
Research Article
Research on Methods for Discovering and Selecting Cloud
Infrastructure Services Based on Feature Modeling

Huamin Zhu, Lifa Wu, Kangyu Huang, and Zhenji Zhou

Institute of Command Information System, PLA University of Science and Technology, Nanjing, China

Correspondence should be addressed to Lifa Wu; wulifa@vip.163.com

Received 15 December 2015; Revised 24 July 2016; Accepted 24 August 2016

Academic Editor: Zhimin Huang

Copyright © 2016 Huamin Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nowadays more and more cloud infrastructure service providers are providing large numbers of service instances which are a
combination of diversified resources, such as computing, storage, and network. However, for cloud infrastructure services, the lack
of a description standard and the inadequate research of systematic discovery and selection methods have exposed difficulties in
discovering and choosing services for users. First, considering the highly configurable properties of a cloud infrastructure service,
the feature model method is used to describe such a service. Second, based on the description of the cloud infrastructure service, a
systematic discovery and selection method for cloud infrastructure services are proposed.The automatic analysis techniques of the
feature model are introduced to verify the model’s validity and to perform the matching of the service and demandmodels. Finally,
we determine the critical decision metrics and their corresponding measurement methods for cloud infrastructure services, where
the subjective and objective weighting results are combined to determine the weights of the decision metrics. The best matching
instances from various providers are then ranked by their comprehensive evaluations. Experimental results show that the proposed
methods can effectively improve the accuracy and efficiency of cloud infrastructure service discovery and selection.

1. Introduction

The Infrastructure as a Service (IaaS) is an important service
model in cloud computing, and it can provide users with
fundamental computing resources, for example, processing,
storage, and network, where users are able to deploy the
desired operating systems and applications without paying
attention to the management and control of the underlying
cloud infrastructure [1]. IaaS is provided to users by a service
instance that may be a different combination of processing,
storage, and network resources that satisfies the diversified
needs of the users. Cloud computing with potentially huge
business opportunities has attracted a growing number of IT
service providers to build infrastructures that can provide
dozens, hundreds, or even tens of thousands of IaaS instances.
Currently, there are over 100 public IaaS providers, and just
for Amazon’s Elastic Compute Cloud (EC2), the number of
service instances is over 16000 [2]. How to select the best IaaS
instance from these large numbers of alternatives has become
a serious challenge to users.

Different IaaSs showdifferences in resource configuration
and service quality, and thus the discovery and selection of
the IaaS instances not only need to perform fine-grained
matching on the resource configuration according to user
needs, but also need to find the optimal instance based on
comparison of the quality of service (QoS) of the matching
instances. It is obviously a difficult and error-prone task to
search thematching instances in the huge configuration space
of an IaaS, which necessitate automatic searching methods to
support it. Moreover, a set of scientific QoS metrics and an
effective multicriterion decision-making method for ranking
the matching instances are also needed. At present, although
many scholars have done extensive research on the discovery
and selection of IaaSs [3–10], the following challenges remain:
(1) There exists a lack of customized description methods
for IaaSs, and the prevalent natural language description
cannot be used for automatic processing by computers. (2)
The existing methods are unable to describe or formalize
the configuration space of an IaaS completely; thus, these
methods can only handle a subset of the entire configuration

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 8194832, 19 pages
http://dx.doi.org/10.1155/2016/8194832

2 Mathematical Problems in Engineering

spaces when discovering and selecting an IaaS, which results
in a suboptimal service instance. (3) Due to the existing
coarse-grained description of IaaSs, the matching between
the user request and the IaaS offerings can only be done in
a coarse-grained way, so that some service details, such as
cost, cannot be accurately calculated. (4) Also lacking are
systematic theory and method for describing, discovering,
and selecting IaaSs. (5) There is no scientific and unified
measurement metric system for the QoS evaluation of IaaSs.
The existing IaaS decision-making methods assign metric
weight mainly based on the subjective weighting method,
which is likely to lead to an inaccurate evaluation of QoS.

From the above analysis, it is not difficult to see that the
formalization and fine-grained description of the complete
configuration space of an IaaS is the key to discovering
and selecting a truly optimal IaaS instance. In general, the
configuration space of an IaaS comprises a large number
of service instances, and there are two ways of providing
IaaS instances. The first is to provide great many standard
instances from which users can choose; for example, in EC2,
there are m4.large, c3.large, and r3.xlarge instances of the
virtual server, and each instance has some basic options with
fixed values aswell as some configurable options, for example,
m4.large (2.4GHz Intel Processor, 2 vCPU, 8GB RAM, EBS-
only, 450Mbps bandwidth) has configurable location, cost
model, and operating system (OS) options [11]. The second
way of providing an IaaS instance is to specify the value range
of the configurable options, and any combination of all the
option values within the range is an IaaS instance. There are
some configurable service options in an IaaS using either
approach, such as virtual machine (VM) type, RAM, OS, cost
model, location, network bandwidth, and any combination of
these options is an IaaS instance such that all the instances
form the complete configuration space. Therefore, an IaaS
can be regarded as a variability-intensive system, and it
is pivotal to deal with the variability of an IaaS to fully
obtain the fine-grained description of its entire configuration
space.

Kang et al. [12] proposed a feature-oriented domain anal-
ysis method (FODA) in 1990. Here, features and the feature
model (FM) are first introduced to capture and organize
changing software requirements in special fields [13]. In a
FM, features are used to represent the system functional
and nonfunctional characteristics, and feature relations are
used to depict the organizational structure and internal
relations of these characteristics. Such an “entity-relation”
description structure in a FM exhibits highly customizable
properties, which has led FMs to become a very effective
domain commonality/variability description method. With
the continuous development of software reuse research, FMs
have become the de facto standard for software product line
commonality/variability modeling, and they can be used as
a good description model for variability-intensive systems
[14, 15]. Therefore, it is very appropriate to use a FM to
describe an IaaS. In this paper, we design a formal description
method for IaaSs bymeans of featuremodeling and propose a
systematic discovery and selectionmethod for IaaSs based on
the descriptionmethod.Themain contributions in this paper
are as follows:

(i) A formal IaaS description method based on FMs
is designed, which is able to describe the complete
configuration space of an IaaS in a standard way.
We define the metamodel of an IaaS using the
unified modeling language (UML) on the basis of
existing methods and then define the IaaS domain
model based on the metamodel and the IaaS domain
knowledge. Next, we present themethods for creating
service and demand models based on the metamodel
and the domain model. In addition, an equivalent
concept ontology of IaaS FMs is also given to cope
with the heterogeneous expressions in different FMs.

(ii) Based on the designed IaaS description model, we
propose a method to realize the automatic process of
discovery and selection of the best IaaS instance. The
automatic analysis techniques of a FM are introduced
to extract the service configuration information in the
FM, check the validity of an IaaS FM, and perform
the searching for the matching IaaS instance based on
user needs.

(iii) The important nonfunctional metrics and their mea-
surement methods for IaaSs are studied and deter-
mined, and the metrics weighting method based
on the combination of the subjective and objec-
tive weights is proposed, which makes the weight-
assignment process of the decision metrics more rea-
sonable. The multicriteria decision-making method
for the matching IaaS instances is also introduced.

The remainder of this paper is organized as follows.
Section 2 describes related work. Section 3 presents the
formal IaaS description method based on FMs. Section 4
introduces the proposed discovery and selection method of
IaaSs. Section 5 describes the automatic analysis techniques
and thematchingmethod of IaaS FMs. Section 6 presents the
method of ranking IaaSs. Section 7 presents an experiment
to evaluate the feasibility and effectiveness of the methods
introduced in this paper. Finally, the last section concludes
the paper and proposes future work.

2. Related Work

In addition to lots of studies, there are some commercial
services to support the discovery and selection of IaaSs.
Amazon [16] and RackSpace [17] provide exclusive IaaS
configuration platforms to support comparisons between
their own different service instances. CloudScreener [18],
CloudHarmony [2], Cloudorado [19], and PlanForCloud [20]
are able to provide a commercial service for the configuration
and comparison of IaaS instances, but they can only cover
the main IaaS providers and can only support comparisons
of a specified QoS metric, such as fee. Research also indicates
that the recommended results from the commercial services
or platforms are sometimes suboptimal [21]. In academic
researches, the related methods for discovering and selecting
an IaaS can be divided into the following categories.

(1) Semantic-Technique-Based Description and Matching
Methods for IaaSs. Dastjerdi et al. [3] used the web service

Mathematical Problems in Engineering 3

modeling ontology (WSMO) as the description model of
virtual appliances and virtual units in cloud computing and
presented the semantic matching method of the supply and
demand on IaaSs. Zhang et al. [22] created an IaaS knowledge
ontology including functional and nonfunctional concepts,
attributes, and relationships among them and proposed a
semantic search model for heterogeneous IaaSs. Rodŕıguez-
Garćıa et al. [4] created semantic IaaS service vectors by
implementing text processing and adding semantics to the
IaaS description and then sorted the IaaSs according to the
results of semantic matching on IaaS service vectors and
user demands. A similar method was given in [23]. Liu et
al. [24] created an IaaS function ontology and presented
the semantic matching method of IaaSs and the method of
selecting IaaSs based on the QoS metrics. Kang and Sim [5]
created a cloud service ontology and presented the semantic
matching method of IaaSs from three aspects, including
the concept, the object attributes of concepts, and the data
attributes of concepts. The above studies described IaaSs
and performed the matching of supply and demand on
IaaSs by means of semantic technologies used commonly in
traditional web services. Although these approaches can deal
well with the heterogeneous descriptions of IaaSs, they can
only describe the static IaaS information and cannot deal
with the numerical service parameters and structured service
information; thus, the IaaS configuration space cannot be
accurately and completely described. Under this condition,
the discovery method based on the semantic matching can
only be match to providers and cannot be matched to specific
IaaS instances, making it difficult to accurately obtain the
real optimal IaaS instance. In this paper, we use a FM to
describe an IaaS in a structured, complete, and accurate
manner and then use the automatic analysis techniques of a
FM to search the matching instances of an IaaS so that a real
optimal solution can be obtained.

(2) QoS-Evaluation-Based IaaS Selection Method. The Cloud
Service Measurement Index Consortium (CSMIC) of
Carnegie Mellon University [25] presented a service meas-
urement index for evaluating and comparing cloud services
in general, including the accountability, agility, cost, per-
formance, assurance, security, privacy, and usability. Garg et
al. [6] developed 15 evaluation metrics for IaaSs by selecting
and refining the CSMIC index and used these metrics to
evaluate the IaaS QoS by means of the AHP. However, some
metric measurement methods given by them are not feasible,
and the AHP can only deal with a small amount of alternative
IaaS instances. Li et al. [7] divided the QoS metrics of IaaSs
into three categories, performance, economy, and security,
and then designed the corresponding evaluation metrics for
computing services, storage services, and comprehensive
services. They provided some good metric directories for
evaluating the IaaS QoS, but the security measurement was
too simple. In [6, 26], the authors determined the weights
of QoS metrics only according to the subjective comparison
and judgment, and thus it is hard to guarantee the objectivity
of evaluations of the IaaS QoS. In this paper, we evaluate
the IaaS security in a systematic and objective manner and
present a combination weighting method, by which the

weight distribution can not only be more objective, but also
reflect the subjective preference of decision makers.

