
Research Article
A Wavelet Based Multiscale Weighted Permutation Entropy
Method for Sensor Fault Feature Extraction and Identification

Qiaoning Yang and Jianlin Wang

College of Information Science & Technology, Beijing University of Chemical Technology,
Beijing City Chaoyang District North Third Ring Road 15, Beijing 100029, China

Correspondence should be addressed to Jianlin Wang; wangjl@mail.buct.edu.cn

Received 20 February 2016; Revised 5 May 2016; Accepted 8 May 2016

Academic Editor: Fanli Meng

Copyright © 2016 Q. Yang and J. Wang.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sensor is the core module in signal perception and measurement applications. Due to the harsh external environment, aging, and
so forth, sensor easily causes failure and unreliability. In this paper, three kinds of common faults of single sensor, bias, drift, and
stuck-at, are investigated. And a fault diagnosis method based on wavelet permutation entropy is proposed. It takes advantage of
the multiresolution ability of wavelet and the internal structure complexity measure of permutation entropy to extract fault feature.
Multicluster feature selection (MCFS) is used to reduce the dimension of feature vector, and a three-layer back-propagation neural
network classifier is designed for fault recognition.The experimental results show that the proposedmethod can effectively identify
the different sensor faults and has good classification and recognition performance.

1. Introduction

At present, the sensor is widely used in various processes
to obtain a variety of physical quantity of data. In practical
applications, due to the harsh external environments, battery
depletion, aging, and other reasons, the sensor is prone to
failure or even damage [1, 2]. The data obtained from the
fault sensor has low reliability, and the subsequent judgment,
recognition, decision, and control based on these low quality
data will lose the meaning. The reliability of sensor data
and the identification of sensor fault are important research
subjects. Sensor fault identification mainly consists of two
aspects: fault feature extraction and fault pattern classification
[3, 4].

Wavelet transform is a widely used time-frequency anal-
ysis technology. Using wavelet transform, signals are decom-
posed into multilevel time-frequency components. Suitable
wavelet basis for wavelet decomposition is important for
fault information representation [5]. The selection method
of wavelet base includes many kinds, such as the minimum
joint entropy standard, the minimum conditional entropy
standard, the maximum mutual information criterion, the
minimum relative entropy standard, and maximum energy-
Shannon entropy criterion [6, 7].Maximum energy-Shannon

entropy criterion takes energy intensity and energy distribu-
tion into consideration and is capable of extracting the sensor
fault variations effectively. The wavelet basis with maximum
entropy Shannon energy ratio is themost appropriate wavelet
basis.

After wavelet decomposition, the main problem is how to
extract fault information from the coefficients in decomposed
subbands. The traditional Shannon entropy only considers
the probability distribution of the signal value and does not
consider the order structure of the signal value. Paper [8]
combines the concept of Shannon entropy with the theory
of symbol to propose a new complexity measure, which is
the permutation entropy (PE). Permutation entropy is a time
series complexity measure based on comparison of neigh-
borhood values and the numerical mapping into symbol
sequence pattern. It can describe the local structure features
of time series signal and enlarge the subtle changes in the
signal with low complexity and antinoise ability. PE is a kind
of effective method for classification of different signal state,
identification of the breakpoint in time sequence, prediction
of the future trend of the time series, determination of causal
relationship [9], and so forth. In order to overcome the
shortcomings of PE’s single scale, Aziz andArif [10] proposed
a multiscale permutation entropy (MPE) to estimate the
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complexity in different scales of time series.MPE candescribe
the structural characteristics and complexity of time series
in multiple scales and is widely used in heart sound signal
analysis [10] and bearing fault diagnosis [11].

