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Hydraulic fracturing is widely used to determine in situ stress of rock engineering. In this paper we propose a new method
for simultaneously determining the in situ stress and elastic parameters of rock. The method utilizing the hydraulic fracturing
numerical model and a computational intelligent method is proposed and verified. The hydraulic fracturing numerical model
provides the samples which include borehole pressure, in situ stress, and elastic parameters. A computational intelligent method
is applied in back analysis. A multioutput support vector machine is used to map the complex, nonlinear relationship between
the in situ stress, elastic parameters, and borehole pressure. The artificial bee colony algorithm is applied in back analysis to find
the optimal in situ stress and elastic parameters. The in situ stress is determined using the proposed method and the results are
compared with those of the classic breakdown formula.The proposedmethod provides a good estimate of the relationship between
the in situ stress and borehole pressure and predicts the maximum horizontal in situ stress with high precision while considering
the influence of pore pressure without the need to estimate Biot’s coefficient and other parameters.

1. Introduction

Hydraulic fracturing is widely used in the recovery of oil,
gas, geothermal, and mineral resources [1]. In petroleum
engineering it is important to determine the in situ stresses
and elastic parameters of the rockmass when using hydraulic
fracturing in fracturing operations, wellbore stability anal-
ysis, and reservoir simulation [2]. While high accuracy is
required for the values of the in situ stress and mechanical
parameters of the rock mass, determination of these param-
eters is still one of the most challenging tasks in hydraulic
fracturing.

Hydraulic fracturing tests are considered the most effec-
tivemethod for determining the in situ stress andmechanical
parameters of rock mass [3–9]. The Hubbert and Willis
hydraulic fracturing criterion and Haimson and Fairhurst’s
hydraulic fracturing criterion are the two classic formulae
for hydrofracture breakdown ([10]; Hubbert et al., 1953).
However, the pore pressure term, which is a significant

factor in deep boreholes, is ignored in Hubbert and Willis’s
hydraulic fracturing criterion. Modifications of the original
equations were proposed to account for the pore pressure
(Detournay et al., 1988; [1, 11–13]), but they have not been
used in practice because it involves the Biot poroelastic
parameters and Poisson’s ratio which are difficult to obtain.
Schmitt and Zoback built a more useful generalized form
of the hydrofracture breakdown equation by considering
the poroelastic effects [1]. It can be used to provide upper
and lower bound to the maximum horizontal in situ stress
because it depends on the specific pore and microcrack
structure. However, this method requires the poroelastic
coefficients which are difficult to determine in practice.

Owing to the limitations of the classic breakdown formu-
lae and the complexity of hydraulic fracturing tests, labora-
tory and field tests have been commonly used to determine
the in situ stress and mechanical parameters of rock mass
(Algorithm 1). However, these tests may not always produce
the poroelastic parameters or may provide inaccurate results

Hindawi
Geofluids
Volume 2017, Article ID 5314628, 16 pages
https://doi.org/10.1155/2017/5314628

https://doi.org/10.1155/2017/5314628


2 Geofluids

Sub MSVM()

Dim N As Integer ' The number of training samples
Dim Dim x As Integer ' The dimension of input variables
Dim Dim y As Integer ' The number of output variables

Dim C As Double ' Pentalty factor of SVM
Dim epsilon As Double
Dim sigma As Double

Dim X input() As Double ' The input of training samples
Dim Y output() As Double ' The output of traning samples

' The one sample
Dim xi() As Double
Dim xj() As Double
'The weights of MSVM
DimW() As Double
Dim b() As Double
DimW k() As Double
Dim b k() As Double
DimW s() As Double
Dim b s() As Double
' the error of each sample
Dim u() As Double
Dim ai() As Double
Dim ui() As Double
Dim u new() As Double

'The coefficient of matrix for computing Ws and bs
Dim A() As Double
Dim BB() As Double
Dim A last row() As Double
Dim B last row() As Double

'The Descending direction
Dim P W() As Double
Dim P b() As Double

Dim k() As Double
Dim D a() As Double
Dim D a 1() As Double
Dim kf() As Double

Dim I As Integer
Dim j As Integer
Dim l As Integer

'The step size eta k
Dim eta As Double

'The control parameters of algorithm convergence
Dim delta u As Double
Dim t As Integer

Algorithm 1: Continued.



