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Market crashes often appear in daily trading activities and such instantaneous occurring events would affect the stock prices greatly.
In an unstable market, the volatility of financial assets changes sharply, which leads to the fact that classical option pricing models
with constant volatility coefficient, even stochastic volatility term, are not accurate. To overcome this problem, in this paper we put
forward a dynamic elasticity of variance (DEV) model by extending the classical constant elasticity of variance (CEV) model.
Further, the partial differential equation (PDE) for the prices of European call option is derived by using risk neutral pricing
principle and the numerical solution of the PDE is calculated by the Crank-Nicolson scheme. In addition, Kalman filtering method
is employed to estimate the volatility term of our model. Our main finding is that the prices of European call option under our
model are more accurate than those calculated by Black-Scholes model and CEV model in financial crashes.

1. Introduction

Nowadays, more and more researchers focus on stock option
pricing problems. In different environments, such as bull
markets or bear markets, the returns of stock prices have dif-
ferent properties and distributions to follow, based on which
many different models (see [1–7]) are proposed and some
analytic formulae or approximations are provided. For some
classical models without analytic solutions, lots of efficient
numerical methods (see [8–14]) are presented in detail. In
addition, by employing some existing model and numerical
methods, some researches (see [15, 16]) focus on the empirical
tests on actual data, and some great findings are observed in
the real derivative markets.

In recent two decades, the events of financial crisis, such
as the stock market crash in 1987 and the subprime crisis in
2008, show that extreme events have great effects on financial
markets and cannot be negligible in option pricing problems.
So, more and more researches focus on the dynamic markets
that experience sharp crashes, and lots of contributions on
option pricing models are presented. For instance, from an
empirical view the dynamic financial markets following the
occurrence of a financial crash have been studied in [17, 18].

In 2003, Sornette in [19] finds that the postcrash stock prices
follow a converging oscillatory motion through a nonparam-
eter method. In addition, Lillo and Mantenga in [18] show
that ex-postfinancial markets of crisis have characteristics of
a power-law relaxation decay. By using results of [19], El-
Khatib et al. in [20] study European option pricing model
with postcrash relaxation times in 2007. In [7], Zhu and
Galbraith present an evidence that stock returns can be
fitted by Student’s 𝑡-distribution during postcrash relaxation
times, which is consistent with the results in [17, 18]. In 2011,
Markose and Alentorn in [6] employ the generalized extreme
value distribution to model the implied risk neutral density
function and provide a flexible framework that captures the
negative skewness and excess kurtosis of returns in turbulent
financial markets.

If markets are in heavy crisis, the volatility of financial
assets changes sharply and is much bigger than that in bull
markets. To grasp unstable volatility,many kinds of stochastic
volatility models, such as Heston model, Hull-White model,
GARCH model, and CEV model, are proposed and option
pricing formula under risk neutral measure is given or approx-
imated. In these models, the volatility terms are constructed
by parametric processes, such as Cox-Ingersoll-Ross (CIR)
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process or Ornstein-Uhlenbeck (OU) process, and so forth,
of which the parameters are assumed to be constants. Further,
Yoon et al. in [21, 22] study problems of option pricing
under stochastic elasticity of variance model and their works
enhance the existing option price structures in view of
flexibility and applicability through the market prices of
elasticity risk. For these processes, there exist some certain
distributions they followed. But, in the real stock markets,
crashes have different shapes and propertieswithout any fixed
rules to obey. Moreover, lots of extreme values of returns
accumulate on tails of return distributions. These facts lead
to the point that it is impossible to use a certain distribution
or process to describe the information hidden in volatility
term. In this paper we put forward a semiparametric model
with parametric drift coefficient and nonparametric volatility
term to imitate the motion of stock prices in crashes. In this
model, the volatility term is a compound function based on
stock prices to the power of a nonparametric function, which
implies that the model has dynamic elasticity of variance.
Our model is an extension of a constant elasticity of variance
(CEV) model (see [4]), in which the power of the volatility
term is a constant in response to observations of an inverse
relationship between prices and volatility of prices under
some conditions. In this paper, we name our model as
dynamic elasticity of volatility (DEV) model.

