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Multiview clustering aims to improve clustering performance through optimal integration of information from multiple views.
Though demonstrating promising performance in various applications, existing multiview clustering algorithms cannot effectively
handle the view’s incompleteness. Recently, one pioneering work was proposed that handled this issue by integrating multiview
clustering and imputation into a unified learning framework. While its framework is elegant, we observe that it overlooks the
consistency between views, which leads to a reduction in the clustering performance. In order to address this issue, we propose a
new unified learningmethod for incomplete multiview clustering, which simultaneously imputes the incomplete views and learns a
consistent clustering result with explicitmodeling of between-view consistency.More specifically, the similarity between each view’s
clustering result and the consistent clustering result is measured. The consistency between views is then modeled using the sum of
these similarities. Incomplete views are imputed to achieve an optimal clustering result in each view, while maintaining between-
view consistency. Extensive comparisons with state-of-the-art methods on both synthetic and real-world incomplete multiview
datasets validate the superiority of the proposed method.

1. Introduction

The term “multiview data” refers to data that have different
sources or modalities. Each source or modality is considered
as one “view,” and different views have different physical
meanings and statistical properties. For example, a web page
can be described by the pictures and text it contains, while
a news story may be reported by different sites each with
its own different viewpoints. A significant number of studies
aimed to investigate and learn from multiple views in the
past [1, 2]. Multiview clustering, which is one component
of multiview learning, aims at grouping samples by utilizing
information from different views. Extensive research has
been conducted into multiview clustering; these can be
roughly categorized into early fusion approaches and late
fusion approaches. Early fusion approaches fuse the multi-
view information in an early stage of the process and then
perform clustering [3–9], while late fusion approaches group
data by fusing previously clustered results from separate
views [10, 11].

However, in real-world applications, some views may be
incomplete for a variety of reasons, which hurts the clustering
performance of multiview data. For example, in the context
of patient grouping, the data from different tests can serve as
different views. If a test is too expensive, some patients may
be unable to afford it, which leads to an incomplete view for
this particular test. Similarly, in webpage clustering, image
data and text data are two modalities that represent a page;
however, some pages may not contain any images, which
makes the data for the image view incomplete.

Existing studies of incomplete multiview clustering can
be roughly divided into two categories: subspace methods
and imputationmethods.Themethod outlined in [12], which
was the first subspace method for incomplete multiview
clustering, learns the common subspace of two views via non-
negative matrix factorization. Several variants of this method
were proposed following its introduction. In [13], feature
learning is integrated into the subspace learning process and
the assumption that the data is nonnegative is not required.
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The method proposed in [14] learns a latent global graph
representation and the subspace simultaneously by adding a
novel Laplacian graph regularization term. The other impor-
tant category of method for incomplete multiview clustering
is imputation methods, which handle incomplete views by
filling in the missing parts. The method proposed in [15] fills
the kernel of an incomplete view according to the Laplacian
regularization of the other complete view. Subsequently,
the method proposed in [16] tackles the situation where
two views are incomplete by alternately updating one view
according to the other view. In [17], the incomplete views
are imputed via low rank decomposition. As different views
are assumed to be generated from a shared subspace, the
data matrices of different views can be decomposed using a
common factor. Most of these imputation methods simply
execute a conventional multiview clustering algorithm after
filling the incomplete views. Most recently, a method was
proposed in [18], whereby the imputation is not separated
from the multiview clustering process. More specifically, the
imputation and the multiple kernel clustering are integrated
into a unified procedure for better clustering performance.

