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Two different nondiagonal tetrad spaces reproducing spherically symmetric spacetime are applied to the field equations of higher-
order torsion scalar theories. Assuming the existence of conformal Killing vector, two isotropic solutions are derived. We show
that the first solution is not stable while the second one confirms a stable behavior. We also discuss the construction of the stellar
model and show that one of our solutions is capable of such construction while the other is not. Finally, we discuss the generalized
Tolman-Oppenheimer-Volkoff and show that one of our models has a tendency to equilibrium.

1. Introduction

It is well known that in 𝑓(𝑇) gravity not only inflation [1]
in the early universe but also late time cosmic acceleration
can be realized [2–27]. Recently, there are many models
constructed to describe dark energy without the use of
cosmological constant (for more details, see review [28] and
references therein). The main merit of 𝑓(𝑇) gravity is that its
gravitational field equation is second order as GR. There are
arguments in terms of theoretical properties of 𝑓(𝑇) gravity,
for example, local Lorentz invariance [29–31], nonminimal
coupling of teleparallel gravity to a scalar field [32–34], and
nonlinear causality [35]. Recently, number of 𝑓(𝑇) gravita-
tional theories have been proposed [36–62]. The structures
of neutron and quark stars in 𝑓(𝑇) theory of gravity have
been investigated [63]. The anisotropic behavior, regularity
conditions, stability, and surface redshift of the compact stars
have been checked [64]. Under those theories, it is shown that
𝑓(𝑇) are not dynamically identical to teleparallel action plus a
scalar field [61]. It has been shown that investigations of𝑓(𝑇),
using observational data, are compatible with observations
(see, e.g., [65, 66] and references therein). A new type of
𝑓(𝑇) theorywas proposed in order to explain the acceleration
phase of the universe [60]. Also, it has been shown that the
well-known problem of frame dependence and violation of

local Lorentz invariance in the formulation of 𝑓(𝑇) gravity is
a consequence of neglecting the role of spin connection [31].

𝑓(𝑇) theory coupled with anisotropic fluid has been
examined for static spacetimes with spherical symmetry
and many classes of solutions have been derived [67]. It
has been shown that some conditions on the coordinates,
energy density, and pressures can produce new classes of
anisotropic and isotropic solutions. Some of new black holes
and wormholes solutions have been derived by selecting a set
of nondiagonal tetrads [68]. It has been shown that relativistic
stars can exist in the frame of 𝑓(𝑇) and static spherically
symmetric perfect fluid solutions have been derived [69].
A special analytic vacuum spherically symmetric solution
with constant torsion scalar, within the framework of 𝑓(𝑇),
has been derived [70]. D-dimensional charged flat horizon
solutions have been derived for a specific formof𝑓(𝑇); that is,
𝑓(𝑇) = 𝑇+𝛼𝑇2 [71]. A complete investigation of the Noether
symmetry approach in 𝑓(𝑇) gravity at FRW and spherical
levels, respectively, has been investigated [72]. In the frame-
work of𝑓(𝑇) gravitational theories, there are many solutions,
spherically symmetric [59], spherically symmetric charged
[73], homogenous anisotropic [74], and stability of the Ein-
stein static closed and open universe [75]. Some cosmological
features of theΛCDMmodel in the framework of the𝑓(𝑇) are
investigated [76].However, till now, no spherically symmetric
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isotropic solution, using nondiagonal tetrad fields, is derived
in this theory. It is the aim of the present study to find an
analytic, isotropic spherically symmetric solution in higher-
order torsion scalar theories. The arrangement of this study
is as follows: in Section 2, ingredients of 𝑓(𝑇) gravitational
theory are provided. In Section 3, two different tetrad spaces
having spherical symmetry are applied to the field equations
of 𝑓(𝑇). Assuming the conformal Killing vector (CKV), we
derived two nonvacuum spherically symmetric solutions in
Section 3. The physics relevant to the derived solutions are
analyzed in Section 4. The energy conditions are satisfied for
the two solutions provided that the constants of integration
are positive. In addition, the stability condition, the nature of
the star, and Tolman-Oppenheimer-Volkoff (TOV) equation
are shown to be satisfied for one solution.The results obtained
in this study are discussed in final section.