(3) FM-Based IaaS Description and Selection Methods. Wit-
tern et al. [8] proposed a method of selecting an IaaS
based on variability modeling. However, the authors only
gave a very simple domain model and did not provide a
method of coping with the heterogeneous expressions of
IaaSs. Garćıa-Galán et al. [9] also proposed the use of a FM
to describe an IaaS. The authors took EC2 as an example
to introduce the specific methods of creating an IaaS FM.
Quinton et al. [14] introduced attributes to extend a Boolean
FM and then used the extended FM to describe an IaaS.
The authors also defined a domain knowledge ontology to
cope with the heterogeneous expressions in FMs. Finally,
they realized the automatic IaaS configuration. Garćıa-Galán
et al. [10] proposed a method founded on software product
line to configure the Amazon IaaS. The authors described
the Amazon EC2, EBS, S3, and RDS services by means of
FMs and used an offline solver to find the most appro-
priate configuration instance. Dougherty et al. [27] also
described an IaaS as a FM. They used “feature” to represent
the main functional units and “attribute” to represent the
energy consumption of each functional unit. Their goal is to
automate the IaaS configuration in the most energy-efficient
and economical way. However, in [9, 10, 14, 27], the authors
did not present a standardized definition for the IaaS FM,
and thus the universally applicable methods of creating IaaS
service and demand models could not be achieved. Wittern
and Zirpins [28] only provided a general conceptual FM
adapted to various web services without considering the
special requirements of IaaSs. In this paper, we define the
metamodel and the domainmodel for IaaSs in a standardized
manner and provide the general method for creating the IaaS
service and demand models and then propose the automatic
discovery and selection methods of IaaSs based on them.

3. Feature-Model-Based IaaS
Description Method

3.1. Feature Model Basics. FMs are treelike data structures,
where each node represents a product feature, and the edge
between two nodes represents the relationship between the
corresponding features. The root of a FM represents the
domain object that is described. Features are bound bymeans
of vertical and cross-tree relationships, which define how
features can be grouped in a product. The father feature
and its child features are usually constrained by mandatory,
optional, or cardinality vertical relationships, and the cross-
tree relations mainly include REQUIRES and EXCLUDES
[13, 15]. In a FM, features can represent specific functional
or nonfunctional characteristics of a demand, service, com-
ponent, or platform, and so forth and can also be used as
abstract features that represent domain decisions, such as
Linux-based features. The mandatory relationship between
the father feature and its childrenmeans that the child feature
must be selected when its parent feature is selected, while
the optional relationship between them means that the child

4 Mathematical Problems in Engineering

feature can be selected or not selected when its father feature
is selected. In addition, cardinality is primarily used to define
the range of the child features that can be selected when
their parent feature is selected. A FM that only contains
features and feature relationships is called a Boolean FM. A
Boolean FM can be extended as an attributed FM by defin-
ing feature attributes, which can represent more complex
domain requirements and product models. All functional
and nonfunctional property parameters of a product can be
described as feature attributes. For an attributed FM, product
customization can be realized by feature selection, attribute
assignment, and the definition of constraint relationships
among the selected features and their attributes. A correct
and reasonable FM should be able to completely describe
the product configuration space, and any semantic conflicts
should not exist in all defined relationships.

3.2. Feature Modeling Method for IaaSs. The goal of IaaS
featuremodeling is to describe IaaSs and user demands for an
IaaS effectively and accurately. We first define the metamodel
of an IaaS to regulate the concepts in IaaS FMs and the
relations among these concepts in a standardized manner,
in order to provide the grammar fundamentals for creating
IaaS FMs. Then we define the domain model of an IaaS
based on the metamodel and the IaaS domain knowledge.
The advanced and abstract characteristics of an IaaS are
classified and unified by the domain model, which provides
the conceptual basis for establishing IaaS FMs. Finally, the
specific methods of creating the IaaS service and demand
models are presented.

3.2.1. Metamodel. First, the metamodel of an IaaS is defined
using UML, as illustrated in Figure 1. A metamodel is a
description model of the model, which is the semantic
description of the concepts and concept relationships in the
model. The defined metamodel mainly includes three kinds
of concepts, features, attributes, and relationships.

The main functional and nonfunctional characteristics
of an IaaS instance are defined as features, such as VM,
OS, location, and cost model. Features can be divided
into a root feature, group features, and solitary features
according to their organizational structures. Features can
also be divided into a root feature, abstract features, and
leaf features according to the feature abstract level. Among
these, leaf features represent the most specific functional or
nonfunctional characteristics. Feature group is an abstract
feature used to accommodate the group features of the same
type, and it can be the child of a solitary feature or another
feature group. Features in the feature group are called group
features, which are used to represent a series of features with
common characteristics. For example, an OS feature group
may contain two group features, Windows and Linux. All the
features that are not included in the feature group are called
solitary features, which are used to describe the relatively
simple object characteristics. A solitary feature can be used
as a feature group, containing a series of group features as
its children. For instance, OS is a solitary feature, which
contains WINDOWS, LINUX, and other group features as

its children. Solitary features can be defined as mandatory or
optional type, while feature cardinality is defined to constrain
the range of group features that can be selected at the same
time. Abstract feature and leaf feature and group feature and
solitary feature are two independent feature classifications,
which means that not only can abstract feature and leaf
feature be defined as group feature or solitary feature, but
group feature and solitary feature can also be defined as
abstract feature or leaf feature.

The second kind of main concept in the metamodel is
feature relationship, which is divided into two categories.The
first is the refinement relationships in the vertical direction
of the feature tree; that is, features are gradually refined
(including decomposition, specialization, and characteriza-
tion) from the root feature down to the leaf features, and
the features between the root and the leaves represent the
different abstract levels of characteristics. Each IaaS instance’s
configuration options must be refined to leaf features. The
second is the horizontal cross-tree constraint relationships,
which mainly contain three kinds of relationships; namely,
REQUIRES, EXCLUDES, and COMPLEX CONSTRAINTS.
The cross-tree constraints are generally used to describe the
constraint relationships among the features of different cate-
gories and their attributes in an IaaS instance configuration;
for example, price features are commonly constrained by
location features (e.g., the prices of IaaS instances in Asia
and North American are likely to be different). The third
kind of main concept in the metamodel is feature attribute,
which is usually used to describe the common properties
of IaaS functions or nonfunctional characteristics, such as
the numbers of vCPU, memory, and hard disk capacity. By
defining the constraint relationships among the features and
their attributes, we can accurately describe the configuration
options of an IaaS instance. Several important definitions in
the metamodel are as follows.

Definition 1 (FEATURE GROUP CARDINALITY). Assum-
ing that 0 ≤ 𝑛 ≤ 𝑛

󸀠
≤ 𝑘, where 𝑛, 𝑛󸀠, and 𝑘 are nonnegative

integers and 𝑘 is the number of all group features, we define
⟨𝑛 − 𝑛

󸀠⟩ as a feature group cardinality, in which 𝑛 is the
lower bound and 𝑛󸀠 is the upper bound, and ⟨𝑛 − 𝑛󸀠⟩ means
that when the feature group is selected, at least 𝑛 group
features must be selected simultaneously, while at most 𝑛󸀠
group features can be selected simultaneously.

Definition 2 (REQUIRES). Assuming that features A and B
are from the same FM, if feature A is selected at any time it
means that feature B is selected simultaneously, and then we
say that feature A REQUIRES feature B.

Definition 3 (EXCLUDES). Assuming that features A and B
are from the same FM, if feature A is selected at any time it
means that feature B is not selected simultaneously, and then
we say that feature A EXCLUDES feature B.

Definition 4 (COMPLEX CONSTRAINTS). By means of
arithmetic symbols such as +, −, ∗, /, and mod, and rela-
tionship symbols such as >, >=, <=, <, ==, and !=, and
logical symbols such asAND,OR,NOT, IMPLIES, and IFF (if

Mathematical Problems in Engineering 5

1

1

+Cardinality
Groupedfeature

+optional

Solitaryfeature

1

1

1

1

1

2
2

1

REQUIRES

EXCLUDES

ComplexContraint

Decomposition

Specialization

Characterization

Constraints

Relationship

Refine

Leaffeature

Abstractfeature

Rootfeature

Attribute

FeatureGroup
Feature

name
Description

∗

∗

∗

∗

∗
∗

Figure 1: Metamodel of an IaaS.

only if), we can associate certain features with certain feature
attributes in the FM to form a variety of logical expressions,
which are used to describe a particular relationship that
must be met among these features and feature attributes. We
call this type of relationship among the features and feature
attributes COMPLEX CONSTRAINTS.

In summary, we perform a design of the metamodel
that provides the grammar supports for creating a structured
IaaS FM. We give the definition of the feature, attribute,
relation, and other key concepts in an IaaS FM. In addition,
we introduce the roles and usage of various features and also
describe the vertical refinement relations and the cross-tree
constraints in an IaaS FM.

3.2.2. Domain Model. Because the current IaaS description
has no uniform information structure and terminology, the
information structure and terminology of IaaS FMs will
appear random if they are created relying only on the syntax
basis of the metamodel. Thus, it will be difficult to perform
the matching of the IaaS service and demand models. In
fact, there is a consistent functional and nonfunctional
characteristics category existing in IaaSs. Therefore, an IaaS
domain model is created based on the metamodel and the
IaaS field knowledge so as to unify IaaS FMs’ information
structure and terminology. The domain model classifies and
regulates the advanced and abstract features of IaaSs and
defines all necessary attributes, thus providing a conceptual
basis for the creation of IaaS FMs. The major structure of
the domain model is illustrated in Figure 2. A summary of
important attributes of the main IaaS features is shown as
Table 1.

The definition of the domainmodel follows the principles
below: first, those features and feature directories that are
more definite and widely recognized should be included as
completely as possible; as such, based on the domain model,
the IaaS service and demandmodels can be created in a more
unified and consistent structural form. Second, it is necessary
to avoid too much refinement of the abstract features that
may have a variety of representations, so as to meet the actual
needs for describing IaaSs. Third, the important common
attributes of the IaaS function characteristics should be

Table 1: Summary of important attributes of the main IaaS features.