Integrating imputation and multiview clustering into a
unified learning process makes the imputation better serve
the clustering objective. This advantage helps the method in
[18] to outperform other methods that perform imputation
and clustering separately. However, the disadvantage of the
method in [18] is that multiview clustering solution it pro-
poses overlooks the consistency between views, which may
reduce the final clustering performance. In [18], multiview
clustering is achieved by learning a linear combination of
kernels that reaches the optimal kernel 𝑘-means clustering
result. Consequently, the linear combination to build the best
kernel for clustering is learned without considering the rela-
tionships between views. Similarly, the imputation is guided
only by the clustering objective and the consistency between
views is neglected. However, the consistency between views
is one of the inherent properties of multiview data [1]; if
this critical property is not considered, the learning of the
linear combination of kernels and the imputation in [18]
may lead to poor clustering performance. Previous research
into multiview clustering has shown that considering the
consistency between views helps to boost the performance of
multiview clustering [3]. In this study, we wish to build on the
advances made in [18] while also considering the consistency
between views in order to further improve clustering perfor-
mance. Therefore, we propose a novel incomplete multiview
clustering method that simultaneously fills the incomplete
kernels from incomplete views and learns a consistent clus-
tering result. To model the between-view consistency, the
similarity between the consistent clustering result and the
clustering result of each view is calculated. The consistency
between views is measured by the sum of these similarities.
The missing parts of kernels and the consistent clustering
result are learned in order to achieve the optimal clustering
result in each view while keeping consistency between views.
Here, the learning process considers both the data structures
within views and the consistent relations between views,
which benefits the multiview clustering performance. The
proposed objective function is then solved by alternately

optimizing partial variables. Each subproblem that optimizes
the corresponding partial variables either can be solved
by means of eigenvector decomposition or has a closed-
form solution. To evaluate the performance of the proposed
method, we compare it with state-of-the-art methods on
three synthetic and one real-world incomplete multiview
datasets. Empirical results validate the superiority of the
proposed method for incomplete multiview clustering.

The main contributions of this paper can be summarized
as follows:

(1) We propose a novel incomplete multiview clustering
method, which simultaneously learns a consistent
clustering decision and fills the incomplete kernels
from incomplete views with explicit modeling of
between-view consistency.

(2) We design an alternating optimization algorithm to
solve proposedmethod’s optimization problem.Here,
the optimization problem is divided into three sub-
problems. The subproblems either can be solved by
means of eigenvector decomposition or has a closed-
form solution.

(3) We also provide thorough convergence analysis of the
alternating optimization algorithm, including theo-
retical proof and empirical validations.

2. The Proposed Method

Regarding the consistency, we propose that a consistent
clustering decision be learned that is similar to each view’s
kernel 𝑘-means clustering result. To handle the incomplete
views, we simultaneously fill the incomplete views and
learn the consistent clustering decision. In the following
subsections, we first introduce the notation used in problem
formulation, after which kernel 𝑘-means is briefly reviewed.
We then outline how a consistent decision might be found.
Next, we introduce the objective function of our method to
explain how the kernel filling and decision learning processes
are integrated. Finally, we analyse the convergence of the
proposed algorithm.

2.1. Notation. Assume that there are 𝑁 samples and 𝑃 views
for the multiview data. For clarity, sample’s information in a
view is referred to as an instance of the sample in this paper.
For incomplete multiview data, a sample’s instance in a view
could bemissing. S is an𝑁×𝑃 zero-onematrix that indicates
which instances are missing; when S𝑖𝑗 = 0, sample 𝑖’s instance
in view 𝑗 is missing. S𝑗 denotes the 𝑗th column of S. Because
our method is based on kernel 𝑘-means, we assume that the
input multiview data is kernel data. For each view 𝑗, we have
a𝑁 ×𝑁 kernel matrix K𝑗. The details of how kernel data are
built can be found in Section 3.1, where datasets used in this
paper are introduced.

In a view 𝑗, some instances may be missing, which will
lead to an incomplete kernel K𝑗. To describe the visible
and missing parts of the incomplete kernel K𝑗, we define
an operatorK(row𝑆, col𝑆), which selects corresponding rows
and columns of K according to zero-one vectors row𝑆 and
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Figure 1: A simple example of notation. S𝑗 indicates that only the
instance of the first sample is visible in view 𝑗. S̃𝑗 is derived from S𝑗.
The kernel matrix of view 𝑗 is K𝑗. K𝑗 can be divided into four parts
according to S𝑗 and S̃𝑗. It is notable that only K𝑗(S𝑗, S𝑗) is visible.

col𝑆 (where 1 indicates selected). Moreover, we define S̃𝑗 =
1 − S𝑗. Thus K𝑗(S𝑗, S𝑗) is the visible part of the kernel matrix,
while K𝑗(S𝑗, S̃𝑗), K𝑗(S̃𝑗, S𝑗), and K𝑗(S̃𝑗, S̃𝑗) are the missing
parts. Figure 1 shows a simple example of notation with three
samples.