Geofluids 3

'The value of the numbers of parameters of training samples
N = Range(''N'').Cells.Value
Dim x = Range(''Dim x'').Cells.Value
Dim y = Range(''Dim y'').Cells.Value

'The parameters of SVM
C = Range('' C'').Cells.Value
epsilon = Range(''epsilon'').Cells.Value
sigma = Range(''sigma'').Cells.Value

ReDim X input(1 To N, 1 To Dim x) As Double
ReDim Y output(1 To N, 1 To Dim y) As Double
ReDim xi(1 To Dim x) As Double
ReDim xj(1 To Dim x) As Double
ReDimW(1 To Dim y, 1 To N) As Double
ReDim b(1 To Dim y) As Double
ReDimW k(1 To Dim y, 1 To N) As Double
ReDim b k(1 To Dim y) As Double
ReDimW s(1 To Dim y, 1 To N) As Double
ReDim b s(1 To Dim y) As Double
ReDim u(1 To N) As Double
ReDim ai(1 To N) As Double
ReDim ui(1 To Dim y) As Double
ReDim u new(1 To N) As Double
ReDim A(1 To N + 1, 1 To N + 1) As Double
'ReDim X(1 To N + 1, 1 To Dim y) As Double
ReDim BB(1 To N + 1, 1 To Dim y) As Double
ReDim A last row(1 To N) As Double
ReDim B last row(1 To Dim y) As Double
ReDim P W(1 To Dim y, 1 To N) As Double
ReDim P b(1 To Dim y) As Double
ReDim k(1 To N, 1 To N) As Double
ReDim D a(1 To N, 1 To N) As Double
ReDim D a 1(1 To N, 1 To N) As Double
ReDim kf(1 To N) As Double

'Read the input of training samples
For I = 1 To N

For j = 1 To Dim x
X input(I, j) = Range(''xi'').Cells(I, j)

Next
Next

'Read the output of training samples
For I = 1 To N

For j = 1 To Dim y
Y output(I, j) = Range(''yi'').Cells(I, j).Value

Next
Next

' The initial value of Wk and bk
For I = 1 To Dim y

b(I) = 0
For j = 1 To N

W(I, j) = 0
Next

Next

delta u = 1

Algorithm 1: Continued.
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t = 0
'The iteration process of algorithm
While (delta u > 0.001 And t < 100)

' Replace the value of Wk and bk by the New w and b
For I = 1 To Dim y

For j = 1 To N
W k(I, j) =W(I, j)

Next
b k(I) = b(I)

Next

' Compute the value of ui and ai
For I = 1 To N

u(I) = 0
For j = 1 To Dim x

xi(j) = X input(I, j)
Next

For ii = 1 To N
For j = 1 To Dim x

xj(j) = X input(ii, j)
Next
kf(ii) = kernel fun(xi, xj, sigma)

Next

For ii = 1 To Dim y
ui(ii) = b k(ii)
For j = 1 To N

ui(ii) = ui(ii) + W k(ii, j) ∗ kf(j)
Next

Next

For 𝑗 = 1 To Dim y
u(I) = u(I) + (Y output(I, j) - ui(j))∧2

Next
u(I) = Sqr(u(I))
If (u(I) < epsilon) Then ai(I) = 0
If (u(I) >= epsilon)Then ai(I) = 2 ∗ C ∗ (u(I) - epsilon)/u(I)

' ai(i) = 2 ∗ C ∗ (u(i) - epsilon)/u(i)
Next

'compute the Matrix K and Da
For I = 1 To N

For j = 1 To N
For l = 1 To Dim x

xi(l) = X input(I, l)
xj(l) = X input(j, l)

Next
k(I, j) = kernel fun(xi, xj, sigma)
If (I = j)Then D a(I, j) = ai(I) Else D a(I, j) = 0

Next
Next

For I = 1 To N
For j = 1 To N

If (I = j)Then A(I, j) = k(I, j) + 1/D a(I, j) Else A(I, j) = k(I, j)
Algorithm 1: Continued.
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Next
Next

'Compute Transpose(a)∗K
For I = 1 To N

A last row(I) = 0
For j = 1 To N

A last row(I) = A last row(I) + ai(j) ∗ k(j, I)
Next

Next

A(N + 1,N + 1) = 0
For I = 1 To N

A(N + 1, I) = A last row(I)
A(N + 1,N + 1) = A(N + 1,N + 1) + ai(I)
A(I,N + 1) = 1

Next

For I = 1 To Dim y
B last row(I) = 0
For j = 1 To N

B last row(I) = B last row(I) + ai(j) ∗ Y output(j, I)
Next

Next

For I = 1 To N
For j = 1 To Dim y

BB(I, j) = Y output(I, j)
Next

Next

For j = 1 To Dim y
BB(N + 1, j) = B last row(j)

Next

'Compute Ws and bs
With Application.WorksheetFunction

x1 = .MMult(.MInverse(A), BB)
End With

For I = 1 To Dim y
For j = 1 To N

W s(I, j) = x1(j, I)
Next
b s(I) = x1(N + 1, I)

Next

'Compute the descending direction
For I = 1 To Dim y

For j = 1 To N
P W(I, j) =W s(I, j) - W k(I, j)