On the other hand, the disadvantage of PE is the lack
of amplitude information about the signal except sequential
pattern [12]. Paper [13] puts forward the weighted permuta-
tion entropy (WPE). It extracts the sequential pattern of time
series and retains the amplitude information of time series.
Although the amplitude information of time series is used by
WPE, it can only reflect the complexity of time series in one
single scale. Multiscale analysis and weighted permutation
entropy are combined, and multiscale weighted permutation
entropy (MWPE) emerges. MWPE represents the complexity
measure of the signal on multiscale and reflects the microlo-
cal structure complexity and the amplitude information of
the signal. It is widely used in a variety of signal analysis,
such as analysis for bubbly oil-in-water [14], flow bearing
fault diagnosis [15–17], biomedical signal analysis [18–21], and
stock information analysis [22].

From the viewpoint of structure feature presentation,
PE can extract the local microstructure feature and wavelet
transform can extract the global macrostructure feature.
So the combination of wavelet transform with MWPE can
comprehensively represent the feature of the sensor fault.
A wavelet based multiscale weighted permutation entropy
(WMWPE) is proposed in this paper. WMWPEs of different
subbands are used to extract signal features. Because the
dimensions of WMWPE features are relatively high, it may
cause low identification accuracy and time consuming. So
the selection of the most important features in WMWPEs
is needed [23, 24]. In this paper, the multicluster feature
selection (MCFS) [23] is used as feature selection method,
which takes into account both the importance of each feature
itself and the correlation between all features. By sorting
the score of MCFS, the first 𝐾 features with larger MCFS
score are selected as the 𝐾 important feature. Through the
MCFS feature selection algorithm, the recognition accuracy
is guaranteed, the feature vector dimension is reduced, and
the computational efficiency is improved.

Naturally, after feature selecting using MCFS, the mul-
tifault classifier is needed to conduct the fault diagnosis.
A three-layer BP neural network is adopted as classifier to
identify fault. The 𝐾 features selected by MCFS are fed into
the classifier to identify sensor fault.

The remainder of this paper is organized as follows.
Section 2 introduces permutation entropy and multiscale
permutation entropy. In Section 3, the wavelet based multi-
scale weighted permutation entropy and corresponding fault
identification method are presented in detail. Using practical
data, the performance of the proposedmethod is investigated
in Section 4. Section 5 makes some concluding remarks.

2. Permutation Entropy and Multiscale
Permutation Entropy

2.1. Permutation Entropy. The permutation entropy (PE) is
defined as follows [8]. Given a time series 𝑥(𝑛)with the length

𝑁, then the 𝑚 dimensional embedding vector at 𝑖 time is
defined as
𝑋
𝑚

𝑖
= {𝑥 (𝑖) , 𝑥 (𝑖 + 𝜏) , . . . , 𝑥 (𝑖 + (𝑚 − 1) 𝜏)} ,

𝑖 = 1, 2, . . . , 𝑁 − (𝑚 − 1) 𝜏,

(1)

where𝑚 is the embedding dimension and 𝜏 is time delay.𝑋𝑚
𝑖

has a permutation 𝜋
𝑟0𝑟1⋅⋅⋅𝑟𝑚−1

, if it satisfies that

𝑥 (𝑖 + 𝑟
0
𝜏) ≤ 𝑥 (𝑖 + 𝑟

1
𝜏) ≤ ⋅ ⋅ ⋅ ≤ 𝑥 (𝑖 + 𝑟

𝑚−1
𝜏) , (2)

where 0 ≤ 𝑟
𝑖
≤ 𝑚 − 1 and 𝑟

𝑖
̸= 𝑟
𝑗
. There are 𝑚! possible

permutations for an 𝑚-tuple vector. For each permutation,
we determine the relative frequency by

𝑝 (𝜋
𝑘
)

=
# {𝑖 | 1 ≤ 𝑖 ≤ 𝑁 − (𝑚 − 1) 𝜏, 𝑋

𝑚

𝑖
has type 𝜋

𝑘
}

𝑁 − (𝑚 − 1) 𝜏
,

(3)

where ∑𝐾
𝑘=1
𝑝(𝜋
𝑘
) = 1, 1 ≤ 𝐾 ≤ 𝑚!, and #{} represents the

number of one set.
The definition of PE with𝑚 dimension is defined as

𝐻PE (𝑚) = −
𝐾

∑

𝑘=1

𝑝 (𝜋
𝑘
) ln𝑝 (𝜋

𝑘
) . (4)