2.2. Kernel 𝑘-Means. Here, kernel 𝑘-means refers to the 𝑘-
means method developed for kernel data. Define a mapping
fromX to a reproducing kernel Hilbert spaceH : 𝜙(⋅) : 𝑥 ∈
X → H. {𝑥𝑖}𝑛𝑖=1 ∈ X is the sample set. A zero-onematrixZ ∈{0, 1}𝑁×𝐾 is used to store cluster information, where Z𝑖𝑐 = 1
indicates that sample 𝑖 is in cluster 𝑐. The 𝑘-means objective
in kernel space is as follows:

min
Z∈{0,1}𝑁×𝐾

𝐾∑
𝑐=1

𝑁∑
𝑖=1

Z𝑖𝑐
𝜙 (𝑥𝑖) − 𝜇𝑐22

s.t. 𝐾∑
𝑐=1

Z𝑖𝑐 = 1, 𝑖 = 1, . . . , 𝑁,
(1)

where 𝜇𝑐 is the average of samples in cluster 𝑐. The num-
ber of samples in cluster 𝑐 is 𝑁𝑐 = ∑𝑁𝑖=1 Z𝑖𝑐, such that𝜇𝑐 = (1/𝑁𝑐) ∑𝑁𝑖=1 Z𝑖𝑐𝜙(𝑥𝑖). The kernel matrix is denoted
by K, where K𝑖𝑗 = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗). Define matrix L =
diag([𝑁−11 , 𝑁−12 , . . . , 𝑁−1𝑘 ]), so that the equivalentmatrix form
of (1) is as follows:

min
Z∈{0,1}𝑁×𝐾

tr (K) − tr (L1/2Z𝑇KZL1/2)
s.t. Z1𝐾 = 1𝑁,

(2)

where tr(⋅) is the trace operator and 1𝐾 is a 𝐾-length vector
in which all elements are 1.

The discreteness of Z makes (2) difficult to solve. An
approximated problem that is easier to solve can be arrived
at by relaxing the discreteness constraints on Z. By denoting

U = ZL1/2, the approximated problem can be expressed as
follows:

min
U∈R𝑁×𝐾

tr [K (I − UU𝑇)]
s.t. U𝑇U = I. (3)

The optimal U can be solved by obtaining eigenvectors
corresponding to 𝑘 larger eigenvalues of K [9]. Although U
contains the cluster indicator information, 𝑘-means should
be performed on U to recover the actual clustering label.

2.3. Finding the Consistent Decision. So as to consider the
consistency between views, we propose to find a consistent
clustering decision according to the clustering results of
different views. Suppose U𝑗 is the eigenvector matrix found
by kernel 𝑘-means in view 𝑗. U𝑗, while not the actual
clustering label of view 𝑗, does store the cluster information.
Accordingly, we can find a matrix U∗ that is consistent with
all U𝑗 and then recover the final decision from U∗.

To find the consistent U∗, it is necessary to define
the similarity between U∗ and U𝑗. Inspired by [3, 19], the
similarity is defined as

𝐿 (U𝑗,U∗) = ⟨ U𝑗U𝑇𝑗U𝑗U𝑇𝑗 𝐹 ,
U∗U∗𝑇U∗U∗𝑇𝐹⟩, (4)

where ‖ ⋅ ‖𝐹 is the Frobenius norm. Adding regularization
U∗𝑇U∗ = I on U∗, we have

𝐿 (U𝑗,U∗) = tr (U𝑗U𝑇𝑗U∗U∗𝑇) . (5)

There may be other possible definitions of similarity between
U𝑗 and U∗. However, (4) is chosen because it allows an easy
alternating optimization for the proposed method.

As expected that the consistent decision should be similar
to the kernel 𝑘-means result of each view, we maximize the
sum of similarities to find the consistent decision as follows:

𝑃∑
𝑗=1

𝐿 (U𝑗,U∗) = 𝑃∑
𝑗=1

tr (U𝑗U𝑇𝑗U∗U∗𝑇) . (6)

It is notable that each view is considered to be equally
important in (6). If the importance of each view is prior
knowledge, we can weigh the views differently and adapt (6)
to a weighted sum of similarities. However, in this paper, we
maintain the same weight for all views for model simplicity.
Although learning the accurate weights of views is valuable
under circumstances where there are some views with heavy
noise, it is beyond the scope of this paper.