2. Ingredients of 𝑓(𝑇) Gravitational Theory

Another description of Einstein’s general relativity (GR) of
gravitation is done through the employment of what is
called teleparallel equivalent of general relativity (TEGR).The
ingredient quantity of this theory is the vierbein (tetrad) fields
(Greek letters 𝛼, 𝛽, . . . indicate spacetime indices while Latin
letters 𝑎, 𝑏, . . . running from 0 to 3 describe Lorentz indices.
Time and space indices are denoted as 𝜇 = 0, 𝑖 and 𝑎 =
(0), (𝑖), where 𝑖 = 1, 2, 3.) {ℎ𝑎

𝜇
} alternative to metric tensor

fields 𝑔
𝜇]. The associated metric space can be constructed

from the vierbein fields 𝑔
𝜇] = 𝜂

𝑎𝑏
ℎ𝑎
𝜇
ℎ𝑏] with 𝜂

𝑎𝑏
=

diag(1, −1, −1, −1) being the Minkowskian metric of the
tangent space; thus, the Levi-Civita symmetric connection
∘

Γ
𝛼

𝜇] is constructed from the metric and its first derivative
[77]. Within TEGR, it is possible to build a nonsymmetric
connection, Weitzenböck, Γ𝛼

𝜇] = ℎ𝑎
𝜇
𝜕]ℎ𝑎
𝛼 = −ℎ

𝑎

𝛼𝜕]ℎ
𝑎

𝜇
.

The tetrad 4-space is depicted as a pair (𝑀, ℎ
𝑎
), where 𝑀 is

a 4-dimensional smooth manifold and ℎ
𝑎
(𝑎 = 0, . . . , 3) are

4-linearly independent vector fields defined globally on 𝑀.
The tetrad space has a main merit that is the vanishing of
the vierbein’s covariant derivative; that is, ∇]ℎ

𝑎

𝜇
≡ 0, where

the covariant derivative, ∇, is regarding the nonsymmetric
Weitzenböck connection. Therefore, the vanishing of the
vierbein’s covariant derivative recognizes autoparallelism or
absolute parallelism condition. Actually, the ∇ operator is
not invariant under local Lorentz transformations (LLT). In
this respect, the symmetric metric (10 degrees of freedom)
cannot guess one set of vierbein fields; then, the extra degrees
of freedom need to be determined so as one physical frame
is used. The vector fields ℎ

𝑎
are called the parallelization

vector fields. Because of the absolute parallelism condition,
it can be shown that the metricity condition is satisfied.
The Weitzenböck connection is curvatureless while it has a
nonvanishing torsion tensor 𝑇 given as

𝑇𝜆
𝜇] fl ℎ

𝑎

𝜆 (𝜕
𝜇
ℎ𝑎] − 𝜕]ℎ

𝑎

𝜇
) (1)

and contortion tensor 𝐾 as

𝐾𝜇]
𝛼
= −

1

2
(𝑇𝜇]
𝛼
− 𝑇]𝜇
𝛼
− 𝑇
𝛼

𝜇]) . (2)

The teleparallel torsion scalar which reproduces the TEGR
theory is given by

𝑇 fl 𝑇𝛼
𝜇]𝑆𝛼
𝜇], (3)

where the tensor 𝑆 of type (2, 1) is defined as

𝑆
𝛼

𝜇] fl
1

2
(𝐾𝜇]
𝛼
+ 𝛿𝜇
𝛼
𝑇𝛽]
𝛽
− 𝛿]
𝛼
𝑇𝛽𝜇
𝛽
) , (4)

which is skew symmetric in the last two indices. Similar to
the 𝑓(𝑅) theory, one can define the action of 𝑓(𝑇) theory as