Next
P b(I) = b s(I) - b k(I)

Next

eta = 1
Dim delta Lp As Double

Algorithm 1: Continued.
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Dim Lp k 1 As Double
Dim Lp k As Double

delta Lp = 1

'Update the solution of W and b
While (delta Lp > 0.0001)

For I = 1 To Dim y
For j = 1 To N

W(I, j) = (1 - eta) ∗W k(I, j) + eta ∗ P W(I, j)
Next
b(I) = (1 - eta) ∗ b k(I) + eta ∗ P b(I)

Next

For I = 1 To N
u new(I) = 0
For j = 1 To Dim x

xi(j) = X input(I, j)
Next

For ii = 1 To N
For j = 1 To Dim x

xj(j) = X input(ii, j)
Next
kf(ii) = kernel fun(xi, xj, sigma)

Next

For ii = 1 To Dim y
ui(ii) = b(ii)
For j = 1 To N

ui(ii) = ui(ii) +W(ii, j) ∗ kf(j)
Next

Next

For j = 1 To Dim y
u new(I) = u new(I) + (Y output(I, j) - ui(j))∧2

Next

u new(I) = Sqr(u new(I))
If (u new(I) < epsilon) Then ai(I) = 0
If (u new(I) >= epsilon) Then ai(I) = 2 ∗ C ∗ (u new(I) - epsilon)/u new(I)
delta u = delta u + u new(I)

Next

Lp k 1 = 0
Lp k = 0
For I = 1 To Dim y

For j = 1 To N
Lp k 1 = Lp k 1 + W(I, j)∧2/2
Lp k = Lp k +W k(I, j)∧2/2

Next
Next

For j = 1 To N
If u new(j) >= epsilonThen Lp k 1 = Lp k 1 + C ∗ (u new(j)∧2 - 2 ∗ u new(j) ∗ epsilon + epsilon∧2)
If u(j) >= epsilonThen Lp k = Lp k + C ∗ (u(j)∧2 - 2 ∗ u(j) ∗ epsilon + epsilon∧2)

Algorithm 1: Continued.



Geofluids 7

Next

delta Lp = Lp k 1 - Lp k
eta = 0.5 ∗ eta

Wend

delta u = 0
For I = 1 To N

delta u = delta u + u new(I)
Next

delta u = delta u/N
t = t + 1

Wend

For I = 1 To N
For j = 1 To Dim y

Range(''wi'').Cells(I, j) =W(j, I)
Next

Next

For j = 1 To Dim y
Range(''bi'').Cells(j) = b(j)

Next

End Sub
' Kernel function of RBF
Function kernel fun(xx, yy, sigma2) As Double
Dim temp As Double
Dim temp1 As Double
Dim Dim 𝑥 As Integer
Dim x = Range(''Dim x'').Cells.Value
temp = 0
For I = 1 To Dim x
temp = temp + (xx(I) - yy(I))∧2
'temp = temp + xx(i) ∗ yy(i)
Next I

temp1 = Sqr(temp)/(2 ∗ sigma2∧2)
kernel fun = Exp(-temp1)
'Kf = (temp + 1)∧sigma2
End Function

' Compoute the performance function value using the MSVM
Sub Perffunc()
Dim I As Integer
Dim ii As Integer
Dim l As Integer
Dim j As Integer
Dim N As Integer
Dim Np As Integer
Dim sigma As Double

Dim xi() As Double
Algorithm 1: Continued.
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Dim xj() As Double
DimW() As Double
Dim b() As Double
Dim Yy p() As Double
Dim kf() As Double
N = Range(''N'').Cells.Value
Np = Range(''Np'').Cells.Value
Dim x = Range(''Dim x'').Cells.Value
Dim y = Range(''Dim y'').Cells.Value
sigma = Range(''sigma'').Cells.Value

ReDim xi(1 To Dim x) As Double
ReDim xj(1 To Dim x) As Double
ReDimW(1 To Dim y, 1 To N) As Double
ReDim b(1 To Dim y) As Double
ReDim Yy p(1 To Np, 1 To Dim y) As Double
ReDim kf(1 To N) As Double

For I = 1 To Dim y
For j = 1 To N

W(I, j) = Range(''wi'').Cells(j, I)
Next
b(I) = Range(''bi'').Cells(I)

Next

For I = 1 To Np
For j = 1 To Dim x

xi(j) = Range(''x p input'').Cells(I, j)
Next

For l = 1 To N
For j = 1 To Dim x

xj(j) = Range(''xi'').Cells(l, j)
Next
kf(l) = kernel fun(xi, xj, sigma)