2.4. Objective Function. If all views are complete, it is easy
to find the consistent decision by maximizing (6). When
some views are incomplete, however we need to fill the
corresponding kernels of those views for kernel 𝑘-means. We
expect that these filled kernels will lead to better clustering
in each view and a consistent decision. In other words, the
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kernel filling is guided by both the clustering objective in
each view and the consistency between views. So the filling
procedure considers both the data structure within each
view and the relationship between views. To achieve this, we
propose the objective function as follows:

min
{U𝑗},U∗,{K𝑗}

𝑃∑
𝑗=1

tr [K𝑗 (I − U𝑗U
𝑇
𝑗 )] − 𝛽 𝑃∑

𝑗=1

𝐿 (U𝑗,U∗)
s.t. U𝑇𝑗U𝑗 = I, ∀𝑗 = 1, . . . , 𝑃,

U∗𝑇U∗ = I,
K𝑗 (S𝑗, S𝑗) = K̂𝑗 (S𝑗, S𝑗) , ∀𝑗 = 1, . . . , 𝑃,
K𝑗 ⪰ 0, ∀𝑗 = 1, . . . , 𝑃,

(7)

where 𝐿(U𝑗,U∗) = tr(U𝑗U𝑇𝑗U∗U∗𝑇). K𝑗 is the kernel that
needs to be learned, which should be positive semidefinite.
K̂𝑗(S𝑗, S𝑗) is the visible part of the original kernel data. The
third constraint actually forces K𝑗(S𝑗, S𝑗) to be the same as
the original kernel data. However, K𝑗(S̃𝑗, S𝑗), K𝑗(S𝑗, S̃𝑗), and
K𝑗(S̃𝑗, S̃𝑗) still need to be optimized.

It is notable that the objective function consists of two
parts. ∑𝑃𝑗=1 tr[K𝑗(I − U𝑗U𝑇𝑗 )] is the sum of kernel 𝑘-means
objective in each view, and ∑𝑃𝑗=1 𝐿(U𝑗,U∗) is the term
designed to model between-view consistency. A parameter 𝛽
is added to balance the importance of single view clustering
performance and the consistency between views.

Remark 1. Like the method proposed in [18], our method
simultaneously fills incomplete kernels and performs mul-
tiview clustering. However, there are also major differences
between the two methods. In [18], multiview clustering is
achieved by learning the best combination of kernels for the
best clustering performance, which overlooks the consistency
between views. Differently, our method learns a consensus
clustering decision from each view’s kernel 𝑘-means result,
which explicitly models the consistency. More importantly,
our method does not simply revise the method in [18]
incrementally by adding a consistency regularization term;
instead, we propose a new objective function that inherits
the advantages of simultaneously performing imputation and
multiview clustering.

Remark 2. The strategy of learning consistent clustering
decision was also applied in [3, 19]. The former work is based
on spectral clustering, while the latter one is based on kernel𝑘-means. But it is worth noting that these works cannot deal
with the incomplete multiview situation.

2.5. Optimization. Optimizing all variables of (7) in one step
is difficult. Instead, we develop an algorithm to solve the
problem where U𝑗, U∗, and K𝑗 are optimized alternatively.
The optimal solutions of the subproblems can be found easily,
and the whole alternating updating process is guaranteed to
converge to a local minimum.

2.5.1. UpdatingU𝑗. When we only optimizeU𝑗, the subprob-
lem has a similar form to kernel 𝑘-means and can be solved
by means of eigenvalue decomposition in a similar way. The
subproblem of updating U𝑗 is as follows:

max
U𝑗

tr [U𝑇𝑗 (K𝑗 + 𝛽U∗U∗𝑇)U𝑗]
s.t. U𝑇𝑗U𝑗 = I. (8)

2.5.2. UpdatingU∗. Similarly, the subproblemof updatingU∗
can be solved by means of eigenvalue decomposition after
reformulation. The subproblem of updating U∗ is as follows:

max
U∗

𝑃∑
𝑗=1

tr (U𝑗U𝑇𝑗U∗U∗𝑇)
s.t. U∗𝑇U∗ = I.