L (ℎ𝑎
𝜇
, Φ
𝐴
) = ∫𝑑4𝑥ℎ [

1

16𝜋
𝑓 (𝑇) +LMatter (Φ𝐴)] ,

where ℎ = √−𝑔 = det (ℎ𝑎
𝜇
) ,

(5)

and we have assumed the units in which 𝐺 = 𝑐 = 1 and Φ
𝐴

are the matter fields. Considering the action (5) as a function
of the fields ℎ𝑎

𝜇
and putting the variation of the function

regarding the field ℎ𝑎
𝜇
to be vanishing, one can obtain the

following equations of motion [36, 71]:

𝑆
𝜇

𝜌]𝑇
,𝜌
𝑓 (𝑇)
𝑇𝑇

+ [ℎ−1ℎ𝑎
𝜇
𝜕
𝜌
(ℎℎ
𝑎

𝛼𝑆
𝛼

𝜌]) − 𝑇𝛼
𝜆𝜇
𝑆
𝛼

]𝜆] 𝑓 (𝑇)
𝑇

−
1

4
𝛿]
𝜇
𝑓 (𝑇) = −4𝜋T

𝜇

],

(6)

where 𝑇
,𝜌
= 𝜕𝑇/𝜕𝑥𝜌, 𝑓(𝑇)

𝑇
= 𝜕𝑓(𝑇)/𝜕𝑇, 𝑓(𝑇)

𝑇𝑇
= 𝜕2𝑓(𝑇)/

𝜕𝑇2, and T
𝜇

] denotes the energy-momentum tensor of the
anisotropic fluid which is defined as

T
𝜇

] = (𝜌 + 𝑝
𝑡
) 𝑢
𝜇
𝑢] − 𝑝

𝑡
𝛿
𝜇

] + (𝑝
𝑟
− 𝑝
𝑡
) 𝜂
𝜇
𝜂], (7)

with 𝑝
𝑟
representing the radial pressure, 𝑝

𝑡
representing the

tangential pressure, and

𝑢
𝜇
𝑢𝜇 = −𝜂

𝜇
𝜂𝜇 = 1,

𝑢𝜇𝜂
𝜇
= 0.

(8)

Equations (6) are the field equations of 𝑓(𝑇) gravitational
theory.

3. Nonvacuum Spherically
Symmetric Solutions in Higher-Order
Torsion Scalar Theories

In this section, we are going to apply two, nondiagonal,
different tetrad fields having spherical symmetry to the field
equations (6).
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3.1. First Tetrad. The equation of motion of GR supplies rich
field to use symmetries which link geometry and matter in a
natural way. Collineations are symmetries which come from
either geometrical viewpoint or physical relevant quantities.
The importance of collineations is the CKV which provides
more information of the construction of the spacetime
geometry. In the language of mathematics, CKV are the
motions in which the metric tensor of a spacetime becomes
invariant up to a scale factor. Also, the employment of
the CKV simplifies the generation of exact solutions to the
equations of motions of GR. This is done by reducing the
complicated nonlinear partial differential equations of GR to
simple ordinary differential equations.The CKV is defined as

L
𝜁
𝑔
𝑖𝑗
= 𝜁
𝑖;𝑗
+ 𝜁
𝑗;𝑖
= 𝜓𝑔
𝑖𝑗
, (9)

with L being the Lie derivative operator of the metric tensor
and 𝜓 the conformal factor. One can assume the vector 𝜁
which creates the conformal symmetry andmakes the metric
conformally mapped onto itself through 𝜁. One must note

that 𝜁 and 𝜓 are not necessarily static even supposing a static
metric [78, 79]. In addition, one must be careful about the
following:

(i) If 𝜓 = 0, then (9) leads to a Killing vector.

(ii) If 𝜓 = constant, then (9) leads to homothetic vector.

(iii) If 𝜓 = 𝜓(𝑥, 𝑡), then (9) yields conformal vectors.
Furthermore, if 𝜓 = 0, then the spacetime becomes
asymptotically flat and one has a null Weyl tensor.
Thus, to have more understanding of the spacetime
geometry, one must take into account the CKV.
Essentially, the Lie derivative operator L shows the
interior gravitational field of a stellar configuration
related to the vector field 𝜁.

