝑇𝑖 is allocated. Since there are𝑚microcon-
trollers, each 𝑆𝑖 can be encoded to a log𝑚2 bit binary. Thus,
the length of each chromosome will be 𝑛× log𝑚2 ; for example,
if 𝑛 is five, 𝑚 is four, and a chromosome is encoded as00 10 01 10 11, then this chromosome represents tasks𝑇1 to 𝑇5 assigned to microcontrollers 𝑃0, 𝑃2, 𝑃1, 𝑃2, 𝑃3,
respectively.

6 Wireless Communications and Mobile Computing

Specify the algorithm
parameters

Initialize the population,
set the initial temperature

Assess each individual
in the population

Terminate? Output the best
optimization result

GA operations:
selection, crossover, and mutation

Elite preservation.
Get the initial population of SA

Get new individuals by SA
neighbor generator function

Acceptance decision to the new individuals
by acceptance probability function

SA sampling
stable?

Temperature
cooling operation

Yes

Yes No

No

Figure 2: Flow chart of the GASA algorithm.

Table 1: (a) Original chromosome. (b) Crossover by exchanging
the bottom halves. (c) Crossover by exchanging the top halves. (d)
Mutation operation.

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5
(a) Chromosome A 00 10 01 10 11

Chromosome B 10 01 00 11 01

(b) Chromosome A 00 10 00 11 01
Chromosome B 10 01 01 10 11

(c) Chromosome A 10 01 01 10 11
Chromosome B 00 10 00 11 01

(d) Chromosome A 10 11 01 10 11
Chromosome B 00 10 00 11 01

4.3.2. GA Operations. To generate a new generation of the
population, the GA crossover and mutation need to be
operated. Crossover can be realized by exchanging portions
of two chromosomes. First, select a crossover site which
divides the chromosome into two halves. Then, exchange
the bottom halves of the two selected chromosomes; for
example, in Table 1(a), if the crossover site is task 𝑇3, the
new chromosomes after the crossover will be the ones shown
in Table 1(b). However, if the exchange is always performed
from the bottom halves, the top halves of the chromosomes
will keep unchanged; for example, the genes related to tasks𝑇1 and 𝑇2 in Table 1 ((a) and (b)) keep identical even if the
crossover is performed. This indicates that some tasks are
always assigned to the fixed microcontrollers, and this is
not helpful to search for the optimal solution. To solve this
problem, we change the crossover operation by operating the

exchange either from the bottom halves Table 1(b) or from
the top halves Table 1(c) of the chromosomes, and which
way to be selected is random. Mutation can be performed
by mutating one gene in the chromosome; for example, in
Table 1(d), the gene of task 𝑇2 in the chromosome A is
mutated from “01” (representing𝑃1) to “11” (representing 𝑃3).
4.3.3. GA Fitness Function and Constraint. Fitness function
can measure the quality of a represented solution and
determine the selection probability of this solution. As the
predominant optimization objective of this article is the
energy cost, the energy equation expressed in (9) is used as
the fitness function. The smaller the energy value 𝐸(𝑋𝑖𝑗) is,
the greater fitness the scheduling solution𝑋𝑖𝑗 (represented by
chromosome) will have.

However, the energy cost needs to be optimized under the
time constraint, shown in (9). Thus, each solution should be
checked to determine whether the constraint is met before
assessing its fitness. If the constraint is not satisfied, two
measures can be taken. One is to continue making crossover
ormutation until the solutionmeets the constraint.The other
is to use the penalty mechanism and lower the fitness value of
this solution.Once the fitness value is lowered, the probability
of passing this solution to the next generation will become
smaller.

4.3.4. SA Neighbour Generator Function. SA uses the neigh-
bour of a solution as a way to explore the solution space.
Although it prefers better neighbour, it also accepts worse
neighbours to avoid getting stuck in local optima. New
neighbours in SA are generated by the neighbour generator
function. In this article, the neighbour of an SA solution is

Wireless Communications and Mobile Computing 7

generated by exchanging the position of two genes in the
chromosome; for example, one neighbour of the chromo-
some “10 11 01 10 11” can be “10 01 11 10 11.”
5. DVFS Adaption to Further Strengthen the
Optimization Performance

In Section 4, we have investigated a multiobjective optimiza-
tion algorithm, GASA. In this section, the DVFS adaption
algorithm is applied further on the basis of the GASA
optimization result so as to strengthen the energy and delay
optimization performance of the GASA.