(9)

Equation (9) is equivalent to the following optimization
problem:

max
U∗

tr
{{{U∗𝑇( 𝑃∑

𝑗=1

U𝑗U
𝑇
𝑗)U∗

}}}
s.t. U∗𝑇U∗ = I.

(10)

2.5.3. UpdatingK𝑗. The subproblem forK𝑗 is an optimization
problem with positive semidefinite constraint. Let V𝑗 = I −
U𝑗U𝑇𝑗 , so that the subproblem is as follows:

min
K𝑗

tr (K𝑗V𝑗)
s.t. K𝑗 (S𝑗, S𝑗) = K̂𝑗 (S𝑗, S𝑗) ,

K𝑗 ⪰ 0.
(11)

BecauseK𝑗 is positive semidefinite,K𝑗 can be decomposed as
A𝑗A𝑇𝑗 , where A𝑗 is a𝑁× 1 vector [15, 18]. If we obtain A𝑗, K𝑗
can be recovered.

For clarity, we divide A𝑗 into two parts: AV
𝑗 = A𝑗(S𝑗, 1)

and A𝑚𝑗 = A𝑗(S̃𝑗, 1). AV
𝑗 is selected according to the indexes

of the visible instance in view 𝑗, andA𝑚𝑗 is selected according
to the indexes of the missing instance in view 𝑗. Therefore,
the kernel matrix of view 𝑗 can be divided into four parts as
follows:

KVV
𝑗 = K𝑗 (S𝑗, S𝑗) = AV

𝑗A
V
𝑗
𝑇,

KV𝑚
𝑗 = K𝑗 (S𝑗, S̃𝑗) = AV

𝑗A
𝑚
𝑗
𝑇,

K𝑚V𝑗 = K𝑗 (S̃𝑗, S𝑗) = A𝑚𝑗 A
V
𝑗
𝑇,

K𝑚𝑚𝑗 = K𝑗 (S̃𝑗, S̃𝑗) = A𝑚𝑗 A
𝑚
𝑗
𝑇.

(12)

It is notable thatKVV
𝑗 is the only visible part.The𝑁×𝑁matrix

V𝑗 can be divided into four corresponding parts in a similar
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way to K𝑗. According to the first constraint in (11), AV
𝑗A

V
𝑗
𝑇 =

K̂𝑗(S𝑗, S𝑗). To obtainA𝑚𝑗 , we have a problem equivalent to (11)
as follows:

min
A𝑚
𝑗

tr([AV
𝑗;A𝑚𝑗 ]𝑇 [V

VV
𝑗 VV𝑚
𝑗

V𝑚V𝑗 V𝑚𝑚𝑗
] [AV
𝑗;A𝑚𝑗 ]) . (13)

Taking the derivative of (13), we can obtain the closed-form
solution for A𝑚𝑗 :

A𝑚𝑗 = − (VV𝑚
𝑗 V𝑚𝑚𝑗

−1)𝑇AV
𝑗. (14)

By denoting VV𝑚
𝑗 V𝑚𝑚𝑗

−1 as VV𝑚/𝑚𝑚
𝑗 , the missing parts of K𝑗

can be calculated as

KV𝑚
𝑗 = −K̂𝑗 (S𝑗, S𝑗)VV𝑚/𝑚𝑚

𝑗 ,
K𝑚V𝑗 = − (VV𝑚/𝑚𝑚

𝑗 )𝑇 K̂𝑗 (S𝑗, S𝑗) ,
K𝑚𝑚𝑗 = (VV𝑚/𝑚𝑚

𝑗 )𝑇 K̂𝑗 (S𝑗, S𝑗)VV𝑚/𝑚𝑚
𝑗 .

(15)

The overall optimization process is summarized in Algo-
rithm 1.

2.6. Convergence Property. In this subsection, we provide
a theoretical proof of the convergence of the proposed
optimization algorithm. First, we need to prove that the
objective value of (7) is lower-bounded.