The first tetrad field having a stationary and spherical
symmetry with local Lorentz transformations has the follow-
ing form [80]:

(ℎ𝑖
𝜇
) =

(
(
(

(

F
1
(𝑟)

F
2
(𝑟)

F
2
(𝑟) 0 0

sin 𝜃 cos𝜙 F
1
(𝑟) sin 𝜃 cos𝜙 𝑟 cos 𝜃 cos𝜙 −𝑟 sin 𝜃 sin𝜙

sin 𝜃 sin𝜙 F
1
(𝑟) sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

cos 𝜃 F
1
(𝑟) cos 𝜃 −𝑟 sin 𝜃

)
)
)

)

, (10)

where F
1
(𝑟) and F

2
(𝑟) are two unknown functions of the

radial coordinate, 𝑟.
The associated metric of (10) takes the following form:

𝑑𝑠2 = −
F
1

2 −F
2

2

F
2

2
𝑑𝑡2 + (F

1

2 −F
2

2) 𝑑𝑟2 + 𝑑Ω,

𝑑Ω = 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) ,

(11)

which is a static spherically symmetric spacetime that admits
one parameter group of conformal motion. Equation (11) is
conformally mapped onto itself along 𝜁. Therefore, (9) leads
to

2 [F󸀠
1
F
1
F
2
−F
1

2
F
󸀠

2
] 𝜁1 = 𝜓 (𝑟) [F

1

2
F
2
−F
2

3] ,

𝜁0 = 𝑐,

𝜁1 =
𝜓 (𝑟) 𝑟

2
,

2𝜁1 [F
1
F
󸀠

1
−F
2
F
󸀠

2
] + 2𝜁󸀠1 [F

1

2 −F
2

2]

= 𝜓 (𝑟) [F
1

2 −F
2

2] ,

(12)

where 0 and 1 refer to the temporal and spatial coordinates 𝑟
and 𝑡, respectively. The above set of equations lead to

F
1
=
√1 + 𝑐

0

2𝑟2F
3

𝑐
0
𝑟

,

F
2
=
F
3

𝑟𝑐
0

,

𝜁𝑖 = 𝑐
1
𝛿𝑖
0
+
𝜓 (𝑟) 𝑟

2
𝛿𝑖
1
,

F
1

̸= F
2
,

F
3
=

𝑐
2

𝜓 (𝑟)
,

(13)

with 𝑐, 𝑐
0
, 𝑐
1
, and 𝑐

2
being constants of integration.
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Using (13), tetrad (10) is rewritten as

(ℎ𝑖
𝜇
) =

(
(
(
(
(
(
(
(
(
(
(
(
(

(

√1 + 𝑐
0

2𝑟2
F
3

𝑟𝑐
0

0 0

sin 𝜃 cos𝜙
F
3
√1 + 𝑐

0

2𝑟2 sin 𝜃 cos𝜙
𝑟𝑐
0

𝑟 cos 𝜃 cos𝜙 −𝑟 sin 𝜃 sin𝜙

sin 𝜃 sin𝜙
F
3
√1 + 𝑐

0

2𝑟2 sin 𝜃 sin𝜙
𝑟𝑐
0

𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

cos 𝜃
F
3
√1 + 𝑐

0

2𝑟2 cos 𝜃
𝑟𝑐
0

−𝑟 sin 𝜃 0

)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (14)

Tetrad field (14) has the following associated metric:

𝑑𝑠2 = −𝑐
0

2𝑟2𝑑𝑡2 +F
3

2𝑑𝑟2 + 𝑑Ω,

𝑑Ω = 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) .
(15)

Using (14) in (3), we get the scalar torsion in the following
form:

𝑇

= 2
2 (1 + 2𝑐

0

2𝑟2)F
3
(𝑟) − 𝑟𝑐

0
√1 + 𝑐

0

2𝑟2 (3 +F
3

2 (𝑟))

𝑐
0
𝑟3√1 + 𝑐

0

2𝑟2F
3

2 (𝑟)
.
(16)

Using (16) and (14) in the field equations (6), we get the
following nonvanishing components:

4𝜋T
0

0 = 4𝜋𝜌 = −
√1 + 𝑐

0

2𝑟2F
3
− 𝑟𝑐
0

𝑟2𝑐
0
F
3

2
𝑇󸀠𝑓
𝑇𝑇

+
𝑟𝑐
0
√1 + 𝑐

0

2𝑟2 (2F
3
− 𝑟F󸀠
3
) −F

3

2 (1 + 2𝑐
0

2𝑟2)

𝑟3𝑐
0
√1 + 𝑐

0

2𝑟2F
1

3

𝑓
𝑇
+
𝑓

4
,

4𝜋T
1

0 = −
𝑇󸀠𝑓
𝑇𝑇

𝑟3𝑐
0

2
,

− 4𝜋T
1

1 = 4𝜋𝑝
𝑟
= −

F
3
(1 + 2𝑟2𝑐

0

2) − 3𝑟𝑐
0
√1 + 𝑐

0

2𝑟2

𝑟3𝑐
0
F
1

2√1 + 𝑐
0

2𝑟2
𝑓
𝑇

+
𝑓

4
,

− 4𝜋T
2

2 = −4𝜋T
3

3 = 4𝜋𝑝
𝑡
= −

√1 + 𝑐
0

2𝑟2F
3
− 2𝑟𝑐
0

2𝑟2𝑐
0
F
3

2
𝑇󸀠𝑓
𝑇𝑇

+
𝑟𝑐
0
√1 + 𝑐

0

2𝑟2 (F
3

3 + 4F
3
− 2𝑟F󸀠

3
) − 2F

3

2 (1 + 2𝑐
0

2𝑟2)

2𝑟3𝑐
0
√1 + 𝑐

0

2𝑟2F
3

3

⋅ 𝑓
𝑇
+
𝑓

4
.

(17)

Second equation of (17) leads to𝑓
𝑇𝑇

= 0, or𝑇 = constant.The
case 𝑇 = constant gives a constant function and this is out of
the scope of the present study.Therefore, we are searching for
solutions that make constraint on the form of 𝑓(𝑇) have the
form:

𝑓 (𝑇) = 𝑇, 󳨐⇒

𝑓
𝑇𝑇

= 0.
(18)

Assuming the isotropic condition

𝑝
𝑟
= 𝑝
𝑡
= 𝑝, (19)

and using (19) in (17), we get

F
3
(𝑟) =

2

√2 + 4𝑟2𝑐
3

,

𝑇 = −
6𝑐
3
𝑐
0
𝑟3√1 + 𝑟2𝑐

0

2 + 5𝑟𝑐
0
√1 + 𝑟2𝑐

0

2 − 2 (1 + 2𝑐
0

2𝑟2)√2 + 4𝑟2𝑐
3

𝑟3𝑐
0
√1 + 𝑟2𝑐

0

2

,
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16𝜋𝜌 =
6𝑐
3
𝑟2 − 1

𝑟2
,

16𝜋𝑝 =
6𝑐
3
𝑟2 + 1

𝑟2
,

𝜓 (𝑟) =
𝑐
2
√2 + 4𝑟2𝑐

3

2
.

(20)

The sound velocity V
𝑠

2 is defined as V
𝑠

2 fl 𝑑𝑝/𝑑𝜌. Using (20),
we get the sound velocity in the following form:

V
𝑠

2 = −1. (21)

3.2. Second Tetrad. The second tetrad space having a station-
ary and spherical symmetry takes the following form [73]:

(ℎ𝑖
𝜇
)

= (

F
4
(𝑟) 0 0 0

0 F
5
(𝑟) sin 𝜃 cos𝜙 𝑟 cos 𝜃 cos𝜙 −𝑟 sin 𝜃 sin𝜙

0 F
5
(𝑟) sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

0 F
5
(𝑟) cos 𝜃 −𝑟 sin 𝜃 0

),
(22)

where F
4
(𝑟) and F

5
(𝑟) are two unknown functions of the

radial coordinate, 𝑟. Using the same procedure applied to
tetrad (10), we get the following equations of CKV of tetrad
(22):

2F󸀠
4
𝜉1 = 𝜓 (𝑟)F

4
,

𝜉0 = 𝑐,

𝜉1 =
𝜓 (𝑟) 𝑟

2
,

2𝜉1F󸀠
5
+ 2𝜉1
,1
F
5
= 𝜓 (𝑟)F

5
.