Based on the DEVmodel, under risk neutral measure the
partial differential equation (PDE) for the prices of European
call option is derived. Then, Crank-Nicolson method, which
is unconditionally stable, is used on this PDE to simulate
option prices. Further, the Kalman filtering method and
least square method are employed to fit the volatility part
which exhibits exponentially decaying oscillatorymovement.
For comparison, we concurrently estimate parameters of
the DEV model, BS model, and CEV model by the same
samples to obtain the corresponding option prices. Our main
contributions and findings in this paper include that we first
put forward a dynamic elasticity of variance model to explain
the big changes of volatility and of option prices in crashes.
Moreover, in empirical test European call option prices are
shown to be approached more accurately by DEV model
than BS model and CEV model, especially in the ten percent
interval nearby the point of “at-the-money.” In the area far
from this point, the solutions of DEVmodel and CEVmodel
are very similar, almost the same. This finding guides us to
the fact that in the real trading activity we can depend on
DEVmodel with confidence to price European options in the
surroundings of “at-the-money.”

The remainder of this paper is arranged as follows. In
Section 2, we put forward our model and derive the PDE
satisfied by European call option by using the risk neutral
principle. In Section 3, Kalman filtering method and the
nonlinear least square method are employed to determine
the nonparametric term and some parameters. In Section 4,
we take three samples with respect to the historical daily
data of closed stock prices of S&P500 index to estimate
parameters of DEV, CEV, and BS models, respectively. And
some numerical results of option prices and their analysis are
presented in Section 5. And then in the last section we make
some conclusions.

2. Pricing Model

In this section, first we put forward a new model, dynamic
elasticity of variance (DEV) model, by extending the CEV
model to fit the process of stock prices in crashes.Then, based
on thismodel, the partial differential equation (PDE) satisfied
by European option prices is derived and verified.

2.1. Dynamic Elasticity of Variance Model. Let𝑊
𝑡
, 𝑡 ∈ [0, 𝑇],

be a Brownianmotion on a probability space (Ω,F, 𝑃) and let
F, 𝑡 ∈ [0, 𝑇] be a filtration generated by𝑊

𝑡
. First, let us recall

the classical CEV model in [4], which follows a stochastic
process as

𝑑𝑆
𝑡
= 𝜇𝑆
𝑡
𝑑𝑡 + 𝛿𝑆

𝜃/2

𝑡
𝑑𝑊
𝑡
, (1)

where (𝜇, 𝛿, 𝜃) are constant parameters and 𝑆
𝑡
is the stock

price at time 𝑡. At the events of crashes, although some
small sizes of rebounding follow, generally the stock prices
would be sharply decreasing, which leads to the fact that
the volatility of stock prices becomes increasing greatly. But
for the CEV model, usually 𝜃 > 2, then the volatility term
𝛿𝑆
𝜃/2−1

𝑡
has the same monotonic trend as the stock prices 𝑆

𝑡

(see [23]). This is a contradiction. Therefore, it is necessary
for us to improve the classical CEV model to be an efficient
one to reflect the inverse relationship between stock prices
and their volatility in crashes. On the other hand, in crashes
the volatility changes turbulently in short period and it is
hard to find an effective process or distribution to express this
phenomenon. In this section, to overcome these difficulties
we extend the constant parameter 𝜃 to be a dynamic function
𝑓(𝑡) and propose a dynamic elasticity of variance model as
follows:

𝑑𝑆
𝑡
= 𝜇𝑆
𝑡
𝑑𝑡 + 𝛿𝑆

𝑓(𝑡)/2

𝑡
𝑑𝑊
𝑡
, (2)

where 𝜇 and 𝛿 are constant parameters as those in CEV
model. If𝑓(𝑡) is a constant, then it degenerates to the classical
CEV model.

2.2. Pricing European Call Option. In this part, the price of
European call option is considered as a contingent claim that
pays max{𝑆

𝑇
− 𝐾, 0} at maturity 𝑇, and𝐾 is the strike price.

Let Θ(𝑢) = (𝜇 − 𝑟)/𝛿𝑆𝑓(𝑢)/2−1
𝑢

be a real valued predictable
process, 𝐵

𝑡
a process defined by

𝐵
𝑡
= ∫

𝑡

0

Θ (𝑢) 𝑑𝑢 +𝑊
𝑡
, (3)

and 𝜌
𝑡
a function of time 𝑡, which is given by

𝜌
𝑡
= exp(∫

𝑡

0

Θ (𝑢) 𝑑𝑊
𝑢
−
1

2
∫

𝑡

0

Θ
2
(𝑢) 𝑑𝑢) . (4)

Define a new probability measure 𝑄 by

𝑄 (𝐴) = ∫

𝐴

𝜌
𝑡
(𝜔) 𝑑𝑃 (𝜔) , ∀𝐴 ∈ F. (5)
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Thenwe can check that𝐸[𝜌
𝑇
] = 1 and𝐸[∫𝑡

0
Θ
2
(𝑢)𝜌
2

𝑢
𝑑𝑢] < ∞.