Lemma 3. if K ⪰ 0, U𝑇U = I, then tr[K(I − UU𝑇)] ≥ 0.
Proof. DenotingU = [u1, . . . , u𝐾], becauseU𝑇U = I, we have
UU𝑇U = U. So UU𝑇u𝑗 = u𝑗, 1 ≤ 𝑗 ≤ 𝐾. This implies that
UU𝑇 has𝐾 eigenvalues with 1. Moreover, because the rank of
UU𝑇 is not larger than 𝐾, the remaining 𝑁 − 𝐾 eigenvalues
are 0.

Therefore, I − UU𝑇 is positive semidefinite and can thus
be decomposed as kk𝑇. Because K ⪰ 0, tr[K(I − UU𝑇)] =
tr(Kkk𝑇) = k𝑇Kk ≥ 0.
Lemma 4. One has the following:

−tr (U𝑗U𝑇𝑗U∗U∗𝑇) ≥ −𝑁. (16)

Proof. According to the definitions of Frobenius norm and
trace, we have the following:

U𝑗U𝑇𝑗 − U∗U∗𝑇
2𝐹 = tr [(U𝑗U𝑇𝑗 − U∗U∗𝑇)2]

= tr [(U𝑗U𝑇𝑗 )2]
+ tr [(U∗U∗𝑇)2]
− 2tr (U𝑗U𝑇𝑗U∗U∗𝑇) .

(17)

Input:
Incomplete multi-view data: K̂1, K̂2, . . . , K̂𝑃
Indicator matrix: S
Number of clusters: 𝐾
Balance parameter: 𝛽
Stopping gap: 𝜖

Output:
The consistent decision: U∗
Filled kernels: K1,K2, . . . ,K𝑃

(1) Initialize filled kernels with zero-filling
(2) Initialize {U𝑗}𝑃𝑗=1 by performing kernel-𝑘means on

initialized filled kernels
(3) Initialize U∗ by Eq. (10)
(4) repeat
(5) Update {K𝑗}𝑃𝑗=1 by solving Eq. (11)
(6) Update {U𝑗}𝑃𝑗=1 by solving Eq. (8)
(7) Update U∗ by solving Eq. (10)
(8) until Objective difference smaller than 𝜖
(9) return U∗, {K𝑗}𝑃𝑗=1

Algorithm 1: Consensus kernel 𝑘-means clustering for incomplete
multiview clustering.

Following the constraints in (7), we have U𝑇𝑗U𝑗 = I and

U∗𝑇U∗ = I. So, tr[(U𝑗U𝑇𝑗 )2] = tr[(U∗U∗𝑇)2] = tr(I) =
𝑁. Finally, we have −tr(U𝑗U𝑇𝑗U∗U∗𝑇) = (1/2)‖U𝑗U𝑇𝑗 −
U∗U∗𝑇‖2𝐹 − 𝑁 ≥ −𝑁.

According to Lemmas 3 and 4, the objective value of (7)
is lower-bounded. Moreover, because we obtain the optimal
solution to the corresponding subproblem in each step of
the alternate updating, the objective value of (7) is therefore
nonincreasing during this process. Since the objective value
is lower-bounded and nonincreasing, the alternate updating
algorithm is guaranteed to converge.

3. Experiments

3.1. Datasets. One incomplete multiview dataset and three
complete multiview datasets are used in the experiments,
as shown in Table 1. 3 Sources, the incomplete multiview
dataset, has been compiled from three news sites: BBC,
Reuters, and the Guardian. The dataset contains 416
news stories, and articles for some stories are missing
from each site. More information about 3 Sources can
be found in Table 2. Artificial incomplete multiview
data are generated from complete multiview datasets
using a random missing mechanism. The details of the
generating process can be found in Section 3.3. For
Digital (https://github.com/HoiYe/DigitalDataset), Flower
17 (http://www.robots.ox.ac.uk/∼vgg/data/flowers/17/) and
Flower 102 (http://www.robots.ox.ac.uk/∼vgg/data/flowers/102/),
and precomputed kernel matrices are used. As for 3 Sources,
we generate Gaussian kernels with widths set as the mean of
sample pair distances.

https://github.com/HoiYe/DigitalDataset
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/
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Figure 2: Performance comparison on real-world dataset in terms of NMI.