Next

For ii = 1 To Dim y
Yy p(I, ii) = b(ii)
For j = 1 To N

Yy p(I, ii) = Yy p(I, ii) +W(ii, j) ∗ kf(j)
Next

Next

Next

For I = 1 To Np
For j = 1 To Dim y

Range(''y p output'').Cells(I, j) = Yy p(I, j)
Next

Next

End Sub

Algorithm 1: The code of MSVM.
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because of low-quality core samples [14]. Alternatively, back
analysis, associated with the “in situ” approach, has been
widely used to determine the mechanical parameters of rock
mass in rock engineering [15–20]. Zhang and Yin proposed
a back analysis method which combined a neural network
and a genetic algorithm to simultaneously identify the in
situ stresses and elastic parameters [2]; however, this method
did not consider the poroelastic effect. To overcome this
difficulty, in this paper we extend our proposed displacement
back analysis method to determine the in situ stress and
mechanical parameters of a rock mass based on measured
borehole pressure. The borehole pressure can be easily mea-
sured in the field with a pressure gauge installed inside
the borehole [21]. Back analysis is implemented following
an optimization strategy based on the multioutput support
vector machine (MSVM) and artificial bee colony algorithm
(ABC) model, which is effective in multiple parameter iden-
tification [22].

The rest of this paper is organized as follows. The classic
breakdown formula is presented in detail in Section 2.
The formulation and procedure of back analysis based on
borehole pressure are presented in detail in Section 3. In
Section 4, a numerical example is used to verify the proposed
method, and our conclusions are presented in Section 5.

2. Hydraulic Breakdown Equations

Hydraulic fracturing is a widely accepted technology used
for determining in situ stress magnitude and direction. The
principal stress 𝜎V has a magnitude equal to the overburden
pressure in the vertical direction. The smallest horizontal
principal stress 𝜎ℎmin is usually determined directly in the
experiment from the shut-in pressure.The greatest horizontal
principle stress 𝜎𝐻max must be calculated using a breakdown
formula derived from an appropriate hydraulic fracturing
model. Hubbert and Willis proposed a classic breakdown
formula (1) to calculate𝜎𝐻max for hydraulic fracturing in non-
porous impermeable rocks [23], ignoring the pore pressure
term.

𝑃𝑏 = 3𝜎ℎmin − 𝜎𝐻max + 𝑇, (1)

where 𝑇 is the rock tensile strength.
Equations (2) and (3) are the breakdown formulae of

porous impermeable rocks and porous permeable rocks,
respectively, including the pore pressure [24]:

𝑃𝑏 = 3𝜎ℎmin − 𝜎𝐻max + 𝑇 − 𝑃𝑝 (2)

𝑃𝑏 = 3𝜎ℎmin − 𝜎𝐻max + 𝑇 − 𝛼 ((1 − 2𝜐) / (1 − 𝜐)) 𝑃𝑝2 − 𝛼 ((1 − 2𝜐) / (1 − 𝜐)) , (3)

where 𝑃𝑏 is the breakdown pressure, 𝑃𝑝 is the pore pressure,𝛼 is the Biot poroelastic parameter, and 𝜐 is Poisson’s ratio.
Although (3) may best describe the conditions under which
hydraulic fracturing is conducted from an open borehole, (2)
is used in practice because of the difficulty of determining 𝛼
and 𝜐. Schmitt andZoback proposed amore generalized form

for the equations of hydrofracture breakdown for porous
impermeable rocks and porous permeable rocks [1]:

𝑃𝑏 = 3𝜎ℎmin − 𝜎𝐻max + 𝑇 − 𝛽𝑃𝑝 (4)

𝑃𝑏 = 3𝜎ℎmin − 𝜎𝐻max + 𝑇 − 𝛼 ((1 − 2𝜐) / (1 − 𝜐)) 𝑃𝑝1 + 𝛽 − 𝛼 ((1 − 2𝜐) / (1 − 𝜐)) , (5)

where 𝛽 is the poroelastic effect parameter.

3. Back Analysis Model Based on
Borehole Pressure

The in situ stress can be estimated based on borehole pressure
using the hydraulic breakdown equations (Section 2). How-
ever, these equations present some limitations in practice.
Therefore, we propose a back analysis method that com-
bines a numerical method and an intelligent computational
method. A multioutput support vector machine (MSVM) is
used to map the complex, nonlinear relationship between
the in situ stress, elastic parameters, and borehole pressure.
The numerical method provides the training samples for the
MSVM. It is important to use an optimizationmethod in back
analysis.Here, we use theABCalgorithm tofind the best-fit in
situ stress and elastic parameters by comparing the measured
pressure data and the MSVM predicted pressure.