(23)

The above set of equations imply

F
4
= 𝑐
4
𝑟,

F
5
=

𝑐
5

𝜓 (𝑟)
,

𝜉𝑖 = 𝑐
6
𝛿𝑖
0
+
𝜓 (𝑟) 𝑟

2
𝛿𝑖
1
,

(24)

where 𝑐
4
, 𝑐
5
, and 𝑐

6
are constants of integration.

Using (24), tetrad (22) can be rewritten as

(ℎ𝑖
𝜇
)

= (

𝑐
4
𝑟 0 0 0

0 F
5
sin 𝜃 cos𝜙 𝑟 cos 𝜃 cos𝜙 −𝑟 sin 𝜃 sin𝜙

0 F
5
sin 𝜃 sin𝜙 𝑟 cos 𝜃 sin𝜙 𝑟 sin 𝜃 cos𝜙

0 F
5
cos 𝜃 −𝑟 sin 𝜃 0

).
(25)

Using (25), the torsion scalar (3) takes the following form:

𝑇 =
2 (3 − 4F

5
+F
5

2)

𝑟2F
5

2
. (26)

Inserting (26) and the components of the tensors 𝑆]𝜇
𝜌
and

𝑇]𝜇
𝜌
in the field equations (6), we obtain

4𝜋T
0

0 = 4𝜋𝜌

=
(1 −F

5
)

𝑟F
5

2
𝑇󸀠𝑓
𝑇𝑇
−
2F
5

2 − 2F
5
+ 𝑟F󸀠
5

𝑟2F
5

3
𝑓
𝑇

+
𝑓

4
,

−4𝜋T
1

1 = 4𝜋𝑝
𝑟
=
3 − 2F

5

𝑟2F
5

2
𝑓
𝑇
+
𝑓

4
,

−8𝜋T
2

2 = −8𝜋T
3

3 = 4𝜋𝑝
𝑡

=
(2 −F

5
)

2𝑟F
5

2
𝑇󸀠𝑓
𝑇𝑇

−
2F
5

2 − 2F
5
+ 𝑟F󸀠
5
−F
5

3

2𝑟2F
5

3
𝑓
𝑇
+
𝑓

4
.

(27)

The above system cannot be solved without assuming some
specific constraint on the form of 𝑓(𝑇). Therefore, we are
going to use the constraint (18) in (27) and obtain the
following:

F
5
(𝑟) =

2

√2 + 4𝑟2𝑐
7

,

𝑇 =
5√2 + 4𝑟2𝑐

7
− 8 − 16𝑟2𝑐

5
+ 6𝑐
7
√2 + 4𝑟2𝑐

7

𝑟2√2 + 4𝑟2𝑐
7

,

16𝜋𝜌 =
9 + 18𝑟2𝑐

7
− 8√2 + 4𝑟2𝑐

7

𝑟2
,
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16𝜋𝑝 =
11 + 18𝑟2𝑐

7
− 8√2 + 4𝑟2𝑐

7

𝑟2
,

𝜓 (𝑟) =
𝑐
5
√2 + 4𝑟2𝑐

7

2
.

(28)

Using (28), the sound velocity V
𝑠

2 takes the following form:

𝑑𝑝

𝑑𝜌

=
16 + 32𝑟4𝑐

7

2 + 48𝑟2𝑐
7
− 22𝑟2𝑐

7
√2 + 4𝑟2𝑐

7
− 11√2 + 4𝑟2𝑐

7

(8𝑐
7
√2 + 4𝑟2𝑐

7
− 18𝑟2𝑐

7
− 9 + 8√2 + 4𝑟2𝑐

7
)√2 + 4𝑟2𝑐

7

.