The maximum value of𝐻PE(𝑚) is ln(𝑚!), when all possi-
ble permutations appear with the same probability.Therefore,
the normalized permutation entropy (NPE) can be obtained
as

𝐻NPE (𝑚) =
𝐻PE (𝑚)

ln (𝑚!)
. (5)

For any time series, 0 ≤ 𝐻NPE(𝑚) ≤ 1 is satisfied. The
value of 𝐻PE(𝑚) depends on the selection of the embedding
dimension 𝑚 and delay 𝜏. If 𝑚 is too small, the scheme will
not work well since there are too few distinct states. However,
it is often inappropriate to choose 𝑚 as a large value for
detecting the dynamic change of a time series.

2.2. Weighted Permutation Entropy. Weighted permutation
entropy (WPE) incorporates significant amplitude informa-
tion from the time series when retrieving the sequential pat-
terns. The main motivation aims at saving useful amplitude
information carried by the signal. WPE is defined as follows
[13].

Given a time series 𝑥(𝑛) and 𝑚 dimensional embedding
vector 𝑋𝑚

𝑖
as (1) shows, the relative frequency of each motif

in (3) is modified to include the weighted information 𝑤
𝑖
for

each 𝑋𝑚
𝑖
. Weight values 𝑤

𝑖
are calculated in (6) based on the

variance or energy of each subsequence𝑋𝑚
𝑖
:

𝑤
𝑖
=
1

𝑚

𝑚

∑

𝑙=1

(𝑥
𝑖+(𝑙−1)𝜏

− 𝑋
𝑚

𝑖
)
2

, (6)

where𝑋𝑚
𝑖
is the mean of𝑋𝑚

𝑖
:

𝑋
𝑚

𝑖
=
1

𝑚

𝑚

∑

𝑙=1

𝑥
𝑖+(𝑙−1)𝜏

. (7)
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Figure 1: Coarse-grained procedure.

Thus, each pair of weight value 𝑤
𝑖
and motif type 𝜋

𝑘
can

represent full feature for each vector 𝑋𝑚
𝑖
. By using weight

value, WPE extends the concept of PE with the addition of
amplitude information prior to the computing of probability
occurrence of each motif defined in (6). Weighted relative
frequency is defined as

𝑝
𝑤
(𝜋
𝑘
)

=
∑ {𝑤
𝑖
| 1 ≤ 𝑖 ≤ 𝑁 − (𝑚 − 1) 𝜏, 𝑋

𝑚

𝑖
has type 𝜋

𝑘
}

∑𝑤
𝑖

.

(8)

ThenWPE of time series 𝑥(𝑛) is

𝐻WPE (𝑚) = −
𝐾

∑

𝑘=1

𝑝
𝑤
(𝜋
𝑘
) ln𝑝
𝑤
(𝜋
𝑘
) . (9)

2.3. Multiscale Weighted Permutation Entropy. Multiscale
analysis [22] is to obtain new time series of the original time
series by a coarse-grained size process, which can estimate
the complexity of time signals at different scales. Multiscale
weighted permutation entropy (MWPE) is the combination
of weighted permutation entropy and multiscale analysis.
MWPE can totally describe the microstructure complexity
and amplitude information of the time series on multiscale.