The principle of the DVFS energy conservation mech-
anism can be depicted briefly as follows: 𝐸 = 𝑃 × 𝑇,
where 𝐸 represents the energy cost, 𝑃 represents the power,
and 𝑇 represents the time. When the frequency of the
microcontroller is decreased by the DVFS regulator, the time𝑇 will be prolonged linearly whereas the power 𝑃 can be
declined cubically. Consequently, the energy cost 𝐸 can be
reduced quadratically [25]. Thus, to conserve the energy
at the most, the frequency of the microcontroller can be
turned down gradually as long as the execution time does not
exceed the deadline. By this means, the energy cost becomes
minimum, yet the deadline of the real-time tasks can also be
guaranteed.

Based on the principle above, the DVFS adaption mech-
anism is investigated. Suppose the multicore task scheduling
status calculated by the GASA algorithm is as in Figure 3:

(i) There are two microcontrollers 𝑃1, 𝑃2 and six WMSN
tasks 𝑇1, 𝑇2, . . . , 𝑇6. 𝐸𝑖 represents the energy cost of

task 𝑇𝑖, and 𝑡𝑖 represents the execution time of task𝑇𝑖.
(ii) Tasks𝑇2 and𝑇3 can run concurrently. Tasks𝑇5 and𝑇6

can run concurrently.

(iii) In terms of the scheduling result calculated by GASA,
tasks𝑇1,𝑇2, and𝑇5 are assigned tomicrocontroller𝑃1
while the others are assigned to microcontroller 𝑃2.

(iv) The completion time of all tasks is 𝑇end. Deadline for
all tasks is 𝑇dedl.

From Figure 3, it can be seen that some slack periods
exist during the task execution process. One is the slack time
between the completion of task𝑇3 and the completion of task𝑇2, one is the slack time between the completion of task 𝑇5
and the completion of task 𝑇6, and the other is the slack time
between the ending time 𝑇end and the deadline time 𝑇dedl.

The slack time indicates the time redundancy, and this
redundancy can be stripped by the DVFS technique through
adjusting the working frequency of the microcontrollers.
With the adjustment, the energy cost of the WMSN can be
optimized further. After the adjustment, the task execution
process illustrated in Figure 3 will change to the process
shown in Figure 4. On the one hand, the average working
frequency of the tasks is lowered until the task completion
time 𝑇end equals the deadline 𝑇dedl. On the other hand,
the frequencies of tasks 𝑇3 and 𝑇5 are decreased until their
completion time is near to that of tasks𝑇2 and𝑇6, respectively.

Mathematically, the DVFS adaption problem can be
stated as follows:

minimize 𝐸 (𝑘𝑖) = 1𝑘21 × 𝐸1 + 1𝑘22 × 𝐸2 + 1𝑘24 × 𝐸4 + 1𝑘26 × 𝐸6 + (𝑡3𝑡2)
2 × 1𝑘22 × 𝐸3 + (𝑡5𝑡6)

2 × 1𝑘26 × 𝐸5
subject to 𝑇end (𝑘𝑖) = 𝑘1 × 𝑡1 + 𝑘2 × 𝑡2 + 𝑘4 × 𝑡4 + 𝑘6 × 𝑡6 ≤ 𝑇dedl,