Moreover, byGirsanov theorem,𝐵
𝑡
is also a Brownianmotion

under the measure 𝑄. Consequently,

𝑑𝑆
𝑡
= 𝜇𝑆
𝑡
𝑑𝑡 + 𝛿𝑆

𝑓(𝑡)/2

𝑡
𝑑𝑊
𝑡

= 𝜇𝑆
𝑡
𝑑𝑡 + 𝛿𝑆

𝑓(𝑡)/2

𝑡
[𝑑𝐵
𝑡
− 𝑑∫

𝑡

0

𝜇 − 𝑟

𝛿𝑆
𝑓(𝑢)/2−1

𝑢

𝑑𝑢]

= 𝑟𝑆
𝑡
𝑑𝑡 + 𝛿𝑆

𝑓(𝑡)/2

𝑡
𝑑𝐵
𝑡
.

(6)

Suppose that the market is complete and arbitrage-free.
Now, let 𝐶(𝑡, 𝑆

𝑡
) be the European option price at time 𝑡. We

replicate this option by a portfolio constructed by Δ(𝑡) shares
of stocks andmoneywith amount of𝐶(𝑡, 𝑆

𝑡
)−Δ(𝑡)𝑆

𝑡
, which is

a risk-free asset. LetΠ
𝑡
= 𝐶(𝑡, 𝑆

𝑡
) −Δ(𝑡)𝑆

𝑡
; then 𝑑Π

𝑡
= 𝑟Π
𝑡
𝑑𝑡.

By Itô formula, from (6) we can obtain

𝑑Π
𝑡
= 𝑑𝐶 (𝑡, 𝑆

𝑡
) − Δ (𝑡) 𝑑𝑆

𝑡

=
𝜕𝐶

𝜕𝑡
𝑑𝑡 +

𝜕𝐶

𝜕𝑆
𝑡

𝑑𝑆
𝑡
+
1

2

𝜕
2
𝐶

𝜕𝑆
2

𝑡

𝑑𝑆
𝑡
𝑑𝑆
𝑡
− Δ (𝑡) 𝑑𝑆

𝑡

=
𝜕𝐶

𝜕𝑡
𝑑𝑡 +

𝜕𝐶

𝜕𝑆
𝑡

[𝑟𝑆
𝑡
𝑑𝑡 + 𝛿𝑆

(1/2)𝑓(𝑡)
𝑑𝐵
𝑡
]

+
1

2
𝛿
2
𝑆
𝑓(𝑡)

𝑡

𝜕
2
𝐶

𝜕𝑆
2

𝑡

𝑑𝑡

− Δ (𝑡) [𝑟𝑆
𝑡
𝑑𝑡 + 𝛿𝑆

(1/2)𝑓(𝑡)

𝑡
𝑑𝐵
𝑡
]

= [
𝜕𝐶

𝜕𝑡
+ 𝑟𝑆
𝑡

𝜕𝐶

𝜕𝑆
𝑡

+
1

2
𝛿
2
𝑆
𝑓(𝑡)

𝑡

𝜕
2
𝐶

𝜕𝑆
2

𝑡

− Δ (𝑡) 𝑟𝑆
𝑡
]𝑑𝑡

+ [
𝜕𝐶

𝜕𝑆
𝑡

𝛿𝑆
(1/2)𝑓(𝑡)

𝑡
− Δ (𝑡) 𝛿𝑆

(1/2)𝑓(𝑡)

𝑡
] 𝑑𝑊
𝑡

= 𝑟Π
𝑡
𝑑𝑡 = 𝑟 (𝐶 − Δ (𝑡) 𝑆

𝑡
) 𝑑𝑡.

(7)

In (7), choose Δ(𝑡) = 𝜕𝐶/𝜕𝑆
𝑡
; then the partial differential

equation satisfied by European call option is obtained as
follows:

𝜕𝐶

𝜕𝑡
+ 𝑟𝑆
𝑡

𝜕𝐶

𝜕𝑆
𝑡

+
1

2
𝛿
2
𝑆
𝑓(𝑡)

𝑡

𝜕
2
𝐶

𝜕𝑆
2

𝑡

− 𝑟𝐶 = 0. (8)

Moreover, at the expiry date 𝑇 the boundary condition is
given by

𝐶 (𝑇, 𝑆
𝑇
) = max (𝑆

𝑇
− 𝐾, 0) . (9)

In (8), generally 𝑓(𝑡) is not zero and the equation is
a nonlinear partial differential equation. So, it is hard and
sometimes impossible to write out the explicit form of the
solution of (8) and (9). In this paper, we use a numerical
method, finite difference method, to simulate the solution.