The MWPE procedure is summarized in the following
steps. Firstly, the original time series 𝑥(𝑛) = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
}

is divided into nonoverlappingwindows of length 𝑠. Secondly,
the data points inside each window are averaged by (10),
and the coarse-grained time series 𝑦𝑠

𝑗
is got. The schematic

illustration of the coarse-grained procedure is shown in
Figure 1. Consider the following:

𝑦
𝑠

𝑗
=
1

𝑠

𝑗𝑠

∑

𝑖=(𝑗−1)𝑠+1

𝑥
𝑖
, 1 ≤ 𝑗 ≤

𝑁

𝑠
. (10)

Weighted permutation entropy of 𝑦𝑠
𝑗
is MWPE, as shown in

MWPE (𝑥, 𝑠, 𝑚, 𝜏) =WPE (𝑦𝑠
𝑗
, 𝑚, 𝜏) . (11)

MWPE is a function of scale factor 𝑠 and represents the
complexity of time series on each scale. When 𝑠 = 1, MWPE

is the same as WPE; that is to say, WPE is a special form of
MWPE. For most of signals, the MWPE on one single scale
is not enough to describe complexity of the signal, and the
multiscale weighted permutation entropy is more suitable for
the analysis of all kinds of actual signals.

2.4. Parameters Selection. Before computing multiscale
weighted permutation entropy, four important parameters
including the length 𝑁 of time series data, embedding
dimension 𝑚, time delay 𝜏, and scale factor 𝑠 are needed to
set.

The value of PE mainly depends on the embedding
dimension 𝑚 and time delay 𝜏. Embedding dimension
𝑚 determines the number of sequential pattern, and the
maximum sequential pattern number is 𝑚!, so 𝑚 plays an
important role in calculating the probability of the sequential
pattern. If embedding dimension is too small (such as less
than 3), it is hard to differentiate the sequential patterns. If
the embedding dimension 𝑚 is too large (such as more than
8), calculation of PE is time consuming, and it is not easy to
observe the small changes in the signal [16].

The time delay 𝜏 is related to the sampling rate of the
signal. As [8] suggests, the time delay 𝜏 is set to 1 in this paper.

The length of time series 𝑁 has a great influence on the
calculation of PE, a larger𝑁will cause low computational effi-
ciency, and a smaller𝑁 cannot completely describe the com-
plexity of the time series.𝑁 ≥ 5𝑚! is recommended by [9].

To illustrate the rationality of parameters selection, some
experiments are conducted.The experiment data used in this
paper is 1-minute gas sensor data. Sampling rate is 100Hz and
the data has 6000 sampling points. Given that the scale factor
𝑠 is a fixed value, Figure 2 shows the weighted permutation
entropy (WPE) of four kinds of sensor data under different
embedding dimensions, m = 2–8, and the time delay 𝜏 = 1.
As shown in Figure 2, when 𝑚 = 5, WPE can separate the
four kinds of signals. So 𝑚 = 5 is feasible and is used in this
paper.

In Figure 3, it is easy to find that different 𝜏 almost has no
effect onWPE, so it is reasonable for the fact that 𝜏 is set to 1.

In this paper, the scale factor 𝑠 is set to 20. MWPEs on 20
scales are used as the features to identify and classify faults.
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3. Wavelet Based Multiscale Weighted
Permutation Entropy (WMWPE) and Fault
Identification Method

Although theMWPE takes advantage of the localmicrostruc-
ture information and amplitude information of signal, the
macrostructure information is not explored. Wavelet trans-
form is a powerful method to explore it and can be used to
extract the global macrostructure information of the signal.

So the combination of wavelet transform with MWPE can
comprehensively describe the multiple features of the signal.

3.1. WMWPE. Given the analyzed signal 𝑥(𝑛) and wavelet
decomposed level 𝐽, wavelet decomposed coefficients are
expressed as {𝐷

1
(𝑛), 𝐷

2
(𝑛), . . . , 𝐷

𝐽
(𝑛), 𝐴

𝐽
(𝑛)}, corresponding

to the coefficients 𝐷
1
(𝑛) of the first high frequency subband

(HF
1
), the coefficients 𝐷

2
(𝑛) of the second high frequency

subband (HF
2
), . . ., the coefficients 𝐷

𝐽
(𝑛) of the 𝐽 high

frequency subband (HF
𝐽
), and the coefficients 𝐴

𝐽
(𝑛) of the

𝐽 low frequency subband (LF
𝐽
). 𝐴
𝐽
(𝑛) belongs to the low

frequency subband, which represents the macrostructure of
the analyzed signal. So 𝐴