3.2. Compared Methods. The proposed method is compared
with three state-of-the-art methods including one of the
latest imputation methods and two representative subspace
methods. The best clustering result of a single view and
the multiview clustering result with zero-filling kernels, as
important baselines, are also compared.

Best Result of a Single View (BSV). We perform clustering
with the remaining samples in each view and choose the
best. Because the view is incomplete, the missing samples are
assigned random labels, after which the overall performance
is reported.

Multiple Kernel 𝑘-Means (MKKM). Multiple kernel 𝑘-means
is applied to the zero-filling kernels.

Multiple Kernel 𝑘-Means with Incomplete Kernels (MKKIK).
The algorithm proposed in [18] learns the missing parts and
performs multiple kernel 𝑘-means simultaneously.

Partial View Clustering (PVC). The subspace method pro-
posed in [12], which learns a subspace where two views’
instances of the same sample are similar.

Incomplete Multimodal Visual Data Grouping (IMG). The
subspace method proposed in [14], which added a graph
Laplacian term to learn a latent global graph representation
and the subspace simultaneously.

𝑘-Means-BasedConsensus Clustering (KCC).Thework in [20]
proposed a unified framework for 𝑘-means-based consensus
clustering that can handle cases with incomplete partitions.
Although this work does not focus on incomplete multiview
clustering specifically, if we use the clustering results of each
of the views as input partitions, it can deal with incomplete
multiview clustering.

3.3. Experimental Settings. In our experiments, the number
of clusters is set as the true number of classes. Kernels are
centralized and scaled during the preprocessing procedure

following the suggestion put forward in [21]. Incompletemul-
tiview data is manually produced for the complete multiview
datasets. If the incomplete samples ratio (ISR) is 𝜖, then 𝜖×𝑁
samples are randomly selected as incomplete. We keep the
probability that a view is missing set at 𝑞0 = 0.5. A random
vector g = (g1, . . . , g𝑃) ∈ [0, 1]𝑃 is generated for each
incomplete sample. The 𝑝th view of an incomplete sample
exists only if g𝑝 > 𝑞0. Because at least one view should
always exist for a sample, a random vector is accepted until
there is one view available for this sample. 𝜖 is varied from
0.1 to 0.9 to produce different missing patterns. For each
value of 𝜖, 10 random missing patterns are generated and the
average performance reported. For the proposedmethod, the
parameter 𝛽 is searched for in [10−5, 10−4, . . . , 104, 105]/𝑃.𝑃 represents the number of views, which is divided to
avoid the scale difference caused by view number. For the
relatively large dataset Flower 102, we search a smaller
range: [10−3, 10−2, . . . , 102, 103]/𝑃. For PVC, we use the code
provided by the authors, and the parameter is tuned from[10−6, 105, . . . , 1] following the suggestion in [12]. For IMG,
the sameparameter as in PVC is set as the tuned value in PVC,
and the other two parameters are set as advised in [14]. We
use normalized mutual information (NMI) as the clustering
evaluation [3, 12].

3.4. Experimental Results. Figure 2 shows the results on 3
Sources, the real-world incomplete multiview dataset. BSV
performs worse as it only considers information from one
view. Using the multiview information fusion, MKKM with
zero-filling reaches a better NMI than BSV, while MKKIK
outperforms MKKM for a more reasonable imputation.
The proposed method achieves a significant NMI boost
of about 30% compared with MKKIK. Our method fills
the incomplete kernels to make the clustering result of
each view consistent, while MKKIK does not consider the
consistency.We suggest that theremay be a strong underlying
consistency between views on 3 Sources, so the proposed
method outperforms MKKIK in part due to the fact that
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Table 1: Overview of datasets.

Dataset Number of samples Number of views Number of clusters
3 Sources 416 3 6
Digital 2000 3 10
Flower 17 1360 7 17
Flower 102 8189 4 102

Performance on Digital Performance on Flower 102
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Figure 3: Performance comparison on synthetic incomplete multiview datasets in terms of NMI.

this consistency is considered. Moreover, our method also
outperforms KCC, which is a method that does consider
the consistency; we suggest that this occurs because KCC
does not have an imputation process. In KCC, the consensus

clustering decision is learned from the remaining incomplete
partitions.