3. Parameter Estimation of DEV Model

During the postcrash relaxation times, it is well known that
the stock market is turbulent and it needs a period of time
to recover stability. So, in such a case, the CEVmodel cannot

capture the real features in that the elasticity of volatility with
respect to stock prices is a constant. For this event, we should
find a function or process with features of convergence and
power-law relaxation decay to replace constant elasticity of
volatility term. Consequently, a candidate function𝑓(𝑡) = 𝑎+
𝐴𝑒
𝑏𝑡sin(𝜔𝑡) is considered and the parameters of 𝑓(𝑡) will be

determined in the following part.
To get the parameters (𝑎, 𝐴, 𝑏, 𝜔) of 𝑓(𝑡), the method in

[23] is employed as follows. For the process

𝑑𝑆
𝑡
= 𝜇 (𝑡, 𝑆

𝑡
) 𝑑𝑡 + 𝜎 (𝑡, 𝑆

𝑡
) 𝑑𝑊
𝑡
, (10)

the volatility term 𝜎
2
(𝑡, 𝑆
𝑡
) can be estimated by 𝐸[𝑉

𝑡
| 𝑆
𝑡
] as

𝐸 [𝑉
𝑡
| 𝑆
𝑡
] 󳨀→ 𝜎

2
(𝑡, 𝑆
𝑡
) , Δ𝑡 󳨀→ 0, (11)

where

𝑉
𝑡
=

2

𝛼Δ𝑡
[
𝑆
1+𝛼

𝑡+Δ𝑡
− 𝑆
1+𝛼

𝑡

(1 + 𝛼) 𝑆
1+𝛼

𝑡

−
𝑆
𝑡+Δ𝑡

− 𝑆
𝑡

𝑆
𝑡

] , (12)

where 𝛼 is a constant and Δ𝑡 is the step size of time interval.
It also shows that the conditional variance Var(𝑉

𝑡
| 𝑆
𝑡
) is

minimized when

𝛼 = −
13

11
−
12

11

𝜇

𝐸 [𝑉
𝑡
| 𝑆
𝑡
]
. (13)

Computationally, we start with an initial value of 𝛼 and
then obtain a value of 𝑉

𝑡
from (12). The parameter 𝜇 can be

easily estimated by using the mean of sample returns and
denoted by 𝜇̂. Replacing 𝜇 by 𝜇̂ in (13), then a renewed value
of 𝛼 is yielded. Further, we iterate these two steps until the
last two values of 𝛼 are within a certain error tolerance. In the
end, we replace 𝜎2(𝑡, 𝑆

𝑡
) by 𝑉

𝑡
.

Using the method above, 𝛿2𝑆𝑓(𝑡)
𝑡

in the model (2) can be
estimated by 𝑉

𝑡
; namely,

𝑉
𝑡
= 𝛿
2
𝑆
𝑓(𝑡)

𝑡
. (14)

Consequently,

ln𝑉
𝑡
= ln 𝛿2 + 𝑓 (𝑡) ln 𝑆

𝑡
. (15)

Let 𝑦
𝑡
= ln𝑉

𝑡
, 𝛼
𝑡
= ln 𝛿2, 𝛽

𝑡
= 𝑓(𝑡), and 𝑥

𝑡
= ln 𝑆

𝑡
; then (15)

can be estimated by the following regression equation:

𝑦
𝑡
= 𝛼
𝑡
+ 𝛽
𝑡
𝑥
𝑡
+ 𝑒
𝑡
, 𝑒
𝑡
∼ 𝑁(0, 𝛿

2

𝑒
) , (16)

𝛼
𝑡+1

= 𝛼
𝑡
+ 𝜂
𝑡
, 𝜂
𝑡
∼ 𝑁(0, 𝛿

2

𝜂
) , (17)

𝛽
𝑡+1

= 𝛽
𝑡
+ 𝜀
𝑡
, 𝜀
𝑡
∼ 𝑁(0, 𝛿

2

𝜀
) . (18)

Equations (16)–(18) construct a stable space model. If we take
𝐴
𝑡
= [𝛼
𝑡
, 𝛽
𝑡
]
𝜏, then (16)–(18) can be rewritten as

𝑦
𝑡
= [1, 𝑥

𝑡
] 𝐴
𝑡
+ 𝑒
𝑡
,

𝐴
𝑡+1

= (

1 0

0 1

)𝐴
𝑡
+ (

𝜂
𝑡

𝜀
𝑡

) .