𝐽
(𝑛) is the preferable subband to

calculate WMWPE:

WMWPE (𝐴
𝐽
(𝑛) , 𝑠, 𝑚, 𝜏) =WPE (𝑦𝑠

𝑗
, 𝑚, 𝜏) , (12)

where 𝑦𝑠
𝑗
= (1/𝑠)∑

𝑗𝑠

𝑖=(𝑗−1)𝑠+1
𝐴
𝐽
(𝑛), 1 ≤ 𝑗 ≤ 𝑁

𝐽
/𝑠, 𝑁
𝐽
is the

number of coefficients in LF
𝐽
, and 𝑠 is the scale factor.

3.2. WMWPE Based Fault Identification Method. The
WMWPE based fault identification method takes advantage
of wavelet transform, WMWPE, MCFS, and BP-NN. It
provides a full working flow of feature selection and fault
identification as shown in Figure 4. Detailed procedures are
described as follows.

Step 1. Use maximum energy-to-Shannon entropy ratio cri-
terion to choose a proper wavelet base.

Step 2. The sensor signals are decomposed by the selected
wavelet base. A series ofwavelet subband signals are obtained,
and the appropriate subband signal is selected to extract
feature.

Step 3. Calculatemultiscale weighted permutation entropy of
the selected wavelet subbands, and WMWPEs are got.

Step 4. After feature extraction, calculate MCFS score of the
WMWPE features. According to the MCFS score ranked
from high to low, select the features corresponding to the top
𝐾MCFS score as the best subset of features.

Step 5. The selected 𝐾 features by MCFS are fed into BP-NN
classifier for sensor fault recognition.

4. Experiments and Result Analysis

In this paper, the experimental data set is the measurement
recordings collected from an array of 72 metal-oxide gas
sensor array-based chemical detection platform [25]. The
sampling rate of data is 100Hz. One-minute sampling data
(6000 sampling points) of each sensor is used as original data.
Three kinds of fault (bias, stuck-at, and drift) are injected into
original data. Each kind has 120 groups of data. For bias fault,
the bias constant is 2% of the average value of original data.
In each stuck-at fault, there are two segments of data with
constant value (98% of the average value of the original). In
drift fault groups, drift rate is 0.1% of the average value of
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original data. Normal sensor data and fault sensor data are
shown in Figure 5, respectively.

(1) Selection of Wavelet Subband. Before selection of wavelet
subband, the maximum energy-to-Shannon entropy ratio
criterion is used for wavelet base selection. More detailed
information can be found in [26]. Figure 6 is the average
WMWPE of 120 sensor signals after 3-level wavelet decom-
position. It is easy to find thatWMWPE of the low frequency
subband can easily differentiate the four kinds of sensor
signals (normal, bias, stuck-at, and drift) on different scale
factor 𝑠, and WMWPE of three high frequency subbands
cannot distinguish the four kinds of sensor signals. The
experiment results show that selecting the low frequency
subband for feature extraction is feasible.

(2) Feature Extraction and Fault Identification. After 3-level
wavelet decomposition, feature extraction on the third-level

low frequency subband is the further job. The WMWPEs of
the selected low frequency subband signal on 20 scales are
calculated.TheseWMWPEs will be fed into BP-NN classifier
to identify fault.

A three-layer BP-NN neural network is used as classifier
in the experiments. The hidden layer of the network has 10
neural nodes for learning. The network is trained by scaled
conjugate gradient back-propagation method. Mean squared
error is used as performance function. To obtain the gen-
eralized identification performance, 10-fold cross-validation
[27, 28] is used in this paper. In 10-fold cross-validation,
the proposed feature vectors are randomly partitioned into
10 equal sized subsets. Of the 10 subsets, a single subset is
retained as the validation data for testing, and the remaining 9
subsets are used as training data.The cross-validation process
is then repeated 10 times, with each of the 10 subsets used
exactly once as the validation data. The 10 results from the
folds can then be averaged to produce a single estimation.
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Figure 5: Normal sensor data and fault sensor data. (a) Normal data, (b) bias, (c) stuck-at, and (d) drift.