3.1. Nonlinear Relationships between Pressure and Geome-
chanical Parameters. The relationship between the borehole
pressure and geomechanical parameters can be derived
by the MSVM. The basic idea of MSVM is to extend
the single-output support vector machine to a multidi-
mensional output case. Given a set of training samples{(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋𝑁, 𝑌𝑁)}, 𝑋𝑖 ∈ 𝑅𝑛, 𝑌𝑖 ∈ 𝑅𝑄,
the MSVM model can be built by solving the following
optimization problem based on an iterative reweighted least-
square algorithm [25].

𝐿󸀠𝑝 (𝑊, 𝑏) = 12
𝑄∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝑊𝑗󵄩󵄩󵄩󵄩󵄩2 + 12
𝑁∑
𝑖=1

𝑎𝑖𝑢2𝑖 + 𝜏

𝑎𝑖 = {{{
0 𝑢𝑡𝑖 < 𝜀
2𝐶 (𝑢𝑡𝑖 − 𝜀) 𝑢𝑡𝑖 𝑢𝑡𝑖 ≥ 𝜀,

(6)

where𝑁 is the number of input,𝑄 is the number of output,𝑊
is the weight, 𝑏 and 𝐶 are constants, 𝜏 is the sum of constant
terms that do not depend on either𝑊 or 𝑏, 𝜀 is the tolerant
error, and 𝑡 denotes the tth iteration. A brief description and
the MSVM algorithm can be found in the literature [22]. The
MSVMmodel can be expressed as

𝑌 (𝑋) = 𝑛∑
𝑘=1

W𝑘 (𝑋,𝑋𝑘) + b. (7)
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Based on the above MSVM model, the nonlinear rela-
tionship between the borehole pressure and geomechanical
parameters can be described as

MSVM (X) : 𝑅𝑛 󳨀→ 𝑅𝑄
Y = MSVM (X) , (8)

where X = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is the 𝑛-dimensional vector of the
identified parameter, for example, the in situ stress, Young’s
modulus, or Poisson’s ratio. Y = (𝑦1, 𝑦2, . . . , 𝑦𝑄) is the 𝑄-
dimensional vector of the borehole pressure.

To build the MSVM model, the necessary training or
learning samples are constructed and the MSVM parameters
are determined. The samples are constructed by numerical
analysis which computes the corresponding borehole pres-
sure for a given set of tentative determined parameters.
The MSVM parameters have a strong influence on the
performance of the MSVM. In this study, we determined
these parameters using the formulation presented by Meza et
al. [26].

3.2. OptimizationMethod. Theback analysis ABC algorithm,
developed by Karaboga [27], was adopted to search for
the optimal geomechanical parameters of the rock mass. In
the algorithm, the colony of artificial bees consists of three
groups: employed bees, onlookers, and scouts. The ABC
algorithm involves a cycle of four phases: the initialization
phase, employed bees phase, onlooker bee phase, and scout
bee phase.

In the initialization phase, the ABC generates a randomly
distributed initial population of SN solutions and calculates
the fitness of each solution.

𝑥 (𝑖, 𝑗) = 𝑥𝑗min + rand (0, 1) (𝑥𝑗max − 𝑥𝑗min) , (9)

where 𝑥(𝑖, 𝑗) is the candidate solution of the problem; 𝑖 =1, 2, . . . , SN/2 and SN/2 denotes the size of the population;𝑗 = 1, 2, . . . , 𝐷 and 𝐷 is the dimension number of each
solution; rand(0, 1) is a random number between [0, 1]; 𝑥𝑖min
and 𝑥𝑖max are the upper and lower bounds of each solution.

Once initialization is completed, the employed bees
search for a solution and calculate the fitness value (see
Section 3.3) in the employed bees phase. A candidate solution
is produced according to the following equation:

V (𝑖, 𝑗) = 𝑥 (𝑖, 𝑗) + 𝜑𝑖𝑗 (𝑥 (𝑖, 𝑗) − 𝑥 (𝑘, 𝑗)) , (10)
where 𝑘 is different from 𝑖 and is a randomly chosen index
from {1, 2, . . . , SN/2}, 𝑗 is also an index randomly chosen
from {1, 2, . . . , 𝐷}, and 𝜑𝑖𝑗 is a random number in the range[−1, 1] that controls the generation of food sources around𝑥(𝑖, 𝑗) and represents the comparison of two food positions
seen by a bee.

In the onlooker bee phase, the onlooker bees choose a
solution based on the fitness value, determine which solution
will be abandoned, and allocate its employed bees as scout
bees. The probability of being selected for each fitness value
can be expressed as

𝑝𝑖 = fitness𝑖∑SN
𝑛=1 fitness𝑛

, (11)

where fitness𝑖 is the fitness value of the solution.