(19)
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Using Kalman filtering method for equations (19), then
Kalman filtering algorithm can be written as follows:

]
𝑡
= 𝑦
𝑡
− [1, 𝑥

𝑡
] 𝐴
𝑡|𝑡−1

,

Λ
𝑡
= [1, 𝑥

𝑡
] Σ
𝑡|𝑡−1

[1, 𝑥
𝑡
]
𝜏

+ 𝛿
2

𝜀
,

𝐾
𝑡
= Σ
𝑡|𝑡−1

[1, 𝑥
𝑡
]
𝜏

Λ
𝜏

𝑡
,

𝐿
𝑡
= 𝐼 − 𝐾

𝑡
[1, 𝑥
𝑡
] ,

𝐴
𝑡+1|𝑡

= 𝐴
𝑡|𝑡−1

+ 𝐾
𝑡
]
𝑡
,

Σ
𝑡+1|𝑡

= Σ
𝑡+1|𝑡

𝐿
𝜏

𝑡
+ (

𝛿
2

𝜂
0

0 𝛿
2

𝜀

) ,

max ln [𝐿 (𝛿
𝜀
, 𝛿
𝜂
)] = −

𝑇

2
ln (2𝜋)

−
1

2

𝑇

∑

𝑡=1

[ln (Λ
𝑡
) +

]2
𝑡

Λ
𝑡

] .

(20)

So, according to (20), by using two given initial values 𝐴
1|0

and Σ
1|0
, the values of 𝐴

𝑡
can be calculated. Therefore, we

obtain the estimated values of ln 𝛿̂
2

and 𝑓̂(𝑡).
What is more, to determine the parameters 𝜙 =

(𝑎, 𝑏, 𝐴, 𝜔) of 𝑓(𝑡), the nonlinear least square method is
employed as follows:

min
𝜙

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡) − 𝑓̂ (𝑡)

󵄩󵄩󵄩󵄩󵄩

2

. (21)

4. Empirical Parameter Estimations

In this section, first we download three data fragments with
respect to historical daily data of closed prices of S&P500
index from the website http://finance.yahoo.com/ as our
selected samples. The time interval of one covers the period
from October 17, 1997, to October 17, 1998, during which the
Asian crisis happened and the stockmarkets of America were
infected heavily. Another sample is collected from September
10, 2001, to September 10, 2002, in which the “9/11” event took
place and influenced the stock markets greatly. The period of
the last sample is from September 16, 2008, to September 15,
2009, in which the big event of subprime crisis occurred and
stock markets endured deep crashes.

4.1. Empirical Parameter Estimation of DEV Model. In this
subsection, We employ Kalman filtering method of last
section to obtain the values of 𝑓(𝑡) and 𝛿, respectively, in
model (2) and further to estimate the parameters of 𝑓(𝑡). In
addition, BSmodel andCEVmodel are estimated on the same
samples for comparison and analysis.

For (11)–(13), the certain error tolerance we take is 0.005.
In fact, taking a smaller error tolerance, however, does not
change the numerical results significantly in our tests. Hence,
for different samples, taking 0.005 as the error tolerance is
sufficient to obtain effective results with enough precision.
Inputting an initial value of 𝛼 into (12), then, by the iteration
algorithm provided in Section 3, values of𝑉

𝑡
can be obtained
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Figure 1: Values of 𝑓(𝑡) during Asian crisis.
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Figure 2: Values of 𝑓(𝑡) during “9/11” event.

under reasonable convergence. Based on the achieved results
of 𝑉
𝑡
, for given initial values

𝐴
1|0
= (

1

1

) ,

Σ
1|0
= (

500 0

0 500

) ,

(22)

then by Kalman filtering method the value of 𝛿 can be
obtained in Table 1, and the scatter diagrams of 𝑓(𝑡) for three
different samples are represented in Figures 1–3, which are
used as real values of 𝑓(𝑡). Now, to determine the coefficients
of 𝑓(𝑡), the minimum criteria (21) are used, and then para-
meters in 𝑓(𝑡) are obtained, which are also exhibited in
Table 1.