Table 1: Average identification accuracy and standard deviation of
20 WMWPEs of different subband.

Subband Average identification accuracy ± standard
deviation

LF
3 99.50% ± 0.08

HF
1 60.94% ± 1.42

HF
2 72.99% ± 0.64

HF
3 76.11% ± 0.65

Table 2: Identification results of WMWPE feature of LF
3
subband.

Actual type Identification results
Normal Bias Stuck-at Drift

Normal 99.43% ± 0.24 0% 0% 0.57% ± 0.24
Bias 0% 100% 0% 0%
Stuck-at 0% 0% 100% 0%
Drift 1.18% ± 0.17 0.28% ± 0.02 0% 98.54% ± 0.16

To illustrate the identification performance of WMWPE
on different subbands (HF

1
, HF
2
, HF
3
, and LF

3
), allWMW-

PEs of 20 scales are used to recognize faults. Table 1 shows
the average identification accuracy of different subband.
WMWPE of LF

3
has much better identification performance

than that of other subbands. The average identification
accuracy of LF

3
is 99.5% and about 20% higher than others.

At the same time, LF
3
has the smallest identification standard

deviation than others. It explains the rationality of selecting
WMWPE of LF

3
subband as features.

Table 2 is the detailed identification results of WMWPE
from LF

3
subband. For bias and stuck-at, the identification

accuracy is 100%.There is false judgment in the identification
of normal and drift signal. The reason is that the local
structure pattern and the amplitude of bias and stuck-at are
significantly different from those of normal signal. So it is easy
to use WMWPE to identify them. Although the drift causes
the change of signal amplitude, small change of the amplitude
may bring little change to the sequential pattern. And some
false negative results exists.

(3) Feature Selection. There exists large consuming time and
information redundancy, if selecting all 20 scales ofWMWPE
as features and implementing classification. In order to
improve the efficiency of the proposedmethod,MCFS is used
to reduce the dimension of feature vector.

After calculating MCFS of 20 WMWPE features, the top
𝐾 features with larger MCFS score are selected as the inputs
of BP-NN.The feature selection result and the corresponding
identification accuracy are shown in Table 3.

Table 3 shows that the average identification accuracy and
standard deviation obtained by 5 new selected features are
almost the same as those of all 20 features. The experiment
results show that, using feature selection algorithm MCFS,
the dimension of the feature vector is reduced from 20 to 5,
but the recognition accuracy is maintained at about 99.5%
with standard deviation of 0.08. That is because MCFS not
only considers the classification ability of single feature, but
also considers the relationship between the features.

(4) Performance Comparison of Different Features. In order
to further illustrate the superiority of the proposed method,
the identification performance of the proposed method
WMWPE is compared with that of MWPE, WWPE, WPE,
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Figure 6:The average WMWPE of 120 sensor signals after wavelet decomposition. (a) Low frequency-level 3. (b) High frequency-level 1. (c)
High frequency-level 2. (d) High frequency-level 3.

Table 3: Average identification accuracy of the selected feature
vectors.

Feature
dimension 𝐾

The scale index of
selected features

Average identification
accuracy ± standard

deviation
1 [1] 83.46% ± 0.53
2 [19, 20] 87.19% ± 0.72
3 [18, 13, 17] 97.42% ± 0.27
4 [18, 17, 3, 4] 98.74% ± 0.23
5 [18, 4, 6, 5, 7] 99.46% ± 0.09
6 [18, 4, 5, 2, 1, 6] 99.37% ± 0.15
7 [4, 18, 5, 2, 1, 6, 17] 99.30% ± 0.08
8 [4, 18, 5, 2, 1, 6, 3, 7] 99.42% ± 0.13
9 [4, 5, 18, 2, 1, 6, 3, 7, 8] 99.33% ± 0.07
10 [4, 5, 18, 2, 1, 3, 6, 7, 8, 12] 99.43% ± 0.10
All 20 features [1, . . . , 20] 99.50% ± 0.08

Table 4: Average identification accuracy of using different features.