(10)

where 𝑡𝑖 (𝑖 = 1, 2, . . . , 6) and 𝐸𝑖 (𝑖 = 1, 2, . . . , 6) are constants
and 𝑘𝑖 (𝑖 = 1, 2, . . . , 4) is the adaption coefficient of the
frequency. Since the frequency of themicrocontrollers can be
adjusted to only a set of scales by the DVFS regulators, the
variable 𝑘𝑖 is a set of discrete values rather than successive
values. We also use the heuristic algorithm GASA presented
in Section 4 to search for the optimal solution to this problem,
yet a different GA encoding mechanism should be used. In
this problem, the GA chromosome will no longer represent
the multicore task scheduling strategy, but it represents the
frequency scale of the microcontrollers. Suppose there are six
tasks (𝑇1, 𝑇2, . . . , 𝑇6) and two microcontrollers (𝑃1, 𝑃2), tasks𝑇3, 𝑇4 and, 𝑇6 are assigned to microcontroller 𝑃1, tasks 𝑇1, 𝑇2,
and 𝑇5 are assigned to microcontroller 𝑃2, microcontroller𝑃1 has four frequency scales (𝐹10, 𝐹11, . . . , 𝐹13), and micro-
controller 𝑃2 has four frequency scales (𝐹20, 𝐹21, . . . , 𝐹23). If
the working frequencies of tasks (𝑇1, 𝑇2, . . . , 𝑇6) are, respec-
tively, (𝐹20, 𝐹22, 𝐹11, 𝐹13, 𝐹22, 𝐹13), then the chromosome will
be encoded as “00 10 01 11 10 11.”

6. Performance Evaluation by Simulation

In this section, we evaluate the optimization performance
of GASA algorithm and the GASA plus DVFS algorithm
(named as GASA-DVFS) by comparing them with the GA
algorithm proposed by Monnier et al. [31] (named as M-GA)
and theGA algorithmproposed byTheys et al. [32] (named as
T-GA). The M-GA is designed for the real-time tasks on the
homogeneousmulticore system.TheT-GA is designed for the
general tasks on the heterogeneous multicore system.

A task graph example is needed to perform the evaluation,
we use themethod proposed in [33] to generate a random task
graph. To perform this generation, several input parameters
should be set, including the task number 𝛼, the shape
parameter of the graph 𝛽, the average computation cost 𝛿,
the average communication cost 𝜀, the communication to
computation ratio 𝛾, and the range percentage factor of the
computation cost on the microcontrollers 𝜆. These param-
eters are set as follows in our simulation works: 𝛼 = 100,

8 Wireless Communications and Mobile Computing

Time
Slack time

Slack time Slack time
P1

P2

t1 t2 t4 t6

T？Ｈ＞
T＞？＞Ｆ

T1 T2

T3 T4

T5

T6

Figure 3: Multicore task scheduling process after the GASA algorithm is applied.

Time

P1

P2

k1 ∗ t1 k2 ∗ t2 k4 ∗ t4 k6 ∗ t6

T＞？＞Ｆ
T1 T2

T3 T4

T5

T6

Figure 4: Task executing process after the DVFS adaption mechanism is performed.

𝛽 = 0.4, 𝛿 = 50, 𝜀 = 10, 𝛾 = 0.2, 𝜆 = 0.4. In addition,
the load of the task is set to a random value between 500 and
5000, and the execution speed of the microcontroller is set to
a random value between 2000 and 16000.

The initial parameters should be set for the algorithms.
We set 0.7 for the crossover, 0.1 for the mutation, 20 for the
population size, 1500 for the maximum iteration count, 500
for the initial temperature, 0.98 for the cooling rate, and 4 for
the microcontroller number. Suppose each microcontroller
can work with 4 different frequency scales, and these scales
are 0.9, 1, 1.1, and 1.2, respectively.

6.1. Performance Evaluation of Different Algorithms. We
tested the energy cost and execution time of different algo-
rithms and the result is shown in Figure 5. The result shows
the following: (1)TheDVFS technique can further strengthen
the energy optimization performance of the GASA; for
example, the energy cost by using the GASA in Figure 5(a) is
6900mJ, yet it is 5660mJ after theDVFS algorithm is applied.(2) GASA can achieve better energy efficiency than M-GA.
This is becauseGASA incorporates theGAalgorithmwith the
SA algorithm so that a global optimization solution is more
likely to be searched out. (3)The GASA energy optimization
performance decreases rapidly when the deadline constraint
is strict.This is because some energy optimal solutions cannot
be passed to the next generation in this case due to the
missing of the deadline. (4) The DVFS algorithm has better
optimization performance when the deadline constraint is
not so strict.This is becausemore slack time exists in this case.
The more the slack time is, the better the DVFS optimization
performance will be. (5) T-GA is not a real-time scheduling
algorithm.Thus, the deadline cannot bemet by its calculation
result.