Figure 3 summarizes the results on the three artificial
incomplete multiview datasets: Flower 17, Flower 102, and



8 Computational Intelligence and Neuroscience

Table 2: Details of the 3 Sources dataset.

Articles Missing ratio
BBC 352 0.1538
The Guardian 302 0.2740
Reuters 294 0.2933

Performance on Digital view 1 and view 2 Performance on Digital view 2 and view 3

Performance on Digital view 1 and view 3
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Figure 4: Performance comparisons on synthetic incomplete two-view data from Digital in terms of NMI.

Digital. It can be observed that the proposed method con-
stantly achieves the best NMI compared with the state-of-
the-art methods with different ISRs. Moreover, the proposed
method significantly outperforms the second-best method
with different ISRs. For example, the proposed method

outperforms the second-best method by around 20% on
Digital when ISR is 0.1. It is also notable that when ISR
increases, the performance of all methods decreases, which
validates the degenerating effect of incomplete views. In
Figure 4, we compare our method with two additional
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Figure 5: Objective value curve and NMI curve against iteration number.

methods, PVC and IMG, which are representative subspace
methods that focus on two views. We report the results on
the view pairs of Digital. The proposed method constantly
exhibits better performance than all other methods on all
view pairs. This shows that the proposed method can also
perform better than the state-of-the-art subspace methods in
a two-view situation.

To summarize, the proposed method demonstrates its
superiority against the state-of-the-art methods on both
synthetic and real-world multiview datasets. We suggest
that the imputation in the proposed method considers both
clustering performances in each view and the consistency
between views, which contributes to the superiority of the
proposed method.

3.5. Convergence Study. As was proved in the previous sec-
tion, the proposed algorithm is guaranteed to be convergent.
Here we empirically validate the convergence property, as
illustrated in Figure 5. Due to space limitations, we show the
objective curve andNMI curvewhen incomplete sample ratio
is 0.9 for 3 Sources and Digital. The objective values decrease
as the iteration number increases, and the objective values
converge within 30 iterations. Although the NMIs do not
grow monotonically, they achieve relatively large value when
the number of iterations reaches 30.

3.6. Parameter Study. Figure 6 illustrates how parameter 𝛽
influences clustering performance. On Digital, Flower 102,
and Flower 17, we present the performance curves for three
ISRs: 0.3, 0.5, and 0.7. On 3 Sources, performance is optimal
when 𝛽 = 102/𝑃. On Digital, the performance remains
relatively stable as the parameter changes. On Flower 102,
the performance maintains a relatively high level when 𝛽

is greater than 10−2/𝑃. On Flower 17, the performance is
sensitive to the parameterwhen𝛽 is larger than 10/𝑃. Overall,
across the four datasets, the performance tends to be better
when 𝛽 is larger. According to (7), when 𝛽 is larger, the
clustering results between views should have greater consis-
tency. Thus, better performance when 𝛽 is larger indicates
relatively strong consistency between views on these datasets.
It should also be emphasized that although the performance
on Flower 17 is relatively sensitive to 𝛽, Figure 3 indicates that
the proposed method still outperforms other methods for
worse choices of 𝛽. When applying the proposed method on
other datasets, we recommend a comparatively large value of𝛽 in cases when views share a substantial amount of common
information.

4. Conclusion

In this paper, we have proposed a consensus kernel 𝑘-means
clustering method for incomplete multiview data in which a
consensus clustering decision and the missing parts of the
incomplete kernels are learned. In this way, the imputation
of incomplete kernels leads to better clustering of each view
and maintains consistency between views, which benefits
the final clustering decision. Comprehensive experiments
validate the clustering performance improvement of the
proposed method compared with state-of-the-art methods.
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Figure 6: Parameter studies on different datasets.

Acknowledgments

This work is supported by National Natural Science Founda-
tion of China (no. 61672528 and no. 61403405).

References

[1] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,”
2013, https://arxiv.org/abs/1304.5634.

[2] S. Sun, “A survey of multi-view machine learning,” Neural
Computing and Applications, vol. 23, no. 7-8, pp. 2031–2038,
2013.

[3] A. Kumar, P. Rai, and H. Daumé, “Co-regularized multi-
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