Feature Attribute Type Remarks

IaaS

periodcost real Periodic cost
availability real
securitylevel real Security level
netdelay int Network latency

VM

HDD string Solid state or magnetic
memory real

SPECCPU2006 int CPU benchmark value
scaling latency int Scaling resource latency

LoadBalancer costmonth real Cost per month
num int Load balancer number

Network
availability real
supportipv6 bool Support for IPv6
estimatetraffic real Estimate traffic per month

Storage availability real
persistence real Storage persistence

Freetraffic freelimit real Free traffic per month
extraprice real Extra traffic price

defined in a uniform manner, because these attributes will
be the main parameters that are evaluated and compared
when performing the supply and demand matching and
horizontal comparison of IaaSs. Fourth, the domain model
should maintain good extensibility because of the constantly
development and updating of IaaSs in cloud computing.

3.2.3. Service Model. As an example, Figure 3 illustrates the
major structure of the created IaaS service model from
DigitalOcean [29]. Based on the metamodel and the domain
model defined above, the service model of an IaaS can
be created to represent the actual IaaS offerings. The key
points of creating an IaaS service model are as follows:
first, select features from the domain model and refine the
abstract features among them according to the original IaaS
description. Second, because the service model has inherited
all the attributes of the related features in the domain model,
it only needs to select the required feature attributes to specify

6 Mathematical Problems in Engineering

IaaS

OS

Windows

Linux

MaxOS

VM

Instance 1

Instance 2

Instance n

Network

Freetraffic

Ladderprice

Bybandwidth

Ladder 1

Ladder 2

Ladder n

Loadbalancer

Storage

RDS

NoSQL

CDN

ObjectStorage

Purchase

Hour

Month

Year

Twoyear

Threeyear

Loctaion

Asia

Europe

Oceania

SouthAmerica

NorthAmerica

Africa

Region 1

Region 2

Region n

CentOS

Ubuntu

Debian

RedHat

periodcost:
availabilty:
securitylevel:
elasticity:
netdelay:

availabiltiy:
throughout:
supportipv6:
cost:
estimatetraffic:

memory:
vCPU:
HDD: SSD/NoSSD
HDDcapability:
costhour:
costmonth:
costyear:
availabiltiy:
SPECCPU2006:
num:

availabilty:
costhour:
costmonth:
costyear:
persistence

availabilty:
costhour:
costmonth:
costyear:
num:

freelimit:
extraprice:

· · ·

· · ·

· · ·
⟨0-1⟩

⟨0-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

Figure 2: Major structure of the IaaS domain model.

their value ranges. Finally, the entire IaaS configuration space
is described by defining many COMPLEX CONSTRAINTS
and, in general, each of the COMPLEX CONSTRAINTS can
represent an IaaS configuration instance. These COMPLEX
CONSTRAINTS are included in the plain-text file of the IaaS
service model; see Section 7.1.3 for details.

3.2.4. DemandModel. Figure 4 illustrates themajor structure
of a demand model for computing services. The demand
model is used to describe user needs in an IaaS, which is
created by using a similar method of creating the IaaS service
model. Similarly, the first thing that should be done is to
select features from the domainmodel and refine the abstract
features among them according to user needs. The demand
model has also inherited all the attributes of the related
features in the domain model. It is also necessary to select
the required feature attributes to specify their values or value
ranges. The demand model represents a minimum of service
requirements, meaning that the IaaS instances satisfying user
needs usually number more than one. Therefore, when the

IaaS supply and demand matching is completed, choosing
the best IaaS instance is required. For example, when it is
necessary to optimize service cost, we can select the IaaS
instance satisfying user needs that has the minimum cost.

3.3. Concept Ontology of IaaS FMs. While the domain model
has achieved a unified classification and specification of the
advanced and abstract features in IaaS FMs, it is still necessary
to refine the abstract features into the leaf features in the
process of creating an IaaS FM, which may lead to the use of
different terms to represent the same concept; for example,
given geographical region feature, the terms “region” or
“location”may be used in different IaaS FMs. In order tomake
all IaaS FMs mutually “understood” so that matching the
IaaS supply and demand can be carried out, we have created
an IaaS concept ontology to realize the mutual mapping of
equivalent feature concepts; some parts of this are illustrated
in Figure 5. The concepts of “VM” and “Virtualmachine,”
“Region” and “Location,” “Windowserver 2003” and “Win-
dowsServer2003,” and “Ladderprice” and “Multilevelprice”

Mathematical Problems in Engineering 7

DigitalOceanServer

OS
Linux

VM

Server 0.

Network Freetraffic

Loadbalancer

Purchase

Hour

Month

Loctaion

Asia

Europe

NorthAmerica

Singapore

Amsterdam

CentOS

Ubuntu

Debian

Fedora

securitylevel:
0.1307

availabiltiy: 0.9999
supportipv6: 1

HDD: SSD
availabiltiy: 0.9999

availabilty: 0.9999
costhour: 0.02
costmonth: 15

CoreOS

FreeBSD

London

Frankfurt

NewYork

Francisco

Server 1G

Server 16 G
Server 8 G

Server 48G

5G

Server 64 G

Server 4 G

Server 32G

Server 2 G

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩
⟨1-1⟩
⟨1-1⟩

extraprice: 2¢/G

Figure 3: Major structure of the DigitalOceanServer service model.

IaaSRequest

OS Linux

VM

Network

Purchase Month

Loctaion Asia

CentOS

Supportipv6: 1

vCPU: 2
HDD: SSD

num: 2

Loadbalancer

num: 1

HDDcapability: 30 G

memory: 2G

estimatetraffic: 2 TB

Figure 4: Major structure of an IaaS demand model.

are all equivalent. In addition, it should be noted that the
domain model has unified and defined all important feature
attributes considering the consistency of the IaaS feature
attributes; therefore, when the IaaS FMs are created, it must
be done using the unified feature attributes specified by the
domain model.

3.4. Characteristics Analysis of the Description Method. First,
it is not difficult to create and maintain an IaaS FM with
the metamodel and domain model acting as the grammatical
and concept bases. Graphical tools or customized machine
languages can be developed to create and edit an IaaS FM.
Second, our IaaS description method has good extensibility
and compatibility and can continuously update the domain
model to improve the conceptual repository according to
the development of IaaSs. The concept ontology of IaaS
FMs acts as the bridge between the different terms with the
same meaning in different IaaS FMs. Finally, the metamodel

provides strict grammatical norms for the creation of an IaaS
FM, and this paper will check the validity of an IaaS FMbased
on the automatic analysis operations of a FM (see Section 5.1).

4. IaaS Discovery and Selection Method

Based on the formal IaaS description presented in Section 3,
we propose a systematic discovery and selection method
for IaaSs. An architecture of the system implementing the
method is designed as Figure 6.

Four roles are managed in the architecture: User, Broker,
IaaS Provider, and MTCCAs (cloud service monitoring, test-
ing, certificating, and comparing agencies).The IaaS Provider
usually publishes the IaaS service information on its portal
website and sometimes chooses to perform a service certi-
fication or registration via MTCCAs. For example, the IaaS
Provider may submit a security assessment report or perform
a security certification in Cloud Security Alliance [30] (CSA).

8 Mathematical Problems in Engineering

IaaS

Region

Virtualmachine

OS

Network

Loadbalancer

Purchase

Storage

VM

Location

Linux

Windows

MaxOS

Ladderprice

Bybandwidth

is-a

Freetraffic

Windowserver_2003
WindowServer2003

WindowServer2008

Windowserver_2008

Multilevelprice

is-a
is-

a

is-a

is-a
is-a

is-a
is-a

is-a

is-a
is-a
is-a

is-a
is-a

is-a

is-a

is-a
is-ais-a

is-a
is-a

is-a

is-a
is-ais-

a

is-a
is-a

is-
a

is-
a

is-a

Figure 5: Concept ontology of IaaS FMs.

Define demand
model

Metamodel Domain model

User

Map all feature concepts in
demand model

Service models Create
service
models

Concept
ontology

IaaS
providers

MTCCA

Match the IaaS FMs

Domain model
Generate the configuration input

Analyze service model; search for
the best matching instance

Indicator weights

The number of the best matching

Calculate
objective
weights

Assign subjective weights

Perform
combination

weighting

Sort the best matching instancesReturn the
sorting result

Return failure
No

Yes
Nonfunc index

Output the best matching instances

Success

Match service
models one by one

Service discovery
Service sorting

Broker

I S
instances ≥1

Figure 6: Architecture of the discovery and selection system of IaaSs.

MTCCAs such as CloudHarmony, CloudScreener, CSA, and
Cloudorado mainly perform the monitoring, performance
testing, security certification, or synthetic comparison of
cloud services. The entirety of IaaS service information can
be obtained by combining the IaaS information from the
provider portal and the information fromMTCCAs.The user
needs to create and submit the IaaS demand model and per-
form the subjective weighting for important nonfunctional
metrics. The Broker is used as the functional core of the
architecture.

The Broker’s main functions are divided into two parts:
service discovery and service ranking. Regarding service
discovery, the Broker first needs to regularly maintain the
IaaS domain model based on the IaaS domain knowledge

by adding new features and feature directories. Second, the
Broker uses the IaaS related information from the IaaS
Providers and MTCCAs to create the IaaS service models.
The Broker is also responsible for the regular maintenance
of the concept ontology of IaaS FMs. Finally, the Broker
takes the user demand model, the concept ontology, and the
IaaS service models as the inputs of the IaaS FM matching
module.

Thematching of supply and demand on IaaS FMs consists
mainly of two steps. The first step is to map the feature
concepts in the demand model into the feature concepts in
the current IaaS service model. If the related concepts cannot
be completely mapped successfully, the matching process
will proceed to the next IaaS service model to continue. If

Mathematical Problems in Engineering 9

the mapping is successful, all the feature concepts in the
demandmodel are converted into the feature concepts in this
IaaS service FM, and then the IaaS demand configuration
suitable for this service FM can be generated according to
the user demand model. The second step is to search for
the best matching instance by automatically analyzing the
current service model. If no instances satisfying user needs
are searched, the matching of supply and demand on the
current IaaS service model fails. Otherwise, it needs to find
the best one from the IaaS configuration instances satisfying
user needs by optimizing the cost and then terminate the
matching process on the current IaaS service model and
proceed to the next IaaS service model to continue until the
matching with all IaaS service models is completed. Finally,
the IaaS FM matching module returns all the best matching
instances as the output results.This service discoverymethod
will be detailed in Section 5.

Another main function of the Broker is to rank all the
best matching instances. If the number of the best matching
instances returned by the IaaS FM matching module is 0,
it shows that there is no IaaS instance satisfying the user
demand, and then failure information will be returned. If
the number is 1, then the single instance will be returned
directly. When the number exceeds 1, the system will auto-
matically start the next stage, namely, service sorting. The
sorting process takes the critical nonfunctional metric set
and the metric weight vectors as inputs and sorts all the
best matching instances by calculating their comprehen-
sive evaluations. Finally, the ranking list is delivered to
the user. This service sorting method will be detailed in
Section 6.