The real values of 𝑓(𝑡) and estimated values 𝑓̂(𝑡) are
displayed in Figures 4–6, in which the real line and dotted
line represent real values and estimated values, respectively.

4.2. Empirical Parameter Estimation of CEV Model. In CEV
model, to obtain point estimators of (𝜃, 𝛿), firstly we find an
estimation of 𝜎2

𝑡
, which satisfies 𝜎2

𝑡
= 𝛿
2
𝑆
𝜃

𝑡
. In fact, for the

same samples, 𝜎2
𝑡
can be approached by 𝐸[𝑉

𝑡
| 𝑆
𝑡
] as Δ𝑡 → 0

from (11)–(13) and that the conditional variance Var[𝑉
𝑡
| 𝑆
𝑡
]

is minimized when (13) holds.
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Table 1: Summary of parameter estimations.

Event Asian crisis “9/11” event Subprime crisis
Data Oct. 17, 1997–Jun. 16, 1998 Sep. 10, 2001–Jun. 15, 2002 Sep. 16, 2008–Jun. 30, 2009

BS 𝜇 0.1814 0.1309 0.2014
𝜎 0.1130 0.2300 0.1853

CEV
𝜇 0.1814 0.1309 0.2014
𝛿 9.8322 9.1771 9.6514
𝜃 −1.8500 −2.0131 −1.9831

DEV

𝜇 0.1814 0.1309 0.2014
𝛿 1.7932 2.0861 1.4730
𝛼 −4.2010 −0.2832 −3.2581
𝐴 75.0210 27.4763 70.0012
𝑏 −0.1651 −0.8690 −39.9924
𝜔 −0.1520 0.3501 0.1508
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Figure 3: Values of 𝑓(𝑡) during subprime crisis.
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Figure 4: Real values versus fitting values of𝑓(𝑡)duringAsian crisis.

Given 𝑉
𝑡
, the method of estimating (𝜃, 𝛿) is to minimize

the sum of squares of deviations between ln𝑉
𝑡
and ln𝜎2

𝑡
;

that is,

min
(𝜃,𝛿)

𝑛

∑

𝑡=1

(ln𝑉
𝑡
− ln (𝛿2𝑆𝜃

𝑡
))
2

, (23)
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Figure 5: Real values versus fitting values of𝑓(𝑡)during “9/11” event.
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Figure 6: Real values versus fitting values of 𝑓(𝑡) during subprime
crisis.

where 𝑛 is the number of data pieces. By using Newton
method, we can obtain the values of 𝜃̂ and 𝛿̂ in different
samples which are also exhibited in Table 1.
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4.3. Empirical Parameter Estimation of BS Model. In classical
Black-Scholes model, the stock prices follow log-normal
distribution. So, by usingmaximum likelihood estimation on
different samples, the values of 𝜇 and 𝜎 in BS model can be
estimated and results are also listed in Table 1.

5. Empirical Option Pricing
Results and Analysis

For the formula of European option pricing based on CEV
model, it has been studied inmany papers andwe attach them
in the appendix. Here, we just discuss the pricing scheme of
DEV model on the European call option.

5.1. Simulation Method. Crank-Nicolson method is an effi-
cient and widely used numerical method due to its great
property, unconditionally stable. So, in this paper, we employ
this method to calculate numerical solution of (8). Let Δ𝑆
and Δ𝑡 denote the sizes of the space step and time step,
respectively, and then by Crank-Nicolson method we have
the discrete equation as follows:

𝐶
𝑖+1

𝑗
− 𝐶
𝑖

𝑗

Δ𝑡
−
𝑟

2
(𝐶
𝑖+1

𝑗
+ 𝐶
𝑖

𝑗
)

+
𝑟 (𝑗Δ𝑆)

2
(

𝐶
𝑖+1

𝑗+1
− 𝐶
𝑖+1

𝑗−1

2Δ𝑆
+

𝐶
𝑖

𝑗+1
− 𝐶
𝑖

𝑗−1

2Δ𝑆
) +

1

2

⋅ 𝛿
2
(𝑗Δ𝑆)

(𝐵𝑗)

⋅ (

𝐶
𝑖+1

𝑗+1
− 2𝐶
𝑖+1

𝑗
+ 𝐶
𝑖+1

𝑗−1

(Δ𝑆)
2

+

𝐶
𝑖

𝑗+1
− 2𝐶
𝑖

𝑗
+ 𝐶
𝑖

𝑗−1

(Δ𝑆)
2

)