6.2. Evolution Process of Energy Cost by GASA. To inspect the
energy optimization evolution process of GASA, we calculate
the average energy cost of eachGASA iteration and illustrates

them as shown in Figure 6. We can see that the energy cost is
gradually reduced on the whole. There exist several periods
when the GA algorithm is prone to trap into the local optima.
However, the SA algorithm jumps out these traps successfully.
Nearly after the 1200th iteration, the evolution process tends
to be stable.

6.3. Performance Evaluation by Using Different Microcon-
trollers. To analyze the relationship between the microcon-
troller characteristics and the energy optimization efficiency,
we compared the optimization results of the 4-core het-
erogeneous system, 8-core heterogeneous system, and 8-
core homogeneous system, and the result is illustrated in
Figure 7. From this result, we can see that the task execution
time is generally decreased as the microcontroller number
increases, and this is because the tasks can be executed
concurrently on more microcontrollers. Compared to the 8-
core homogeneous system, the 8-core heterogeneous system
has better performance in this example. This is because more
kinds of cores are equipped on the heterogeneous system.
As a result, the hardware platform can be more context
aware of the software, and the software can be executed more
efficiently with less energy and time cost.

7. Real-World Implementation and Evaluation

In this section, the real-world implementation and evaluation
works of a heterogeneous multicore WMSN node designed
for the fire detection application are presented.

7.1. Implementation of the Heterogeneous Multicore WMSN
Node. Theapplication scene of the fire detection is as follows:
the WMSN node detects the environment temperature and
gas concentration continuously by the temperature and gas
sensors. In case the temperature is increased abnormally and
the gas concentration is improved rapidly, the WMSN node
opens the camera to capture the fire scene, processes the

Wireless Communications and Mobile Computing 9

3960, 8010
4200, 7830

4300, 6900

5100, 5660

Task energy cost and execution time
(no deadline constraint)

En
er

gy
 co

st
(m

J)

3500 4000 4500 5000 55003000
Execution time (mS)

5000

5500

6000

6500

7000

7500

8000

8500

M-GA
T-GA
GASA

GASA + DVFS

(a)

2890, 8930

4100, 7860

2920, 8300

2970, 7800En
er

gy
 co

st
(m

J)

Task energy cost and execution time
(time deadlin？ = 3000)

7400
7600
7800
8000
8200
8400
8600
8800
9000

2800 3100 3400 3700 4000 43002500
Execution time (mS)

M-GA
T-GA
GASA

GASA + DVFS

(b)

3950, 8200
4190, 7900

3820, 7600

3990, 6900

En
er

gy
 co

st
(m

J)

Task energy cost and execution time
(time deadlin？ = 4000)

6000
6300
6600
6900
7200
7500
7800
8100
8400

3800 3900 4000 4100 4200 43003700
Execution time (mS)

M-GA
T-GA
GASA

GASA + DVFS

(c)

4100, 8100
4400, 7780

4200, 7000

4960, 5900

En
er

gy
 co

st
(m

J)

Task energy cost and execution time
(time deadlin？ = 5000)

5500
5800
6100
6400
6700
7000
7300
7600
7900
8200
8500

4000 4300 4450 4600 4750 4900 50504150
Execution time (mS)

M-GA
T-GA
GASA

GASA + DVFS

(d)

Figure 5: Energy cost with different time constraints. (a) No deadline constraint. (b) Deadline is set to 3000. (c) Deadline is set to 4000. (d)
Deadline is set to 5000.

Evolution of energy cost by GASA

6500
7000
7500
8000
8500
9000

En
er

gy

0

20
0

60
0

40
0

50
0

30
0

70
0

80
0

90
0

10
0

15
00

10
00

13
00

14
00

11
00

12
00

Iterations count

Figure 6: Energy evolution process when using the GASA algo-
rithm.

captured data, and then transmits the data packet to the
manager.