5. Automated Analysis and
Matching of IaaS FMs

FMs unify the descriptions of the IaaS services and demands,
which paves the way for automated IaaS discovery. IaaS
discovery is the process of searching for the IaaS instances
that satisfy the user demand from many IaaS offers through
matching the IaaS supply and demand. To complete match-
ing the supply and demand on IaaS FMs, it is necessary
to analyze the IaaS service models automatically. Usually,
there are many features, feature attributes, and COMPLEX
CONSTRAINTS in an IaaS servicemodel; moreover, the IaaS
configuration space is also large.Therefore, it is impossible to
use an artificial method to analyze the IaaS service model,
and thus an automatic mechanism is needed. In fact, the
automated analysis of feature model (AAFM) has become a
special technique; it is a set of automated analysis operations
that extract information from the FMs [31]. Each analysis
operation can be regarded as a black-box process, with the
FM and the specific operation parameters as inputs, and
it can retrieve and output the corresponding results based
on the different goals of analysis. These analysis operations
mainly include checking whether the FM syntax is correct,
judging whether there is a semantic conflict, and verifying
whether the input product configuration information is
valid.

5.1. Automated Service FM Analysis

5.1.1. Checking the Service FM Validity. Before performing
other analysis operations on an IaaS service model, it is
necessary to determine its validity by checking its syntactical
correctness and semantic conflicts. Semantic conflict check-
ing is necessary because some semantic conflicts are very
prone to be introduced when COMPLEX CONSTRAINTS
on features and attributes are created in a FM.The validation
operations of an IaaS service model mainly include the
following:

(1) Judging the syntactical correctness of an IaaS service
model text file. In Section 3, we have described the
method of creating an IaaS service model in graphics.
In fact, in order to perform the automated analysis
on a service model, we have to choose a language to
express the service model, such as XML or a custom
language [15].We just have to define the XML schema
or the syntax of the language chosen before using
them. We must comply with the relevant syntactical
constraints of the language used when creating the
service model text file.

(2) Checking whether the service FM is empty. It should
be noted that any contradictions among the relations
and constraints of an IaaS service model could lead
to the failure of the representation of the IaaS, and we
can discover the possible contradictions by analyzing
the IaaS service model.

(3) Checking whether the type definitions of all features
are reasonable and whether there are semantic con-
flicts in the cross-tree constraints. For example, when
the parent feature is a mandatory type, the only child
feature is naturally a mandatory type. Otherwise,
an error is generated. The cross-tree constraints are
also prone to semantic conflicts; for example, if a
REQUIRES constraint between a mandatory feature
and another optional feature is created, a semantic
conflict occurs.

(4) Checking whether the feature cardinalities are rea-
sonably set. For example, there might be a conflict
between the min value of feature group cardinality
and the type of feature group.When the feature group
is mandatory type, the min value of its cardinality
must be no less than 1. When the feature group
is of optional type, the min value of its cardinality
must be 0. In addition, the maximum value of group
cardinality should be no more than the number of
features in the feature group. Otherwise, a semantic
conflict occurs.

5.1.2. Checking the IaaS Configuration Validity. An IaaS con-
figuration is defined as a set of options for running an IaaS
instance. For a computing instance, these options correspond
to the predefined configuration points, such as OS, resource
location, purchase mode, CPU size, and memory size. If at
least one instance satisfying the user needs can be found in the
IaaS service model according to the submitted configuration,

10 Mathematical Problems in Engineering

then the submitted configuration can be considered valid;
otherwise, it is invalid. For an attributed FM,when the feature
selection and attribute values assignment are completed, and
the relationship constraints among the selected features and
their attributes are satisfied, the service instances satisfying
the configuration needs are determined.

5.1.3. Searching for the Best IaaS Instance. Usually, after a
user configuration demand is inputted, many IaaS instances
satisfying the demand will be searched from the service
model; however, only the best one will be returned. The
IaaS instances from the same provider are generally very
similar in terms of availability, network latency, security,
and other nonfunctional properties, while the cost difference
is relatively large. Therefore, we choose to optimize the
matching instances based on cost; that is, to search for the
one with the least cost among all instances satisfying the user
needs from the same provider.

5.2. Matching between the Service and Demand Models. The
supply and demandmatching operations between the service
and demand models include the following:

(1) Generating the configuration input suitable for the
service model from the demand model. First, all of
the feature concepts in the demandmodel aremapped
into the feature concepts in the service model based
on the IaaS concept ontology such that the demand
model becomes completely consistent with the ser-
vice model conceptually. Second, the configuration
input suitable for the service model will be generated
by the mapped demand model. The configuration
input represents the user needs, whichmainly contain
three aspects of information: features, attributes, and
constraints.

(2) Searching for the configuration instance with optimal
cost by analyzing the IaaS servicemodel.This stepwill
use the IaaS demand configuration generated in step
(1) as an input and perform the automated analysis
on each service model to search for the best con-
figuration instance based on the method outlined in
Section 5.1.3. If the analysis results show that the input
configuration is invalid, then the matching of supply
and demand on IaaS FMs fails. If the results show the
input configuration is valid and many configuration
instances satisfying the user needs are found, then the
minimum-cost instance will be returned.

6. IaaS Ranking

According to our IaaS discovery and selection method, a
series of best matching instances will be returned after
completing the matching between the demand model and
all service models (otherwise, service discovery fails). These
best matching instances are the minimum-cost instances
from different providers that can meet the users’ functional
demands. Users will choose the most satisfactory one from
these instances. The usual approach is to evaluate and
compare, synthetically, the important nonfunctional metrics
affecting the IaaS QoS, and then make a choice. It is a
multicriteria decision-making problem.

6.1. Important Nonfunctional Metrics of IaaSs. The establish-
ment of a unified and effective QoS-evaluating metric system
is the premise of scientific decision-making. However, the
existing measurement metric systems for IaaSs are either
inadequate [32, 33] or short of operational measurement
methods [6, 25].The important nonfunctional metrics affect-
ing the IaaS QoS fall into three categories: performance,
economy, and security [7]. We study and determine the
main metrics affecting the IaaS QoS and their measurement
methods.

(1) Cost. The economy of cloud computing is its prominent
advantage, and it is also one of the factors the user is most
concerned about. The cost of an IaaS instance depends on
its resource allocation. If the configuration parameters of the
IaaS instance are uncertain, then its cost cannot be obtained.
If the service and demandmodelsmatch successfully, the cost
optimization of the matching instances will be performed.
Thus the best instance and its cost can be obtained.

(2) Availability. This is a parameter usually promised by most
providers in their service level agreement (SLA). In a certain
period, the availability of the IaaS functional unit can be
generally calculated in the following ways:

virtual machine availability = uptime
(uptime + downtime)

,

storage availability

=
number of successful requests

(number of successful requests + number of failed requests)
.

(1)

Availability can be aggregated in the following ways:

computing type IaaS availability

=

{{{

{{{

{

virtual machine availability × network availability (where virtual machine number = 1)

load balancer availability × (
𝑛

∑
𝑖=1

((
1

𝑛
) × virtual machine availability)) × network availability (where virtual machine number > 1) .

(2)

(3) VM Performance Metric. The VM is the most impor-
tant computing functional unit in cloud computing, and

its performance has a direct impact on the quality of the
computing service. Different IaaSs having the same VM

Mathematical Problems in Engineering 11

configuration usually show a significant difference in per-
formance testing results. The Standard Performance Evalu-
ation Corporation [34] (SPEC) is a nonprofit organization
consisting of computer manufacturers, system integrators,
universities, research institutions, and so forth. SPEC aims
at establishing and maintaining the standards for evaluating
computer systems. CPU2006SPEC is a CPU system testing
suite introduced by SPEC, which is the general standard of
CPU testing at present, including the SPECint and SPECfp
subtesting modules. SPECint tests CPU integer processing
performance, while SPECfp tests CPU float point processing
performance. In this paper, we use the sum of the SPECint
and SPECfp test scores as the final score of the VM perfor-
mance test.

(4) Data-Storage Persistence. This is used to evaluate the
possibility that the stored data is lost or damaged, which
is represented by calculating the percentage of the lost or
damaged data in a certain period: intact disk number/(intact
disk number + lost or damaged disk number).

(5) Elasticity. The load of cloud computing applications is
usually dynamic, such as e-commerce applications, which
requires the IaaS resources to have prominent elasticity.
Perfect elasticity enables users to adjust resources quickly
according to load changes, so as to better meet the require-
ments of applications and avoid the purchase of redundant
resources to save costs. Time is a crucial aspect in elasticity,
which can be measured by the speed of response to the
dynamic workload [33]. Considering that the differences
in the resource release speeds of computing instances are
relatively small, we have learned from the method proposed
in [32], which tests VM scaling latency to measure resource
elasticity. Scaling latency includes VM provisioning latency
and system booting latency.

(6) Network Latency. This means the network delay from
an IaaS resource to a target user area, which also has an
important impact on the IaaS QoS. If there is an average of
20 s of network latency, the target users will face unendurable
service response delay when they access the applications
deployed on the IaaS resources.

(7) Security. Cloud computing is facingmany security threats,
such as data destruction, network attacks, privacy leaks, and
VM attacks, so security is also a very important metric. In
[35], we proposed a systematic method for measuring and
evaluating cloud security (referred to as MMECS in this
paper). MMECS measures and evaluates cloud security by
calculating the security advantage of each cloud provider
based on the Consensus Assessment Initiative Questionnaire
(CAIQ) reports on cloud security, which have been submitted
to the CSA by the cloud providers. CAIQ is a cloud security
assessment questionnaire based on the Cloud ControlMatrix
(CCM), while the CCM is proposed by the CSA and defines a
list of security control requirements that the cloud providers
and their services should fulfill. The CCM references author-
ity security standards and frameworks in the industry, such as
SP800-53 R3, FedRAMP, ISO/IEC 27001, COBIT, and ENISA

IAF. First, the evidences of security compliance provided by
the CAIQ report are scored, and then the obtained score is
used to measure the credibility of the CAIQ report. Second,
we use the credibility of the CAIQ report to correct the
original score of each security control domain in the CAIQ
report. Finally, the security advantage of each IaaS Provider is
calculated based on the corrected scores of control domains.
The results are relatively objective and convincing, so we use
the MMECS method to calculate the security metric of each
IaaS Provider.

(8) Reputation.This is an important attribute of an IT service,
and it is also a metric usually compared when users choose
services, such as e-commerce services. Although many cloud
service reputation calculation models have been proposed
in the academic community, they are still in the theoretical
research stage and not yet commercially available. Therefore,
it is very difficult to obtain available reputations for IaaSs.
Although the market share of an IaaS cannot substitute for its
reputation, it can basically reflect the user’s choice tendency
and the service credibility to a certain extent, so we use the
market-share data provided by CloudHarmony as a measure
of the IaaS reputation.