= 0,

(24)

where

𝐵
𝑗
= 𝑎 + 𝐴𝑒

𝑏(𝑗Δ𝑡) sin (𝜔𝑗Δ𝑡) . (25)

By simplification, we obtain

𝑎
𝑗
𝐶
𝑖

𝑗−1
+ 𝑏
𝑗
𝐶
𝑖

𝑗
+ 𝑐
𝑗
𝐶
𝑖

𝑗+1
= −𝛼
𝑗
𝐶
𝑖+1

𝑗−1
+ 𝛽
𝑗
𝐶
𝑖+1

𝑗
+ 𝛾
𝑗
𝐶
𝑖+1

𝑗+1
, (26)

where

𝑎
𝑗
= −𝛼
𝑗
= −

𝑟𝑗

4
+
𝛿
2

4

(𝑗Δ𝑆)
𝐵𝑗

Δ𝑆
2
,

𝑏
𝑗
= −𝛽
𝑗
= −

1

Δ𝑡
−
𝛿
2

2

(𝑗Δ𝑆)
𝐵𝑗

Δ𝑆
2

−
𝑟

2
,

𝑐
𝑗
= −𝛾
𝑗
= −

𝑟𝑗

4
+
𝛿
2

4

(𝑗Δ𝑆)
𝐵𝑗

Δ𝑆
2
,

𝛽
𝑗
= −

1

Δ𝑡
+
𝛿
2

2

(𝑗Δ𝑆)
𝐵𝑗

Δ𝑆
2

−
𝑟

2
.

(27)
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Figure 7: Call option prices at𝐾 = 53 during Asian crisis.
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Figure 8: Call option prices at 𝑆
0
= 65 during Asian crisis.

Moreover, the boundary conditions are given as follows:

𝑉
𝑖

0
= 0,

𝑉
𝑁

𝑗
= max (𝑆

𝑗
− 𝐾, 0) , 𝑗 = 1, 2, . . . ,𝑀 − 1,

𝑉
𝑖

𝑀
= 𝑆
𝑀
− 𝐾𝑒
−𝑟𝑖Δ𝑡

, 𝑖 = 1, 2, . . . , 𝑁 − 1.

(28)

If we take risk-free interest rate 𝑟 = 0.01 and the maturity
𝑇 = 1, then the European call option prices based on the
DEV model are displayed in Figures 7–12. Correspondingly,
we also plot the European call option prices that are calculated
by the BS model and CEV model on the same samples. In
addition, in Figures 7, 9, and 11, strike price we choose is a
fixed number with 𝐾 = 53 and the initial stock prices are
variables, nearby this strike price. In Figures 8, 10, and 12, the
initial stock prices are fixed at 𝑆

0
= 65, and the strike prices

are variables whose ranges are selected as covering the initial
stock prices. In fact, we also do some other empirical tests
at different fixed strike prices and fixed initial stock prices,
respectively. Their results are very similar to those given in
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Figure 9: Call option prices at 𝐾 = 53 during “9/11” event.
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Figure 10: Call option prices at 𝑆
0
= 65 during “9/11” event.

Figures 7–12. So, we do not list out them in detail to avoid
repetition.

From Figures 7–12, we obtain some important findings.
The first significant phenomenon is that for all of our sam-
ples the highest line of option prices is estimated by BS
model and the lowest line is achieved byDEVmodel. Another
important finding is that, at ten percent intervals of fixed
strike price and fixed initial stock price, the differences
between two lines obtained by DEV model and CEV model
are obvious and much bigger than the parts deep in “in-the-
money” and “out-of-the-money.” In addition, in the areas far
from the point of “at-the-money,” the performances of DEV
model andCEVmodel are very similar, and results are almost
the same.

5.2. Comparing the Errors of Option Pricing Models. In this
subsection, we compare BS, CEV, and DEV models by their
mean squared errors (MSE) between estimated European call
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Figure 11: Call option prices at𝐾 = 53 during subprime crisis.
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Figure 12: Call option prices at 𝑆
0
= 65 during subprime crisis.

option values and real option prices. The formula of MSE is
given as

MSE = 1

𝑁

𝑁

∑

𝑖=1

(𝐶̂ (𝐾
𝑖
) − 𝐶 (𝐾

𝑖
))
2

, (29)

where 𝐶(𝐾
𝑖
) denotes observed option pricing values with

strike prices 𝐾
𝑖
and 𝐶̂(𝐾

𝑖
) denotes estimated option pricing

values by these threemodels.Then the implementation of the
algorithm goes through the following steps.