Several microcontrollers need to be equipped on the
multicore node, and the selection of the microcontrollers
depends on the software features. In the fire detection scene,

4860, 7320

4300, 6930

4760, 7610

Energy cost and execution time by GASA
when using different kinds of microcontrollers

En
er

gy
 co

st
(m

J)

4 heterogeneous cores
8 heterogeneous cores
8 homogeneous cores

6800

7100

7400

7700

4400 4600 4800 50004200
Execution time (mS)

Figure 7: Energy cost and execution time on different kinds of
microcontrollers.

two typical kinds of application tasks exist. One is the scalar-
data task such as the temperature and gas sampling.The other

10 Wireless Communications and Mobile Computing

AVR
microcontroller

ARM
microcontrollerDSP unit

Temperature &
gas sensors

Zigbee module
(IEEE 802.15.4)

Wi-Fi module
(IEEE 802.11) Camera

Power management unit

Figure 8: Prototype board and circuit diagram of the fire detection multicore WMSN node.

Table 2: Multicore scheduling result by using the GASA algorithm.

Fire detection application tasks
Current and time of running tasks on each core

Scheduling result by GASAAVR core ARM core DSP unit𝐼 (mA) 𝑡 (ms) 𝐼 (mA) 𝑡 (ms) 𝐼 (mA) 𝑡 (ms)
Scalar data sampling 14.5 580 17.6 550

N/A
AVR

Multimedia data sampling 69.7 1120 55.3 980 ARM
Data storage (1K bytes) 16.3 1030 20.9 580 ARM
Signal processing 9.9 2680 19.7 50 26.3 18 DSP
Scalar data transmission 20.9 132 21.8 139 N/A AVR
Multimedia data transmission N/A 375 32 ARM

is the multimedia task such as the image compression and
signal processing.These two tasks have different features and
are appropriate to run on different types of microcontrollers.
The scalar-data task is simple and can be performed by
the low-power general CPU, whereas the multimedia task
is computation intensive and is appropriate to run on the
specific units such as the DSP or GPU (Graph Processor
Unit). By equipping more than one type of microcontroller
on the node, the features of the WMSN hardware can better
match that of the software. Consequently, the energy and
delay performance of the WMSN node can be improved.

In terms of the discussion above, we design a fire
detection WMSN node MiLive-v2 as is shown in Figure 8.
Three primary microcontrollers are equipped on this node.
One is the 8-bit low-power tiny microcontroller AVR
ATmega128rfa1, which can be used to run the simple
tasks. One is the 32-bit powerful ARM microcontroller
ARM1176JZF, which can be used to run themore complicated
tasks. The other is the DSP unit, which can be specially used
to perform the image processing.These microcontrollers can

communicate with each other through the GPIO ports, and
any microcontroller can control the working status (sleep,
active, or power off) of the others by sending the control
commands. If a microcontroller has no tasks to run for the
moment, it can enter the idle status to save the energy. If it has
no tasks to run for a long time, it can be powered off directly.
The BitCloud software firmware [34] is burned on the AVR
microcontroller while the Linux firmware is burned on the
ARMmicrocontroller.

7.2. Real-World Performance Evaluation. We applied the
GASA algorithm to themulticore nodeMiLive-v2 and get the
multicore task scheduling result as is illustrated in Table 2.
There are six kinds of tasks in this application. They are,
respectively, the temperature and gas sampling, the image
and video sampling, data storage, signal processing, low-
rate scalar-data transmission, and high-rate multimedia data
transmission.

The current and time of running each task on different
cores are measured, and the result is shown in Table 2. From

Wireless Communications and Mobile Computing 11

Table 3: Energy and delay cost of running fire detection application on different platforms.