Finally, in the scout bee phase the scout bees randomly
search for a new solution in the determined ranges. A solution
that cannot be improved further through a predetermined
number of cycles is assumed to be abandoned by the onlook-
ers.

3.3. The Fitness Function. In order to find the optimal
solution, it is necessary to build the fitness function for the
ABC algorithm; that is,

fitness = √ ‖MSVM (𝑋) − 𝑌‖2𝑄 , (12)

where MSVM(𝑋) is the predicted pressure using the MSVM
model, Y is the vector of the monitored pressure, and𝑄 is the
number of monitored points.

3.4. Procedure of the MSVM-ABC Based Method. If the
MSVM model can establish the nonlinear relation between
the borehole pressures and determined parameters, the
model can be used to predict the borehole pressures. Then,
the ABC algorithm is utilized to find the optimal parameters
through error minimization between the pressures predicted
by the MSVM model and the measured pressures. The back
analysis flowchart is shown in Figure 1 and the algorithm is
described as follows.

Step 1. Determine the general information and data such
as the unknown (determined by back analysis) and known
parameters of the numerical model, the MSVM and ABC
algorithm parameters, and the range of parameters to be
determined.

Step 2. Generate the combination of determined parameters,
calculate the borehole pressure for each combination, and
then build the learning samples for MSVM.

Step 3. Based on the learning samples of Step 2, construct the
MSVM model using the MSVM algorithm and activate the
ABC algorithm.

Step 4. Search for the optimal determined parameters based
on the monitored pressure.

4. Validation and Application

To verify the proposed method, a numerical example is
adopted to determine the in situ stress and elastic mechanical
parameters of the elastic rock. The numerical experiment
is conducted based on 2D hydraulic fracturing model of
water injection into a hypothetical deep formation. Fur-
ther details of the physical and numerical model can be
found in the literature published by Schmitt and Zoback
[1].

The parameters to be determined are the maximum
and minimum horizontal in situ stress 𝜎𝐻max and 𝜎ℎmin,
respectively, Young’s modulus E, and Poisson’s ratio 𝜐. The
rock mass in all the zones is considered to be elastic. The
mechanical parameters of the joints and the permeability
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Start

Numerical modelGenerate the combination 
of determined parameters

Calculate borehole pressures

Build the learning samples MSVM algorithm

MSVM model ABC algorithm

Back analysis Monitored borehole pressure

Obtained the determined parameters

End

Define the problem and determine the parameters:
Specify the determined parameter
Build the numerical model
Specify the parameters of MSVM algorithm
Specify the parameters of ABC algorithm

Step 1: general information and data

Step 2: numerical model

Step 3: MSVM and ABC model

Step 4: back analysis model

(i)
(ii)

(iii)
(iv)

Figure 1: Flowchart of the back analysis process to obtain the rock parameters.

of the rock mass are known; the parameter values can be
seen in the literature published by Schmitt and Zoback
[1]. Thirty sets of training samples and ten testing samples
derived in previous studies [1, 2] were selected. Based on
the MSVM algorithm, the MSVM code was written in
Excel and VBA. The MSVM parameters and some of the
weight 𝑤𝑖 and constant 𝑏𝑖 values and samples are shown in
Figure 2. Good agreement between the measured data and
the pressures estimated by the MSVM is shown in Figure 3,
indicating the good performance of the MSVMmodel. Thus,
the proposed model can accurately estimate the borehole
pressures, replacing the existing numerical analysis method
for calculating borehole pressures. The results also confirm
that the MSVM model provides an accurate representation
of the nonlinear relationship between the pressures and the
determined parameters.

The ABC code is also written in Excel and VBA. The
parameters of the ABC algorithm and the calculation results
are shown in Figure 4. Based on the proposed method for
determining the in situ stress and mechanical parameters of
rock mass, the results are shown in Table 1. we obtained the

values of 𝜎𝐻max, 𝜎ℎmin, 𝐸, and 𝜐 as 24.46MPa, 14.33MPa,
44.02GPa, and 0.25, respectively. The elastic mechanical
parameters of the rock agree with the results calculated by
the Genetic Algorithm-Neural Network (ANN-GA) [2]. A
comparison of in situ stress values calculated using four
different formulations is shown in Figure 5. 𝜎ℎmin agrees
well with the value estimated by ANN-GA, (1), and (2).
The relative error is only 1.07%. 𝜎𝐻max agrees well with the
value estimated by (2), which considers the pore pressure,
but differs considerably from the values calculated by (1)
and ANN-GA which do not consider the poroelastic effects.
The relative error is up to 31.8%. Using (4), we obtain
the upper and lower limits of the maximum horizontal in
situ stress 𝜎𝐻max (14.95–34.55MPa). The value 24.46MPa is
within this range. Thus, the proposed method can be used
in back analysis as an alternative numerical analysis method,
which considers the poroelastic effects and provides rational,
high-precision results. Note that the proposed method can
determine the maximum horizontal in situ stress without
estimating the poroelastic coefficient, which is a difficult
parameter to obtain.
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Table 1: Comparison of in situ stresses and mechanical parameters between MSVMmodel and other preexisted models.