Features Average identification accuracy ± standard deviation
WMWPE 99.50% ± 0.08
MWPE 98.06% ± 0.20
WWPE 83.34% ± 0.62
WPE 45.15% ± 0.49
MPE 73.42% ± 0.40
PE 35.27% ± 0.20

MPE, and PE, wherein WWPE is WPE of the low frequency
subband signal under wavelet decomposition. Table 4 shows
the average recognition accuracy and standard deviation for
the four kinds of signals using different features over 10 times
of 10-fold cross-validation. The more detailed recognition
results are shown in Table 5.
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Table 5: Identification results of different features.

Actual type Identification results
Normal Bias Stuck-at Drift

MWPE
Normal 97.93% ± 0.56 0% 0% 2.07% ± 0.51
Bias 0% 98.13% ± 0.48 1.87% ± 0.46 0%
Stuck-at 0% 1.43% ± 0.23 98.57% ± 0.22 0%
Drift 1.43% ± 0.2 0.8% ± 0.3 0% 97.77% ± 0.19

WWPE
Normal 90.87% ± 0.52 0% 0% 9.13% ± 0.46
Bias 0% 74.5% ± 1.62 25.50% ± 1.51 0%
Stuck-at 0% 3.67% ± 0.21 96.33% ± 0.26 0%
Drift 26.83% ± 0.96 0% 1.47% ± 0.41 71.7% ± 1.34

WPE
Normal 40.87% ± 6.97 13.03% ± 1.43 6.97% ± 0.82 39.13% ± 7.42
Bias 15.70% ± 2.05 35.30% ± 4.52 27% ± 3.63 22% ± 2.85
Stuck-at 6.2% ± 1.31 20.47% ± 2.95 64.13% ± 2.71 9.20% ± 1.47
Drift 42.80% ± 6.35 10.70% ± 1.60 6.20% ± 0.84 40.30% ± 6.76

MPE
Normal 57.76% ± 1.40 37.91% ± 1.38 4.33% ± 0.17 0%
Bias 42.06% ± 0.82 53.74% ± 0.71 4.20% ± 0.32 0%
Stuck-at 3.20% ± 0.44 10.13% ± 1.42 86.67% ± 1.42 0%
Drift 4.50% ± 0.08 0% 0% 95.50% ± 0.24

As shown in Tables 2, 4, and 5, the identification accuracy
of WMWPE is higher than that of MWPE. The same
conclusion can be got from the performance comparison of
WWPE with WPE. That is because wavelet transform brings
macrostructure information into the feature. Combined
with macro- and microstructure information, WMWPE and
WWPE can get better performance.

Comparing the results ofWMWPE toWWPE,MWPE to
WPE, and MPE to PE, the multiscales analysis can improve
the identification precision over 16%. The main reason is
that the multiscale feature can explore more local structure
information of the signals than the single scale feature.

Comparing the results of MWPE to MPE and WPE to
PE, the amplitude information can bring about 25% and 9%
increase of average identification accuracy, respectively.

So the macro- and microstructure information and
amplitude information are all explored by WMWPE. The
experiment results validate that the proposed method based
on WMWPE can achieve high identification accuracy for
sensor fault.

5. Conclusion

How to find an effective feature extraction method for
sensor fault analysis and identification is always an important
issue. Taking full advantage of macrostructure information,
microstructure information, and amplitude information of
the typical sensor faults, this paper proposed a new sensor
fault feature extraction and identification method based
on wavelet transform and multiscale weighted permutation
entropy. The appropriate based wavelet selection, feature

extraction,multicluster feature selection, and BP classifier are
investigated. Actual chemical gas concentration data is used
to evaluate the performance of the proposedmethod. Experi-
ment results show that the proposedWMWPE extracts more
comprehensive feature information and can achieve higher
fault recognition accuracy than other kinds of features.
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