Platform Energy cost (mJ) Execution time (S) Deadline guarantee
Single-core AVR 127.9 4.1 No
Single-core ARM 89.7 2.43 Yes
Multicore MiLive-v2 63.6 2.36 Yes

Table 2, it is seen that each task is appropriate to run on the
special cores. The signal processing task is efficient to run on
the DSP unit rather than on the AVR core. This is because
more multipliers are embedded inside the DSP circuit. The
scalar-data sampling task is more appropriate to run on the
AVR core.This is because the circuit construction of the AVR
core is simpler and less energy cost will be required by its
operations. The scalar-data packet is more energy efficient to
be transmitted by the Zigbee module rather than the Wi-Fi
module. This is because Zigbee is a specific low-cost, low-
power, wireless mesh network standard dedicated to low-
battery devices [35]. However, for the transmission of large
amount of multimedia data, the Wi-Fi module will be more
appropriate.

To evaluate the optimization performance of multicore
MiLive-v2, we run the fire detection application, respectively,
on the MiLive-v2, the single-core ARM platform, and the
single-core AVR platform. The energy cost and execution
time on these platforms are shown in Table 3. From the result,
it is seen that the single-core AVR platform has the highest
energy cost and longest execution time. This is because the
AVR core is an 8-bit tiny microcontroller, and its hardware
circuit is not appropriate to run the computation-intensive
tasks.The single-core ARM platform has less energy cost and
execution time. This is because the ARM core is 32 bits and
can perform the computation-intensive tasksmore efficiently.
Suppose the deadline of the tasks is 2.43 seconds; then the
energy cost of these platforms is, respectively, 63.6, 89.7, 127.9.
That is, the energy cost of the multicore MiLive-v2 platform
can be optimized by 50.3% and 29%, respectively, if compared
to the single-core AVR platform and the single-core ARM
platform.

8. Conclusions

This paper investigates an energy-efficient, delay-efficient,
hardware and software cooptimization platform which aims
to conserve the energy while guaranteeing the deadline of the
real-time WMSN tasks. In the hardware aspect, an energy-
efficient, delay-efficient, reconfigurable hardware platform is
designed. This platform uses the heterogeneous multicore
architecture and the DVFS adaption technique. With the
heterogeneous multicore architecture, each WMSN task can
be assigned to the most appropriate microcontroller to be
executed. With the DVFS adaption technique, the hard-
ware characteristic of each microcontroller can be adjusted
dynamically in terms of the software run-time contexts. By
these means, the WMSN hardware platform can become
highly context aware of the software. Consequently, the
software can be executed more efficiently with less energy

cost and execution time. In the software aspect, an energy and
delay multiobjective optimization algorithm GASA based on
the hardware platform above is researched. GASA incor-
porates the genetic algorithm with the simulated annealing
algorithm so that the global optimization solution can be
searched outwithin acceptable time. In addition to theGASA,
a DVFS adaption algorithm is also investigated. This algo-
rithm adjusts the working frequency of each task intelligently
so as to strip the time redundancy during the task executing
process. By combining the DVFS with the GASA, the energy
efficiency of the WMSN nodes can be improved significantly
even under strict constraint of the execution time. To evaluate
the optimization performance, we did both the simulation
and the real-world experiment works. The simulation results
prove the heterogeneous multicore architecture, and the
DVFS adaption mechanisms are effective in optimizing the
WMSN energy and delaying performance. Moreover, the
GASA algorithm is convergent and can search out better
optima than the traditional GA. The real-world experiment
results show that the energy cost of the multicore WMSN
node can be optimized by 50.3% and 29%, respectively, if
compared to the traditional single-coreAVRnode and single-
core ARM node.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

Xing Liu and Haiying Zhou make equal contributions to this
article.

Acknowledgments

Our thanks go to the support from National Natural Sci-
ence Foundation of China (Grants nos. 61702387, 61672398,
61771354), Provincial Science&Technology Pillar Programof
Hubei (Grants nos. 2017AAA027, 2017AAA042), Provincial
Science & Technology International Cooperation Program of
Hubei (Grant no. 2017AHB048), Key Natural Science Foun-
dation of Hubei Province of China (Grants nos. 2015CFA069,
2017CFA012), and Natural Science Foundation of Hubei
Province of China (Grant no. 2017CFB302).

References

[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “Wireless
multimedia sensor networks: applications and testbeds,” Pro-
ceedings of the IEEE, vol. 96, no. 10, pp. 1588–1605, 2008.