6.2. Combination Weighting Method for Decision Metrics.
The scientific and rational allocation of metric weights is of
great importance to multicriteria decision-making problems.
According to the data sources for calculating weights, the
metric weightingmethods fall mainly into two categories: the
subjective and objective weighting methods. The subjective
weightingmethod assignsmetric weights based on a decision
maker’s subjective preference, such as the analytic hierarchy
process (AHP) and Delphi. The objective weighting method
calculates the metric weights based on their actual values,
such as the maximizing deviations method, the entropy
method, and principal component analysis [36]. The sub-
jective weighting method reflects the decision maker’s per-
sonal preference; however, this method is easily influenced
by the knowledge and experiences of the decision maker.
For the objective weighting method, there is an objective
standard for the weight distribution, but it ignores the
decision maker’s subjective preferences; metric weights that
are calculated totally based on the original metric data may
deviate markedly from the subjective desires of the decision
maker.

For acquiring more reasonable and scientific evaluation
results, some researchers combine the two methods together
to carry out the combination weighting [36–39].The existing
research mainly uses two representative ways of combin-
ing the subjective and objective weights: the multiplicative
synthesis and weighted linear combination methods [36–
39]. The multiplicative synthesis method generally uses the
formula 𝑞

𝑗
= 𝑎
𝑗
𝑤
𝑗
/∑
𝑛

𝑗=1
𝑎
𝑗
𝑤
𝑗
(where 𝑎

𝑗
, 𝑤
𝑗
, and 𝑞

𝑗
are the

subjective weight, objective weight, and combination weight
of the 𝑗th metric, resp., and 𝑛 is the number of metrics).
However, this approach tends to make the large results even
larger and the small ones even smaller, and sometimes it
may lead to a very unreasonable result. For example, given

12 Mathematical Problems in Engineering

the subjective weights (0.6, 0.3, 0.1) and the objective weights
(0.7, 0.2, 0.1), using the multiplicative synthesis method we
can see from the combination result (0.857, 0.122, 0.02) that
the first metric is obviously enlarged, while the thirdmetric is
decreased to the point where it can be ignored, which is obvi-
ously unreasonable. Research suggests that the multiplicative
synthesis method is more suitable for the case in which the
number ofmetrics is large and theweight distribution ismore
uniform [36, 37]. Regarding the weighted linear combination
method, the general formula is 𝑞

𝑗
= 𝛿𝑎
𝑗
+ (1 − 𝛿)𝑤

𝑗
(where

𝑎
𝑗
, 𝑤
𝑗
, and 𝑞

𝑗
are the subjective weight, objective weight,

and combination weight of the 𝑗th metric, resp., and 0 ≤

𝛿 ≤ 1). This method overcomes the shortcomings of the
multiplicative synthesis method and thus is more widely used
[36–39]. The key of this method is how to determine the
combination coefficient of the two weightingmethods. Based
on the above analysis, we plan to use the weighted linear
combinationmethod to combine the results of subjective and
objective weighting. The methods proposed in [40] are used
to do the subjective weighting, while the entropy method is
adopted to do the objective weighting.

6.2.1. Improved AHP Weighting Method Based on Sorting.
The AHP is originally conceived as a multicriteria decision-
making method and is widely used as a subjective weighting
method for decision metrics. The top-down hierarchical
structure is used to model the relationship among decision
elements in the AHP. The top node of the hierarchical
structure represents the decision goal, such as QoS, and the
following layer nodes are the related metrics affecting the
decision goal, such as security, availability, and cost, which
can be further divided.The lowest layer nodes are the alterna-
tives. The AHP has a unique method for determining metric
weights, which defines 1–9 scales to measure the relative
importance degree of two metrics by combining the quali-
tative and quantitative ways to measure them. The relative
importance degree is defined as the ratio between the weights
corresponding to two metrics related to the same goal. The
relative importance degree of any two metrics is determined
by paired comparisons; after that, the judgment matrix is
obtained. Next, to check the consistency of the judgment
matrix is unavoidable. For example, if the relative importance
degree of A and B equals 2, the relative importance degree
of B and C equals 2, and the relative importance degree of
A and C equals 4, and then the weight distribution of A, B,
and C is consistent; otherwise, it is inconsistent. When the
weight distribution of metrics is not consistent, the relative
importance degrees must be adjusted continuously until the
judgment matrix becomes consistent. Finally, the weights of
all metrics will be obtained by solving the judgment matrix.
How to adjust the inconsistent judgment matrix is a difficult
problem in the AHP. We have improved the AHP weighting
method by referencing the method proposed by Li andWang
[40], so that the obtained judgment matrix fully meets the
requirement of consistency, as follows.

(1) Definition of the Relative Importance Degree Scale. The
scale 1.5

𝛽 (𝛽 = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4) is defined to

Table 2: Distribution of metric relative importance degrees for the
cases of 𝛽 and 𝑛 depicted.

𝛽 0 0.5 1 1.5 2 2.5 3 3.5 4
𝑛 = 1 𝑎

3
— 𝑎

2
— 𝑎

1
— — — 𝑎

4

𝑛 = 2 — — 𝑎
5

— — — — — —

depict the relative importance degree between metrics. The
relative importance degree is 1.50 meaning that the two
metrics are equally important.The value of 1.5 means that the
former metric is slightly more important than the latter. The
value of 1.52 means that the former metric is more important
than the lattermetric.The value of 1.53means that the former
is obviously more important than the latter. The value of 1.54
means that the former is absolutely more important than the
latter. When 𝛽 take values of 0.5, 1.5, 2.5, and 3.5, it indicates
the intermediate state of the two adjacent relative importance
degrees, respectively.

(2) Determination of the Subjective Weights. There are three
steps in calculating the subjective weights: first, the metrics
are divided into several groups according to importance from
low to high. Each group represents a level of importance,
and the weights of metrics in the same group are all equal
or have only small differences, while the weights of metrics
in the different groups have significant differences. The main
purpose of grouping metrics is to determine the rationality
of the results of objective weighting when the combination
weighting is carried out in the future. Second, the metrics in
each group are sorted according to their importance ranging
from low to high, while themetrics with the same importance
are sorted by their numbers. Finally, the subjective weights of
decision metrics are determined according to the following
method.The left-hand first one of the sorted metric sequence
is taken as the main reference and the left-hand adjacent one
of the current metric is taken as the auxiliary reference; then,
the relative importance degree between the current metric
and the main reference metric and the relative importance
degree between the currentmetric and the auxiliary reference
metric are determined. According to this method, the relative
importance degree of eachmetric in the sequence is assigned,
in turn, from the left-hand to right-hand order. Finally, the
subjective weight of each metric can be obtained based on all
the relative importance degree values. Table 2 shows the case
of the distribution of relative importance degrees, in which
𝛽 represents the relative importance degree index for each
metric, and the maximum 𝑛 in each column represents the
number of metrics with the same weight. The determination
process of the relative importance degree is as follows.

First, the metric with the smallest degree of importance,
namely, the left-hand first one in the sorted metric sequence,
is placed in the cell where 𝛽 = 0 and 𝑛 = 1. In turn, other
metrics in the sequence are compared with the left-hand first
metric and its left-hand adjacent metric, and then it is placed
into the corresponding cell based on the comparison results.
For example, for the metric sequence 𝑎

3
, (𝑎
2
, 𝑎
5
), 𝑎
1
, and 𝑎

4
,

the process in detail is as follows: At first, 𝑎
3
is placed into

the cell where 𝛽 = 0 and 𝑛 = 1. Meanwhile, 𝑎
2
is placed

Mathematical Problems in Engineering 13

into the cell where 𝛽 = 1 and 𝑛 = 1 because 𝑎
2
is slightly

more important than 𝑎
3
. Considering that 𝑎

5
is slightly more

important than 𝑎
3
and is as equally important as 𝑎

2
, 𝑎
5
is

placed into the cell where 𝛽 = 1 and 𝑛 = 2. In addition, 𝑎
1

is placed into the cell where 𝛽 = 2 and 𝑛 = 1 because 𝑎
1
is

more important than 𝑎
3
and is slightly more important than

𝑎
5
. Finally, 𝑎

4
is placed into the cell where 𝛽 = 4 and 𝑛 = 1

because 𝑎
4
is absolutely more important than 𝑎

3
and is more

important than 𝑎
1
.

It has been proved that the judgment matrixes deter-
mined by the above method are consistent [40]. The subjec-
tive weight of each metric can be calculated according to the
formula𝑤

𝑖
= 1.5𝛽𝑖/∑

𝑛

𝑗=1
1.5𝛽𝑗 , where𝛽

𝑖
and𝛽
𝑗
are the relative

importance degree indexes of metrics 𝑖 and j, respectively.

6.2.2. Calculation of the Objective Weights. The entropy
method is a commonly used objective weightingmethod that
obtains the objective weight of each metric by calculating
its entropy based on the raw metric data. Entropy is a
measurement of system uncertainty; the higher the entropy
value of a system, the greater its uncertainty, and the less
its information, and vice versa [41]. We assume that the
multicriteria decision-making problem has 𝑚 alternatives
and 𝑛 decision metrics, and any metric can be expressed as
𝑥
𝑖𝑗
(1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛). The objective weights of decision

metrics are then calculated according to the following steps:
The first step is to achieve the normalized decisionmatrix

P = (𝑝
𝑖𝑗
)
𝑚×𝑛

by normalizing the decision matrix X =

(𝑥
𝑖𝑗
)
𝑚×𝑛

, so that each decision metric is the profit type and
its value is between 0 and 1.

The second step is to calculate the entropy of each metric.
The uncertainty of the importance degree of any decision
metric can be measured by calculating its entropy according
to the following formula:

𝐸
𝑗
= −

𝑚

∑
𝑖=1

𝑝
𝑖𝑗
ln𝑝
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑛) . (3)

From the above formula, when a certain metric in all
alternatives tends to be equal, the entropy of the very metric
approaches its maximum value, and thus the uncertainty of
the importance degree of the metric tends to be greater. The
maximum entropy 𝐸max = ln𝑚, so 𝐸

𝑗
can be normalized by

𝐸max as follows:

𝑒
𝑗
= − (ln𝑚)−1

𝑚

∑
𝑖=1

𝑝
𝑖𝑗
ln𝑝
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑛) . (4)

The third step is to calculate the difference coefficient of
each decision metric by the following formula:

𝑑
𝑗
= 1 − 𝑒

𝑗
(𝑗 = 1, 2, . . . , 𝑛) . (5)

The smaller the metric’s entropy, the greater the metric’s
difference, and the greater the role of the very metric in
evaluating services and vice versa.