Model 𝜎𝐻 (MPa) 𝜎ℎ (MPa) Young’s modulus E (GPa) Poisson’s ratio 𝜐
MSVM 24.46 14.33 44.02 0.25
ANN-GA# 35.83 14.968 39.92 0.26
Eq. (1)∗ 34.549 15.637
Eq. (2)∗ 24.749 15.637
#Themodel proposed by Zhang and Yin [2]. ∗Themodel proposed by Hubbert and Willis [23].

Parameters of MSVM Training samples Testing or predicting samples

5 300
Number of samples Dimension of input Dimension of output

30 4 4
Number of samples

40

Models of MSVM
Training samples wi & bi (The first row)

Input(xi) Output(yi) 25.51749 41.53803 25.30404 22.62262

1 44.9 34.1 40.0 0.2 39.778 66.733 40.377 37.482 32.69383 61.6205 28.92746 36.87203
2 43.8 30.9 42.0 0.3 35.882 60.069 37.09 32.905 −5.799298 −0.497959 2.342793 −6.83015
3 43.2 15.7 25.0 0.3 19.425 25.968 18.394 16.293 −2.643523 −11.87645 −8.24627 −8.16457
4 42.9 20.0 30.0 0.2 21.183 30.267 22.859 20.486 −26.79601 −28.7827 −8.93134 −5.26611
5 42.3 33.0 40.0 0.2 37.403 61.538 37.959 34.59 −7.965503 −24.82346 −13.728 −8.95032
6 41.9 28.5 42.0 0.3 33.423 54.845 34.099 30.028 −10.14168 5.245473 −15.5702 −11.6237
7 41.0 17.8 26.0 0.3 21.578 27.741 20.437 18.33 14.51593 −10.42965 2.294206 4.102865
8 40.4 31.3 47.0 0.3 37.074 60.791 37.452 33.623 13.77002 10.75531 13.80466 12.93566
9 39.8 27.0 38.0 0.2 32.056 43.779 33.969 28.521 2.65743 −51.59696 23.6693 0.200652

10 39.2 11.3 28.0 0.2 14.387 21.38 13.928 11.916 −15.18197 −8.023748 −11.0173 −10.7767
11 38.9 29.9 41.0 0.3 35.089 57.713 35.694 31.699 2.148607 37.66816 0.857885 4.119908
12 38.1 18.9 35.0 0.3 23.467 30.347 22.057 19.47 7.290676 −2.550754 −4.21743 −2.08841
13 37.6 27.4 27.0 0.3 31.439 51.838 32.584 28.979 9.948569 50.389 14.00926 11.58154
14 36.5 14.9 37.0 0.2 19.223 27.261 18.048 15.485 0.180288 14.13271 −0.47812 −2.10495
15 35.5 25.1 39.0 0.2 30.255 39.013 28.688 26.052 −3.420387 −48.26779 −22.4071 −7.36326
16 34.6 12.8 24.0 0.3 16.305 23.295 15.414 13.331 −3.60225 1.880641 −2.63221 −3.7458
17 33.8 28.9 42.0 0.3 34.409 55.727 34.523 30.596 9.328942 61.70773 16.13344 9.398126
18 33.2 17.9 32.0 0.3 22.06 28.912 20.846 18.474 4.171029 8.203456 4.833736 4.764868
19 32.5 10.3 36.0 0.2 13.789 20.18 13.122 10.948 −16.877 −20.59279 −12.9272 −11.6762
20 31.5 24.9 21.0 0.2 28.983 45.886 29.211 25.937 12.27877 38.88137 15.94925 12.30997
21 31.1 16.9 24.0 0.3 20.342 26.571 19.426 17.392 −1.505729 −21.8008 −2.46657 0.202625
22 30.5 22.7 35.0 0.3 27.216 35.282 25.95 23.289 −1.505308 3.553947 −0.44801 −0.55972
23 29.5 25.1 40.0 0.2 29.886 39.043 28.714 26.014 1.008502 −27.74127 0.52993 3.700371
24 28.4 13.6 28.0 0.2 17.67 24.647 16.346 14.127 6.005568 17.7538 1.352429 −0.47782
25 27.8 20.2 32.0 0.2 24.602 30.77 23.131 20.661 0.912869 −3.943866 0.386886 0.365483
26 27.2 15.8 26.0 0.3 19.189 26.153 18.522 16.371 −6.679902 8.441547 3.515295 2.837635
27 26.9 13.1 43.0 0.3 17.573 24.725 16.366 13.71 −13.40561 −17.60743 −13.6856 −14.2492
28 26.3 20.6 27.0 0.3 24.947 30.101 23.283 21.048 8.177915 −25.86171 0.189852 2.768714
29 25.7 21.3 38.0 0.2 26.112 33.84 24.708 21.888 6.515285 9.419643 6.692563 4.489202
30 25.1 11.1 21.0 0.3 14.721 20.638 13.348 11.579 −16.08006 −25.25597 −18.7337 −16.7728