12 Wireless Communications and Mobile Computing

[2] R. Hemalatha, S. Radha, and S. Sudharsan, “Energy-efficient
image transmission in wireless multimedia sensor networks
using block-based Compressive Sensing,” Computers and Elec-
trical Engineering, vol. 44, pp. 67–79, 2015.

[3] R. Banerjee, S. Chatterjee, and S. Das Bit, “An energy saving
audio compression scheme for wireless multimedia sensor
networks using spatio-temporal partial discrete wavelet trans-
form,” Computers and Electrical Engineering, vol. 48, pp. 389–
404, 2015.

[4] T. Ma, M. Hempel, D. Peng, and H. Sharif, “A survey of energy-
efficient compression and communication techniques formulti-
media in resource constrained systems,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 3, pp. 963–972, 2013.

[5] Y. Sun, H. Luo, and S. K. Das, “A trust-based framework for
fault-tolerant data aggregation in wireless multimedia sensor
networks,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 9, no. 6, pp. 785–797, 2012.

[6] H. R. Dhasian and P. Balasubramanian, “Survey of data aggre-
gation techniques using soft computing in wireless sensor
networks,” IET Information Security, vol. 7, no. 4, pp. 336–342,
2013.

[7] F. Deniz, H. Bagci, I. Korpeoglu, and A. Yazici, “An adaptive,
energy-aware and distributed fault-tolerant topology-control
algorithm for heterogeneous wireless sensor networks,” Ad Hoc
Networks, vol. 44, pp. 104–117, 2016.

[8] A.A.Aziz, Y. A. Şekercioǧlu, P. Fitzpatrick, andM. Ivanovich, “A
survey ondistributed topology control techniques for extending
the lifetime of battery powered wireless sensor networks,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 1, pp. 121–144,
2013.

[9] H. Shen and G. Bai, “Routing in wireless multimedia sensor
networks: a survey and challenges ahead,” Journal of Network
and Computer Applications, vol. 71, pp. 30–49, 2016.

[10] S. Ehsan and B. Hamdaoui, “A survey on energy-efficient rout-
ing techniques with QoS assurances for wireless multimedia
sensor networks,” IEEE Communications Surveys & Tutorials,
vol. 14, no. 2, pp. 265–278, 2012.

[11] B. Yahya and J. Ben-Othman, “Towards a classification of energy
aware MAC protocols for wireless sensor networks,” Wireless
Communications andMobile Computing, vol. 9, no. 12, pp. 1572–
1607, 2009.

[12] T. AlSkaif, B. Bellalta, M. G. Zapata, and J. M. Barcelo Ordinas,
“Energy efficiency of MAC protocols in low data rate wireless
multimedia sensor networks: a comparative study,” Ad Hoc
Networks, vol. 56, pp. 141–157, 2017.

[13] G. Han, Y. Dong, H. Guo, L. Shu, and D. Wu, “Cross-layer
optimized routing in wireless sensor networks with duty cycle
and energy harvesting,” Wireless Communications and Mobile
Computing, vol. 15, no. 16, pp. 1957–1981, 2015.

[14] Z. Hamid and F. B. Hussain, “QoS in wireless multimedia
sensor networks: a layered and cross-layered approach,”Wireless
Personal Communications, vol. 75, no. 1, pp. 729–757, 2014.

[15] D. G. Costa and L. A. Guedes, “A survey on multimedia-based
cross-layer optimization in visual sensor networks,” Sensors, vol.
11, no. 5, pp. 5439–5468, 2011.

[16] B. Kanagal and A. Deshpande, “Online filtering, smoothing and
probabilistic modeling of streaming data,” in Proceedings of the
IEEE 24th International Conference on Data Engineering (ICDE
’08), pp. 1160–1169, Washington, DC, USA, April 2008.

[17] I. Ha, M. Djuraev, and B. Ahn, “An energy-efficient data
collection method for wireless multimedia sensor networks,”

International Journal of Distributed Sensor Networks, vol. 10, no.
9, Article ID 698452, 2014.