The fourth step is to calculate the objective weight of each
metric as follows:

𝑤
𝑗
=

𝑑
𝑗

∑
𝑛

𝑗=1
𝑑
𝑗

. (6)

6.2.3. Combination Weighting Method Based on Comprehen-
sive Analysis. Although the subjective weight is subjective
and less accurate, it reflects the preference of the decision
maker and has a superior rationality in sorting decision
metrics by their importance. Therefore, the combination
weighting should be mainly based on the subjective weights,
and the combination coefficient of the subjective and objec-
tive weight vectors can be determined by analyzing the
difference between the metric weight rankings obtained by
the two weighting methods. Assuming that the subjective
and objective weight vectors are identified as w

𝑠
and w

𝑜
,

respectively, then any linear combinations of them can be
expressed as

w = 𝑎w
𝑠
+ (1 − 𝑎)w

𝑜
, 0 ≤ 𝑎 ≤ 1. (7)

Assuming that the decision metrics are identified as
𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
, after subjective weighting, the decision met-

rics are divided into 𝑘 groups by importance, that is,
𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑘
, in which the group 𝑅

2
is more important

than the group 𝑅
1
and the group 𝑅

3
is more important than

the group 𝑅
2
and so on. The method of determining the

coefficient 𝑎 is as follows:

(1) If there is a relatively uniform distribution and no
essential difference in the weights of all decision
metrics, then take 𝑎 = 0, and the result of the
objective weighting can be directly used as the result
of combination weighting.

(2) If the metric weight rankings obtained by the subjec-
tive and objective weighting methods are exactly the
same, in order to eliminate the influence of subjective
factors, it should take only the objective weighting
method to obtain the weights, which indicates that
𝑎 = 0.

(3) If the metric weight rankings obtained by the subjec-
tive and objective weighting methods are not exactly
the same, while the metric group rankings obtained
by the two methods are the same, then take 𝑎 = 0.5.
For example, the metric weight ranking obtained by
the subjective weighting method is 𝑃

1
, (𝑃
2
, 𝑃
3
) and

(𝑃
4
, 𝑃
5
) while the weight ranking of metrics obtained

by the objective weighting method is 𝑃
1
, (𝑃
3
, 𝑃
2
), and

(𝑃
5
, 𝑃
4
). Obviously, the two orders of metric weights

are not the same, but the orders of metric groups are
the same, and in such circumstances, 𝑎 = 0.5.

(4) If the weight rankings of metrics obtained by the two
weighting methods are different and the orders of
metric groups obtained by the two methods are also
different, then take 𝑎 = 1. This situation indicates
that the results obtained by the objective weighting
method deviate markedly from the subjective prefer-
ences of the decision maker, so the obtained objec-
tive weights have no reference value. The subjective
weighting results will be directly used as the final
metric weights.

6.3. Ranking Alternative Instances Based on Comprehensive
Evaluations. For an alternative IaaS instance 𝐼

𝑖
, it is assumed

14 Mathematical Problems in Engineering

that 𝐼
𝑖
has 𝑘 important nonfunctional metrics that are

expressed as 𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑘
, and the metric weight vector

obtained by the combination weighting method is w =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑘
); thus, the comprehensive evaluation 𝑈

𝑖
of

𝐼
𝑖
can be obtained by formula (8). The comprehensive

evaluations of all the best instances returned by the matching
of supply and demand on IaaS FMs can be calculated in
this way. Finally, these instances are sorted based on their
comprehensive evaluation. We have

𝑈
𝑖
= 𝑥
𝑖1
𝑤
1
+ 𝑥
𝑖2
𝑤
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑖𝑘
𝑤
𝑘
. (8)

7. Experiment and Analysis

7.1. Experimental Scenario, Data Sources, and
Experimental Tools

7.1.1. Experimental Scenario. This experiment evaluates the
feasibility and effectiveness of the IaaS discovery and selec-
tion method presented in this paper. Considering that a
computing service acts as the main cloud infrastructure
service having a wide range of applications, we specially
formulate the following experimental requirements.

A user plans to buy a computing service from an IaaS
Provider, and the customers are mainly located in southeast-
ern China. The specific requirements of the computing ser-
vice include the following: two virtual servers with identical
configuration, a load balancer, two virtual CPUs per virtual
server, 2 G memory, a solid-state hard disk, 30G hard disk
capacity, CentOS operating system, and support for IPv6; the
estimated network traffic per month is 2 TB, and all service
resources are located in Asia.

Three moderate-size and well-known IaaS providers,
which are very representative and can provide the computing
services in the Asia area, are selected as the IaaS providers
in the experiment. The three providers are DigitalOcean
[29], RackSpace [42], and Linode [43], which are all from
the United States and have built their own cloud infrastruc-
ture centers in Europe, America, and Asia. Among them,
DigitalOcean was founded in 2012, and currently has more
than 15000 servers; RackSpace was founded in 1998 and has
hundreds of thousands of servers; Linode was founded in
2003 and has tens of thousands of servers.

7.1.2. Data Sources. The service-related data of the three
providers mainly derives from their portals. In addition, we
have selected the following critical nonfunctional metrics for
comparison according to Section 6.1.Thesemetrics have been
calculated or obtained in the following ways.

Cost. We obtain the best matching instances from the three
IaaSs and their costs by matching the IaaS service and
demand models.

Security. According to our measurement and evaluation
method of cloud security MMECS, we first download the
providers’ CAIQ reports from the CSA site and then calculate

the security advantage of each provider based on these
reports.

SPECCPU2006. CloudHarmony carries out periodic per-
formance testing on the service instances of several major
cloud providers in the industry and their testing results
are relatively objective and fair. We directly download the
SPECCPU2006 results of related instances from the Cloud-
Harmony site.

Availability. We obtain the availability of each computing
service instance by formula (2).

Network Latency. Under an 8M bandwidth network envi-
ronment in Nanjing, by means of network testing services
provided by CloudHarmony, we test the network latency of
the best matching instance from each provider ten times. We
remove the minimum andmaximum values and then use the
average value of the remaining eight tests as the final result.

Market Share. We directly download the market-share data
from the CloudHarmony site.

Scaling Latency. We measure scaling latency by recording
the time from when the instance is requested to when it
is available to be used. We test the scaling latency for each
instance ten times and remove the minimum and maximum
values and then use the average value of the remaining eight
tests as the final result.

7.1.3. Editing andAnalysis Tools of IaaS FMs. Wehave selected
the FaMa [44] framework to create and analyze the IaaS
FM. The FaMa framework is an open-source automated
analysis tool for FMs with four different reasoners, which
support more than 20 different analysis operations. FaMa
supports creating a FM containing attributes and feature
group cardinality. FaMa is implemented as an Eclipse plug-in,
which supports the following analysis operations: verifying
a FM, product number analysis, verifying configuration,
product searching, and so forth. FaMa can accept two forms
of FM file formats, namely, XML and plain text. The plain-
text format is the simplest and clearest among all the formats,
so we select it to express the IaaS FM.The syntax of the plain-
text format is defined as follows.

As illustrated in Figure 7, a FM is expressed as three
sections: the “%Relationships” section, the “%Attributes”
section, and the “%Constraints” section. The hierarchical
features and the vertical relationships among features
are defined in the “%Relationships” section. The features
after the colon are the children of the feature before the
colon. By default, features are of mandatory type, while
optional features are presented in the form of [feature
name]. The feature group is represented by cardinality and
a set of features in the form: [min,max]{FeatA, FeatB, . . .}.
The feature attributes are defined in the “%Attributes”
section; the definition of each attribute contains attribute
type, range, default value, and null value. The attributes
can be an enumeration type and defined in the form
“FeatName.AttName:[val1, val2, . . . , val𝑁], defaultVal,

Mathematical Problems in Engineering 15

%Relationships
LinodeServer: Virtualmachine OS Network [Loadbalancer] Purchase Location;
Virtualmachine: [1,1]{Linode1G, Linode2G, Linode4G, Linode8G, Linode16G,
Linode32G, Linode48G, Linode64G}
OS: Linux;
Linux: [1,1]{Arch, Debian, centos, Ubuntu, OpenSUSE, gentoo, Slackware,
Fedora};
. . .
%Attributes
LinodeServer.periodcost:real[0 to 10000000],0,0; % Period cost ($)
LinodeServer.availability:real[0 to 1],0,0;
LinodeServer.Securitylevel:real[0 to 1],0.1396,0;
Virtualmachine.HDD: [SSD, NoSSD],SSD,0;
. . .
%Constraints
Linode1GB AND Month AND (Network.estimatetraffic > Freetraffic.freelimit)
IMPLIES
(Virtualmachine.RAM == 1 GB) AND (Virtualmachine.vCPU == 1) AND (Virtualmachine.HDDcapabiltiy ==
AND (Freetraffic.freelimit == 204 8G) AND
(Virtualmachine.costMONTh == 10$) AND
(LinodeServer.cost.month = VM.costmonth + Freetraffic.extraprice × (Network.estimatetraffic − Freetraffic.freelimit)); . . .

· · ·

· · ·

; . . .

24 GB

Figure 7: Linode service model in plain-text format.

nullVal”; the horizontal relationships among features and the
COMPLEX CONSTRAINTS among multiple features and
attributes are defined in the “%Constraints” section.

7.2. Creation andMatching of the Service andDemandModels.
According to the requirement description in this experiment
and the collected related information about the three IaaS
services, we have created the demand model as illustrated
in Figure 4, the DigitalOcean service model as illustrated in
Figure 3, the Linode service model as illustrated in Figure 8,
and the plain-text format of the Linode service model
as illustrated in Figure 7. Owing to space limitations, the
RackSpace service model is omitted.

We take Linode as an example to demonstrate the concept
mapping between the service and demandmodels, alongwith
the supply and demand matching.

First, according to the concept ontology of IaaS FMs,
the concept “VM” in the demand model is mapped into
the concept “Virtualmachine” in the service model, “Loca-
tion” is mapped into “Region,” “CentOS” is mapped into
“centos,” and so forth. Therefore, the input configuration
for the Linode service model can be easily generated by
the demand model, including features such as Virtualma-
chine, CentOS, Network, Loadbalancer, Month, and Asia,
as well as attributes such as Virtualmachine.memory = 2G,
Virtualmachine.vCPU = 2. Second, the plain-text format of
the Linode service model and the input configuration are
submitted to the FaMa platform; the analysis operation code
is presented in Figure 9. FaMa first verify the validity of the
Linode service model and the input configuration, and then
the best matching instance is obtained as follows by searching
the Linode service model:

Linode2GB AND LoadBalancer AND Month AND
Singapore AND (Network.estimatetraffic <= Freetraffic.
Freelimit × VM.num) IMPLIES (Virtualmachine.RAM ==
2GB) AND (Virtualmachine.vCPU == 2) AND (Virtualma-
chine.HDDcapabiltiy == 48GB) AND (Freetraffic.freelimit

LinodeServer

OS
Linux

Virtualmachine

Network Freetraffic

Loadbalancer

Purchase

Hour

Month

Region

Asia

Europe

Singapore

centos

Ubuntu

Debian

Fedora

securitylevel:
0.1396

availabiltiy: 0.999
Supportipv6: 1

HDD: SSD
availabiltiy: 0.999

availabilty: 0.999
costhour: 0.03
costmonth: 20

Arch

OpenSUSE

London
Frankfurt

USEast USWest

Slackware

gentoo

Tokyo

USCentral
USSouthNorthAmerica

Server 16 G
Server 8 G

Server 48G

Server 96GServer 64 G

Server 4 G

Server 32G

Server 2 G
Linode 1 G

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

⟨1-1⟩

Extraprice: 2¢/G

Figure 8: Major structure of the Linode service model.