Step 1. Take samples of stock prices and their option prices.

Step 2. Estimate parameters of BS, CEV, and DEV models,
respectively.

Step 3. Calculate option prices and denote results as 𝐶̂BS
(𝐾
𝑖
),

𝐶̂
CEV

(𝐾
𝑖
), and 𝐶̂DEV

(𝐾
𝑖
).

Step 4. Calculate MSE by formula (24).
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Table 2: Summary MSE of BS, CEV, and DEV models.

Sample MSE
BS CEV DEV

Oct. 17, 1997–Jun. 16, 1998 5.7601 4.9712 2.3254
Sep. 10, 2001–Jun. 15, 2002 4.4693 4.0320 2.0185
Sep. 16, 2008–Jun. 30, 2009 4.9876 4.1724 2.6968

By simulation, the MSE of these three models in different
samples are exhibited in Table 2.

So, from results above, we can see that for different
samples the MSE of DEV model is the smallest one of these
threemodels, and theMSE of CEVmodel is smaller than that
of BS model. Therefore, the DEVmodel we proposed has the
best performance in option pricing estimations.

6. Conclusion

In this paper, our main contribution is to propose a fitted
and effective model, DEV model, to fit stock prices and to
estimate option prices in the market with financial crisis
by considering that the elasticity of variance is dynamic.
Based on this model, European option pricing problem has
been analyzed and the partial differential equation for option
prices has been derived. In addition, we provide efficient
estimatedmethods, Kalman filteringmethod and least square
method, for the parameters in the volatility term. Moreover,
Crank-Nicolsonmethod has been implemented to obtain the
numerical solution of the option prices.TheMSE of empirical
results shows that DEV model is more accurate than CEV
model and BS model to fit the real option prices.

Considering the fact that there are lots of jumps and
rebounding cases in crashes, it may affect the prices of path
dependent options. So, in the future, we will focus on how
to grasp the jump events in the financial crisis by improv-
ing DEV model to estimate American options and Asian
options.

Appendix

CEV Call Option Pricing Formula

In [23], the formula of CEV model on European call option
is given as follows:

𝐶 (𝑡, 𝑆
𝑡
) = 𝑆
𝑡
𝑀
1
− 𝐾𝑒
−𝑟(𝑇−𝑡)

𝑀
2
, (A.1)

in which𝑀
1
and𝑀

2
are given by

𝑀
1

=

{{{{{

{{{{{

{

∞

∑

𝑛=0

𝑔 (𝑆
1
| 𝑛 + 1) ⋅ 𝐺 (𝐾

1
| 𝑛 + 𝑝) , 𝜃 > 2

1 −

∞

∑

𝑛=0

𝑔 (𝑆
1
| 𝑛 + 𝑝) ⋅ 𝐺 (𝐾

1
| 𝑛 + 1) , 𝜃 < 2

(A.2)

𝑀
2

=
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{

∞

∑

𝑛=0

𝑔 (𝑆
1
| 𝑛 + 𝑝) ⋅ 𝐺 (𝐾

1
| 𝑛 + 1) , 𝜃 > 2

1 −

∞

∑

𝑛=0

𝑔 (𝑆
1
| 𝑛 + 1) ⋅ 𝐺 (𝐾

1
| 𝑛 + 𝑝) , 𝜃 < 2,

(A.3)

where

𝑆
1
=

2𝑟 ⋅ exp [𝑟 (𝑇 − 𝑡) (2 − 𝜃)] 𝑆2−𝜃

𝛿
2
(2 − 𝜃) ⋅ exp [𝑟 (𝑇 − 𝑡) (2 − 𝜃)] − 𝛿2 (2 − 𝜃)

,

𝐾
1
=

2𝑟𝐾
2−𝜃

𝛿
2
(2 − 𝜃) ⋅ exp [𝑟 (𝑇 − 𝑡) (2 − 𝜃)] − 𝛿2 (2 − 𝜃)

,

𝑔 (𝑥 | 𝑚) =
𝑒
−𝑥
𝑥
𝑚−1

Γ (𝑚)
,

𝐺 (𝑥 | 𝑚) = ∫

∞

𝑥

𝑔 (𝑦 | 𝑚) 𝑑𝑦,

𝑝 = 1 +
1

|2 − 𝜃|
.

(A.4)
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