[18] C. Zhu, H. Zhang, G. Han, L. Shu, and J. J. P. C. Rodrigues,
“BTDGS: binary-tree based data gathering scheme with mobile
sink for wireless multimedia sensor networks,”Mobile Networks
and Applications, vol. 20, no. 5, pp. 604–622, 2015.

[19] A. Alanazi and K. Elleithy, “Real-time QoS routing protocols
in wireless multimedia sensor networks: study and analysis,”
Sensors, vol. 15, no. 9, pp. 22209–22233, 2015.

[20] M. Doudou, D. Djenouri, N. Badache, and A. Bouabdallah,
“Synchronous contention-based MAC protocols for delay-
sensitive wireless sensor networks: a review and taxonomy,”
Journal of Network and Computer Applications, vol. 38, no. 1, pp.
172–184, 2014.

[21] M. Doudou, D. Djenouri, and N. Badache, “Survey on latency
issues of asynchronous MAC protocols in delay-sensitive
wireless sensor networks,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 2, pp. 528–550, 2013.

[22] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-ISA heterogeneous multi-core architectures:
the potential for processor power reduction,” in Proceedings
of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-36), pp. 81–92, San Diego, Claif,
USA, December 2003.

[23] X. Liu, K. M. Hou, C. de Vaulx et al., “Memory and energy
optimization strategies for multithreaded operating system on
the resource-constrained wireless sensor node,” Sensors, vol. 15,
no. 1, pp. 22–48, 2015.

[24] X. Liu, K. M. Hou, C. De Vaulx, K. El Gholami, and S.
Xiong, “LiveWSN: a memory-efficient, energy-efficient, repro-
grammable, and fault-tolerant platform for wireless sensor
network,” International Journal of Distributed Sensor Networks,
vol. 12, no. 9, 2016.

[25] B. Brock and K. Rajamani, “Dynamic power management for
embedded systems,” in Proceedings of the IEEE International
SOC Conference [Systems-on-Chip], pp. 416–419, Portland, OR,
USA, September 2003.

[26] W. Kim, M. S. Gupta, G. Y. Wei, and D. Brooks, “System level
analysis of fast, per-core DVFS using on-chip switching regula-
tors,” inProceedings of the IEEE 14th International Symposiumon
High Performance Computer Architecture (HPCA ’08), pp. 123–
134, Salt Lake City, Utah, USA, February 2008.

[27] E. Horowitz and S. Sahni, “Exact and approximate algorithms
for scheduling non-identical processors,” Journal of the ACM,
vol. 23, no. 2, pp. 317–327, 1976.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability,
vol. 29, W. H. Freeman and Company, New York, NY, USA,
2002.

[29] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press,
Cambridge, Massachusetts, USA, 1998.

[30] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[31] Y.Monnier, J. P. Beauvais, andA.M.Deplanche, “A genetic algo-
rithm for scheduling tasks in a real-time distributed system,” in
Proceedings of the 24th Euromicro Conference, vol. 2, pp. 708–
714, Vasteras, Sweden, August 1998.

[32] M. D.Theys, T. D. Braun, H. J. Siegal, A. A. Maciejewski, and Y.
K. Kwok, “Mapping tasks onto distributed heterogeneous com-
puting systems using a genetic algorithm approach,” in Solutions
to Parallel and Distributed Computing Problems: Lessons from

Wireless Communications and Mobile Computing 13

Biological Sciences, pp. 135–178, JohnWiley and Sons, NewYork,
NY, USA, 2001.

[33] H.Topcuoglu, S.Hariri, andM.Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 3, pp. 260–274, 2002.

[34] BitCloud—ZigBee PRO, Atmel corporation, 2017, http://www
.atmel.com/tools/bitcloud-zigbeepro.aspx.

[35] ZigBee Specification, ZigBee Alliance, 2017, http://www.zigbee
.org.

http://www.atmel.com/tools/bitcloud-zigbeepro.aspx
http://www.atmel.com/tools/bitcloud-zigbeepro.aspx
http://www.zigbee.org
http://www.zigbee.org

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