== 3072G) AND (Virtualmachine.costmonth == $20) AND
(LinodeServer.periodcost = Virtualmachine.costmonth ×

Virtualmachine.num + LoadBalancer.monthcost × LoadBal-
ancer.num);

LinodeServer.periodcost = 20 × 2 + 20 = $60.
We have verified the validity of the DigitalOcean service

model, the RackSpace servicemodel, and their input configu-
rations using similarmethods and obtained the bestmatching

16 Mathematical Problems in Engineering

import es.us.isa.FAMA.Reasoner.QuestionTrader
import IaaSCustomOperation.ProductSetOpt; //Matching instances are optimized in it
Public {AttributedFMoperationclass
public static void main(String[] args) {
QuestionTrader qt = new QuestionTrader ();
GenericAttributedFeatureModel afm = (GenericAttributedFeatureModel)
qt.openFile (“IaaSFM/Linode.afm”);
qt.setVariabilityModel (afm);
ValidQuestion (vq);qt.ask(“Valid”);qt.createQuestion(ValidQuestion)vq=
System.out.println (“The validity of the model is” + vq.isValid());
if (vq.isValid())
{ Configuration p = new Configuration();
GeneriAttributedFeature f1 = afm.searchFeatureByName (“VM”)
f1.addAttribute(f1.searchAttributeByName(“memory”), “2”);
p.addElement (f1,1);
ValidConfigurationQuestion vcq= (ValidConfigurationQuestion)
qt.createQuestion (“ValidConfiguration”);
vcq.setConfiguration (vcq);qt.ask(p);
System.out.println (“The validity of the configurationis” + vcq.isValid());
if (p);qt.addStagedConfiguration{(vcq.isValid())
Questionq = qt.createQuestion (“Products”); qt.ask(q);
ProductsQuestion pq= (ProductQuestion) q;
if (pq.getNumberOfProcucts() == 0) system.out.println (“\n No valid product”);
else

{ pq.getAllProducts().iterator();=itGenericProduct>extendsIterator<?
if ProductSetOpt(it);new=poProductSetOpt{(it.hasNext())

po.findBestProductAndprint }();
}

} } }}

· · ·

· · ·

; . . .

; . . .

Figure 9: Source code of verifications of the Linode service model and the input configuration and searching for the best instance.

Table 3:Main nonfunctionalmetrics of the bestmatching instances.

Metric name RackSpace DigitalOcean Linode
𝑎
1
: cost 107.44 55 60

𝑎
2
: security index 0.1478 0.1307 0.1396

𝑎
3
: SPECCPU2006 111 101 118

𝑎
4
: availability 0.9989 0.9980 0.9998

𝑎
5
: scaling latency 123 55 118

𝑎
6
: network latency 109ms 398ms 260ms

𝑎
7
: market share 5% 1% 2%

instances. The costs of the best instances from DigitalOcean
and RackSpace are $55 and $107.44, respectively.

7.3. Ranking of the Best Matching Instances. The steps in
ranking the best matching instances are as follows.

(1) Measurement of the Main Nonfunctional Metrics for the
Best Matching Instances. According to Section 7.1.2, the main
nonfunctional metrics are obtained as shown in Table 3.

Accordingly, the following decision matrix X is created:

X =
[
[

[

107.44 0.1478 111 0.9989 123 109 0.05

55 0.1307 101 0.9980 55 398 0.01

60 0.1396 118 0.9998 118 260 0.02

]
]

]

. (9)

In order to facilitate comparison of the above metrics
of these instances, we utilize the method given in [45] to
standardize all evaluationmetrics through the formula “𝑥

𝑖𝑗
=

(max 𝑥
𝑖𝑗
− 𝑥
𝑖𝑗
) + min𝑥

𝑖𝑗
, 𝑖 = 1 → 𝑚.” All evaluation

metrics are converted into profit metrics by the formula
“max 𝑥

𝑖𝑗
− 𝑥
𝑖𝑗
”, and then a coordinate translation is carried

out by “+min𝑥
𝑖𝑗
,” so that the values of these metrics can be

restored to their original size level. Second, we normalize the
converted matrix by the formula 𝑦

𝑖𝑗
= 𝑥
𝑖𝑗
/∑
𝑚

𝑖=1
𝑥
𝑖𝑗
, 1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛, where 𝑚 is the number of alternative service
instances and 𝑛 is the number of evaluation metrics. Finally,
the standardized decision matrix R is obtained:

R

=
[
[

[

0.208 0.353 0.336 0.333 0.231 0.528 0.625

0.405 0.313 0.306 0.333 0.517 0.145 0.125

0.387 0.334 0.358 0.334 0.252 0.327 0.250

]
]

]

.
(10)

(2) Determination of the Subjective Weights. According to
Section 6.2.1, we first divide all evaluation metrics into four
groups and sort them by ascending importance. The metric
sequence 𝑎

5
, (𝑎
4
, 𝑎
6
), (𝑎
2
, 𝑎
7
), and (𝑎

1
, 𝑎
3
) is obtained. The

importance of each metric in the sequence is greater than
or equal to its left-hand closest metric. Next, the metric
weight distribution is carried out, and the results are shown
in Table 4.

According to the formula 𝑤
𝑖

= 1.5𝛽𝑖/∑
7

𝑗=1
1.5𝛽𝑗 ,

∑
7

𝑗=1
1.5𝛽𝑗 = 15.25, the subjective weight vector w

𝑠
is

calculated:

w
𝑠
= (0.221, 0.148, 0.221, 0.098, 0.066, 0.098, 0.148)

𝑇
. (11)

Mathematical Problems in Engineering 17

Table 4: Distribution of the metric relative importance degree.

𝛽 0 0.5 1 1.5 2 2.5 3 3.5 4
𝑛 = 1 𝑎

5
— 𝑎

4
— 𝑎

2
— 𝑎

1
— —

𝑛 = 2 — — 𝑎
6

— 𝑎
7

— 𝑎
3

— —

(3) Calculation of the Objective Weights. According to
Section 6.2.2, the entropy of an evaluation metric is obtained
by formula (4), and the results are as follows:

𝑒
1
= 0.96494,

𝑒
2
= 0.9989,

𝑒
3
= 0.99813,

𝑒
4
= 0.99999,

𝑒
5
= 0.93473,

𝑒
6
= 0.89452,

𝑒
7
= 0.81945.

(12)

The metric variation coefficients are obtained by the
formula 𝑑

𝑗
= 1 − 𝑒

𝑗
, and the results are as follows:

𝑑
1
= 0.03506,

𝑑
2
= 0.0011,

𝑑
3
= 0.00187,

𝑑
4
= 0.00001,

𝑑
5
= 0.06527,

𝑑
6
= 0.10548,

𝑑
7
= 0.18055.

(13)

The objective weight vector is obtained as follows by the
formula 𝑤

𝑗
= 𝑑
𝑗
/∑
𝑛

𝑗=1
𝑑
𝑗
:

w
𝑜

= (0.090, 0.003, 0.005, 0.001, 0.168, 0.270, 0.463)
𝑇
.
(14)

(4) Combination Weighting. After the completion of the
subjective weighting, metrics are sorted by ascending impor-
tance as follows:

(𝑎
5
) , (𝑎
4
, 𝑎
6
) , (𝑎
2
, 𝑎
7
) , (𝑎
1
, 𝑎
3
) . (15)

From the results of the subjective weighting, 𝑎
4
and 𝑎
6
, 𝑎
2

and 𝑎
7
, and 𝑎

1
and 𝑎
3
are equally important; therefore, there

are some equivalent results of sorting metrics:

(𝑎
5
) , (𝑎
4
, 𝑎
6
) , (𝑎
2
, 𝑎
7
) , (𝑎
3
, 𝑎
1
) ;

(𝑎
5
) , (𝑎
4
, 𝑎
6
) , (𝑎
7
, 𝑎
2
) , (𝑎
1
, 𝑎
3
) ;

(𝑎
5
) , (𝑎
4
, 𝑎
6
) , (𝑎
7
, 𝑎
2
) , (𝑎
3
, 𝑎
1
) ;

(𝑎
5
) , (𝑎
6
, 𝑎
4
) , (𝑎
2
, 𝑎
7
) , (𝑎
1
, 𝑎
3
) ;

(𝑎
5
) , (𝑎
6
, 𝑎
4
) , (𝑎
2
, 𝑎
7
) , (𝑎
3
, 𝑎
1
) ;

(𝑎
5
) , (𝑎
6
, 𝑎
4
) , (𝑎
7
, 𝑎
2
) , (𝑎
1
, 𝑎
3
) ;

(𝑎
5
) , (𝑎
6
, 𝑎
4
) , (𝑎
7
, 𝑎
2
) , (𝑎
3
, 𝑎
1
) .

(16)

After completion of the objective weighting, metrics are
sorted by ascending importance as follows.

𝑎
4
, 𝑎
2
, 𝑎
3
, 𝑎
1
, 𝑎
5
, 𝑎
6
, 𝑎
7
. (17)

The results show that the sorting results of metrics
obtained by the two weighting methods are not exactly the
same; the sorting results of metric groups are also not the
same. Therefore, we take the linear combination coefficient
𝑎 = 1. According to formula (7), the combination weight
vector is calculated as w = w

𝑠
= (0.221, 0.148, 0.221,

0.098, 0.066, 0.098, 0.148)T. The result can be explained as
follows: The metric weight sorting obtained by the objective
weighting methods deviates markedly from the subjective
preferences of the user. Therefore, the result obtained by the
objective weighting method has no reference value. Based
on the main nonfunctional metrics and their weights, we
have obtained the comprehensive evaluations of the three
best instances from the RackSpace, DigitalOcean, and Linode
service models as follows:

𝑈Best-instance-from-RackSpace = 0.364592,

𝑈Best-instance-from-DigitalOcean = 0.302921,

𝑈Best-instance-from-Linode = 0.332487.