Multioutput support vector machine

  C

1E − 05

PredictTrain

Figure 2: Parameters and model of MSVM in the Excel VBA platform.
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Figure 3: Comparison of pressure data estimated by MSVM and borehole measured data.

Parameters of ABC Parameters to be recognized
Size of population 100 24.4557 14.3255 44.0238 0.24924
Dimension of problem 4
Maximum of cycle 500

19.4648 28.0128 18.3451 15.6171

Range of searching 19.572 27.362 18.296 15.637
Minimum Maximum 0.0114854 0.4235971 0.0024136 0.000396

20 60
5 25 Best fitness 0.01988

20 60 Fitness (objective function) 0.330867
0.2 0.3

Computed pressure using MSVM (MPa)

Monitored pressure (MPa)

Back Analysis based on MSVM-ABC 

Back analysis Delete for recompute

Figure 4: MSVM-ABC-based back analysis, its parameters, and results in the Excel VBA platform.

Moreover, there are four borehole pressures, namely, for-
mation breakdown pressure (FBP) 𝑃1, fracture propagation
pressure (FPP) 𝑃2, instantaneous shut-in pressure (ISIP)𝑃3, and leak–off pressure (LOP) 𝑃4. A comparison of back
analysis on borehole pressures obtained by three different
methods is presented in Figure 6. The borehole pressure
calculated by the proposed MSVM method is very close to
the measured pressure. The relative error is less than 3%. On
the other hand, the convergence processes of the algorithm
and fitness variations are shown in Figures 7 and 8. Initially,
the data was distributed randomly in the searching space

(Figure 8) and then converged to the solution of the problem
in the 500th generation. This indicates that the proposed
method can determine both the in situ stress and elastic
mechanical parameters of the elastic rock with excellent
converging performance.

5. Conclusions

In this paper, a new borehole pressure-based back analysis
approach to determine the stress and mechanical parameters
of rock mass is proposed. The method combines a coupling
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Figure 5: Comparison of recognized in situ stress using different
models (𝜎𝐻, 𝜎ℎ are the maximum and minimum in situ stress).
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Figure 6: Comparison of borehole pressures obtained by different
prediction methods and monitored data.

numericalmodel of hydraulic fracturing and a computational
intelligent method. The method is applied to a numerical
example to successfully determine both the in situ stress and
mechanical parameters of a rock mass. In this approach, the
MSVM is adopted to represent the nonlinear relationship
between the borehole pressure andmechanical parameters of
the rockmass, provingmore efficient than existing numerical
models. The ABC algorithm is used to search for the optimal
parameters in the search space. The proposed approach is
implemented in Excel with VBA.

In the classic breakdown formula, it is difficult in practice
to determine the maximum horizontal in situ stress while
considering the poroelastic coefficient. The proposed back
analysis method can predict the maximum horizontal in situ
stress based on the borehole pressures without the need to
obtain the poroelastic coefficient. Thus, it is a more practical
method for determining the in situ stress from hydraulic
fracturing. The proposed method is practical and accurate
and can be conveniently applied to simultaneously determine
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Figure 7: Fitness variation with increased cycles in the ABC
analysis.

the in situ stress and mechanical parameters of rock from
hydraulic fracturing.

Symbols

𝜎V: Principal stress in 𝑦 direction𝜎𝐻max: The greatest horizontal principle stress𝜎ℎmin: The smallest horizontal principal stress𝜐: Poisson’s ratio𝛽: Poroelastic effect parameter𝑊: The weight vector
MSVM(𝑋): The predicted pressure using the MSVM

model𝐶: Hyper parameter that determines
trade-off between the regularization and
the error reduction term𝜀: Tolerant error𝑄: Number of output𝜑𝑖𝑗: A random number in the range [−1, 1]𝑏: A constant for classification threshold𝑃𝑏: Breakdown pressure𝑃𝑝: Pore pressure𝐸: Young’s modulus𝛼: Biot poroelastic parameter𝑇: Rock tensile strength𝑁: Number of input𝜏: Sum of constant terms that do not depend
on either𝑊 or 𝑏

rand(0, 1): A random number between [0, 1]
fitness: Fitness value of the solution.
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