(18)

Thus, the best matching instances from the three
providers are sorted as follows:

𝑈Best-instance-from-RackSpace > 𝑈Best-instance-from-Linode

> 𝑈Best-instance-from-DigitalOcean.
(19)

7.4. Results Analysis. First, the IaaS discovery process imple-
ments the matching of supply and demand on IaaSs with
a configuration instance granularity, in which the search
for the matching instances covers the complete configu-
ration space for each IaaS. Therefore, the QoS metrics of
all matching instances can be obtained accurately so that
the QoS of these instances can be objectively evaluated
and compared, which ensures that the decision results are
accurate. Second, the IaaS discovery and selection process
realized in this paper is systematic and automatic. After

18 Mathematical Problems in Engineering

the user submits the demand of an IaaS and the subjective
weight vector of the decision metrics, the entire process
will be completed automatically. Thus the efficiency of IaaS
discovery and selection is greatly improved. Finally, the
performance of our methods is good. The repository of IaaS
service models is updated andmaintained periodically by the
system. Thus, the main processing part of our methods lies
in the matching of supply and demand on IaaS FMs. This
processing part takes out the IaaS service model from the
repository sequentially and then searches the best matching
instances from the IaaS configuration space represented by
the service mode. Assuming there are 𝑚 IaaS services, each
provides about 𝑛 configuration instances, and the COMPLEX
CONSTRAINTS representation of each instance involves
about 𝑙 conditional options; the time complexity is then𝑂(𝑛×
𝑚×𝑙).The experimental result shows that the searches for the
best matching instances from the three IaaS service models
are accomplished within 1 s.

8. Conclusions and Future Work

This paper systematically studied the description, discovery,
and selection methods of IaaSs in cloud computing. First,
we designed a standard description method for IaaSs that
uses a fine-grained and structured way to describe the entire
configuration space of an IaaS. The method overcomes the
shortcomings of existing methods, which can only describe
the macro information of IaaSs and provides the conditions
for the automated discovery and selection of IaaSs. Second,
we proposed a systematic discovery and selectionmethod for
IaaSs, which introduces the automated analysis techniques
of FMs to analyze the service model and search for the best
matching instance from each IaaS.The discovery efficiency is
greatly improved.Moreover, due to the fine-grainedmatching
of supply and demand on IaaSs, the matching results directly
point to the specific configuration instances, so the accuracy
of service discovery is effectively improved. Finally, we uni-
fied the decision metrics for service selection, and presented
effective and feasible metric measurement methods. We also
presented a combination weighting method for decision
metrics based on the subjective and objective weighting
methods. As such, the ranking result of alternative IaaS
instances is more objective and reliable.

In reality, a combination of multiple IaaSs can sometimes
meet the needs of some applications better, such as global e-
commerce. If a combination of multiple IaaSs from different
regions is used, the user requests will be effectively dispersed
so that the system pressure can be greatly reduced and user
experience can be improved. In addition, some applications
have to be deployed on the combination of multiple IaaSs,
such as a medical-related and big-data-analysis application,
which needs to collect the original data from multiple coun-
tries for analysis and processing. If the laws of the relevant
countries strictly prevent such original data flowing out of
their territories, then users will have to buy a combination of
multiple IaaSs located in the licensed areas. Therefore, there
is a strong realistic significance in studying how to discover
and select the best IaaS composition based on user needs.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by the Nature Science Foundation
of Jiangsu, China, under Grant no. BK20131069.

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–
58, 2010.

[2] Cloudharmony, 2015, https://cloudharmony.com.
[3] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “An effec-

tive architecture for automated appliance management system
applying ontology-based cloud discovery,” in Proceedings of the
10th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid ’10), pp. 104–112, May 2010.

[4] M. Á. Rodŕıguez-Garćıa, R. Valencia-Garćıa, F. Garćıa-Sánchez,
and J. J. Samper-Zapater, “Ontology-based annotation and
retrieval of services in the cloud,”Knowledge-Based Systems, vol.
56, no. 3, pp. 15–25, 2014.

[5] J. Kang and K. M. Sim, “Ontology and search engine for
cloud computing system,” in Proceedings of the International
Conference on System Science and Engineering (ICSSE ’11), pp.
276–281, Macau, China, June 2011.

[6] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer
Systems, vol. 29, no. 4, pp. 1012–1023, 2013.

[7] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a catalogue of
metrics for evaluating commercial cloud services,” in Proceed-
ings of the 13th ACM/IEEE International Conference on Grid
Computing (GRID ’12), pp. 164–173, Beijing, China, November
2012.

[8] E. Wittern, J. Kuhlenkamp, and M. Menzel, “Cloud service
selection based on variability modeling,” in Service-Oriented
Computing, pp. 127–141, Springer, Berlin, Germany, 2012.

[9] J. Garćıa-Galán, P. Trinidad, O. F. Rana, and A. Ruiz-Cortés,
“Automated configuration support for infrastructure migration
to the cloud,” Future Generation Computer Systems, vol. 55, pp.
200–212, 2016.

[10] J. Garćıa-Galán, O. F. Rana, P. Trinidad, and A. Ruiz-Cortés,
“Migrating to the cloud: a software product line based analysis,”
in Proceedings of the 3rd International Conference on Cloud
Computing and Services Science (CLOSER ’13), pp. 416–426,
Aachen, Germany, May 2013.

[11] Amazon, 2015, http://aws.amazon.com.
[12] K. Kang, S. Cohen, J. Hess et al., “Feature-oriented domain anal-

ysis feasibility study,” Tech. Rep. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, 1990.

[13] G. Shen, W. Zhang, Z. Huang et al., “Description-logic-
based feature modeling and verification,” Journal of Computer
Research and Development, vol. 50, no. 7, pp. 1501–1512, 2013.

[14] C. Quinton, D. Romero, and L. Duchien, “Automated selection
and configuration of cloud environments using software prod-
uct lines principles,” in Proceedings of the 7th IEEE International
Conference on Cloud Computing (CLOUD ’14), pp. 144–151,
Anchorage, Alaska, USA, June 2014.

Mathematical Problems in Engineering 19

[15] J. Zhou, D. Zhao, and J. Liu, “TEFL: a textual feature modeling
language,” Journal of Chinese Computer Systems, vol. 33, no. 10,
pp. 2133–2140, 2012.

[16] Amazon, “AWS Total Cost of Ownership (TCO) Calculator,”
2015, https://awstcocalculator.com.

[17] Rackspace, 2015, http://www.rackspace.co.uk/solutions-config-
urator.

[18] Cloudscreener, 2015, http://www.cloudscreener.com.
[19] Cloudorado, 2015, https://www.cloudorado.com.
[20] Planforcloud, 2015, http://www.planforcloud.com.
[21] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic

optimization for deployment and reconfiguration of software in
the cloud,” in Proceedings of the 35th International Conference
on Software Engineering (ICSE ’13), pp. 512–521, San Francisco,
Calif, USA, May 2013.

[22] M. Zhang, R. Ranjan, A. Haller et al., “An ontology-based sys-
tem for cloud infrastructure services’ discovery,” in Proceedings
of the International Conference onCollaborative Computing:Net-
working, Applications and Worksharing, pp. 524–530, Wuhan,
China, November 2012.

[23] T. Han and K. M. Sim, “An ontology-enhanced cloud service
discovery system,” in Proceedings of the International Multi
Conference of Engineers and Computer Scientists (IMECS ’10),
vol. 2180, HongKong, March 2010.

[24] L. Liu, X. Yao, L. Qin, and M. Zhang, “Ontology-based service
matching in cloud computing,” in Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE ’14), pp.
2544–2550, IEEE, Beijing, China, July 2014.

[25] Cloud ServiceMeasurement IndexConsortium (CSMIC), “SMI
framework,” 2015, http://www.csmic.org/.

[26] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: a framework
for comparing and ranking cloud services,” in Proceedings of the
IEEE International Conference on Utility and Cloud Computing,
pp. 210–218, Melbourne, Australia, December 2011.

[27] B. Dougherty, J. White, and D. C. Schmidt, “Model-driven
auto-scaling of green cloud computing infrastructure,” Future
Generation Computer Systems, vol. 28, no. 2, pp. 371–378, 2012.

[28] E. Wittern and C. Zirpins, “Service feature modeling: modeling
and participatory ranking of service design alternatives,” Soft-
ware & Systems Modeling, vol. 15, no. 2, pp. 553–578, 2016.

[29] DigitalOcean, 2015, https://www.digitalocean.com.
[30] CSA, “CSA Security, Trust and Assurance Registry (STAR),”

2015, https://cloudsecurityalliance.org/star/.
[31] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated

analysis of feature models 20 years later: a literature review,”
Information Systems, vol. 35, no. 6, pp. 615–636, 2010.

[32] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp:
comparing public cloud providers,” in Proceedings of the 10th
ACM SIGCOMM Conference on Internet Measurement (IMC
’10), pp. 1–14, ACM, Melbourne, Australia, November 2010.

[33] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer
can measure elasticity for cloud platforms,” in Proceedings of
the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE ’12), pp. 85–96, Boston, Mass, USA, April
2012.

[34] Spec, 2015, http://www.spec.org.
[35] H. Zhu, L. Wu, and H. Kang, “Research of cloud provider

selection method based on SecLA,” Computer Science, vol. 43,
no. 5, pp. 100–108, 2016.

[36] M.Wang, “A comprehensive analysis method for determinating
the weight coefficients in comprehensive evaluation of multiple
indexes,” Systems Engineering, vol. 17, no. 2, pp. 56–61, 1999.

[37] J.-X. Liu, Y.-J. Tan, and H.-P. Cai, “Study of the methods of the
linear combination weighting for multiple attribute decision-
making,” Journal of National University of Defense Technology,
vol. 27, no. 4, pp. 121–124, 2005.

[38] H.Chen, “Combination determiningweightsmethod formulti-
ple attribute decisionmaking based onmaximizing deviations,”
Systems Engineering and Electronics, vol. 26, no. 2, pp. 194–197,
2004.

[39] D. Song, C. Liu, C. Shen et al., “Multiple objective and attrib-
ute decision making based on the subjective and objective
weighting,” Journal of Shandong University, vol. 45, no. 4, pp.
1–9, 2015.

[40] Y. Li and J. Wang, “Method for deriving AHP weight based on
sorting,”Ordnance Industry Automation, no. 11, pp. 42–44, 2013.

[41] W. Chen and J. Xia, “Optimal combined weighting method
based on the subjective and objective weights,” Mathematics in
Practice andTheory, vol. 37, no. 1, pp. 17–22, 2007.

[42] RackSpace, 2015, http://www.rackspace.com.
[43] Linode, 2015, https://www.linode.com.
[44] ISA Research Group, “FAMA tool suite,” 2015, http://www.isa

.us.es/fama/.
[45] M. Li, G. Chen, and Y. Chen, “Research on the method of index

standardization in comprehensive evaluation,” Chinese Journal
of Management Science, no. 12, pp. 45–48, 2004.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