(29)

4. Physics Relevant to the Models

4.1. Energy Conditions. Energy conditions are essential tools
to understand various cosmological geometries and some
general results related to the strong gravitational fields.These
tools are three forms of energy conditions, the strong energy
(SEC), null energy (NEC), and weak energy conditions
(WEC) [81–83]. Such conditions have the following inequal-
ities:

NEC: 𝜌 + 𝑝
𝑟
≥ 0,

𝜌 + 𝑝
𝑡
≥ 0,

SEC: 𝜌 + 𝑝
𝑟
≥ 0,

𝜌 + 𝑝
𝑟
+ 2𝑝
𝑡
≥ 0,

WEC: 𝜌 ≥ 0,

𝜌 + 𝑝
𝑟
≥ 0,

𝜌 + 𝑝
𝑡
≥ 0.

(30)

It is interesting to remember that the breaking of the
conditions leads to the existence of the ghost instabilities.

4.2. Energy Conditions of Smooth Transition Models. Let us
apply the above procedure of the energy conditions given by
(30) to the derived solutions given in the previous section.
Equations (28) show that density has a positive value and 𝜌 +
𝑝 ≥ 0, 𝜌+3𝑝 ≥ 0 are satisfied with constant 𝑐

3
> 0 for the first

model and 𝑐
7
> 0 for the second model as shown in Figures 1

and 2. This means that NEC, SEC, and WEC are satisfied for
the above two models. Also, it is interesting to note that the
density and pressure of both solutions do not depend on the
constants 𝑐

0
and 𝑐
4
.

4.3. Stability Problem. To study the stability issue of the
above two models, we use the cracking mechanism [84] in
which the squares of the sound speed should be in the range
[0, 1]; that is, 0 ≤ V

𝑠

2 ≤ 1. Figure 3(a) does not show the
positivity criterion; that is, V

𝑠

2 ≤ 0. However, Figure 3(b)
satisfies the criterion of stability; that is, V

𝑠

2 ≥ 0 within

the matter distribution provided any value of the constant
𝑐
7
, in Figure 3(b), and therefore second model maintains

stability.

4.4. Nature of the Star. To understand the nature of the
star, we draw a plot to indicate the radius of the stellar
model for the second model. It can be seen by the clear
cut on 𝑟-axis which is turned out to be approximately 1 km
(Figure 4). This value is very small and shows a compact star
with ultracompactness. A tally of this value with the already
available data set immediately reveals that the star is nothing
but either a quark/strange star [85, 86] or a brown dwarf star
of type F5.This value of𝑅 ∼ 1 kmmakes us detect the surface
density of the stellar system. As 𝑟 approaches zero, density
approaches ∞ and, therefore, the central density is out of
the scope of this study. However, we can guess the surface
density of the star by plugging the values of the Newtonian
constant, 𝐺, and the speed of light, 𝑐, in the expression of
density which gives the numerical value as 13 gm/cm3. This
is a normal energy density in which the radius 𝑅 = 1 km
is very small. This indicates that the second model under
𝑓(𝑇) gravity represents an ultracompact star [87–89]. The
first model is not a physical one because of the fact that, to
find the cutting of the pressure with the 𝑟-axis, the constant
𝑐
3
will have a negative valuewhichmakes a contradictionwith

the energy conditions.

4.5. TOV Equation. The TOV equation for a metric in the
form

𝑑𝑠2 = −𝑒](𝑟)𝑑𝑡2 + 𝑒𝜆(𝑟)𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) (31)

can be written in the following form [85]:

−
𝑀
𝐺(𝑟)

(𝜌 + 𝑝
𝑟
) 𝑒(𝜆(𝑟)−](𝑟))/2

𝑟2
−
𝑑𝑝
𝑟

𝑑𝑟
+
2 (𝑝
𝑡
− 𝑝
𝑟
)

𝑟

= 0,

(32)

where𝑀
𝐺(𝑟)

is the gravitational mass in the sphere of radius
𝑟 which is given by

𝑀
𝐺(𝑟)

=
𝑟2]󸀠𝑒(𝜆(𝑟)−](𝑟))/2

2
. (33)

Using (33) in (32), we obtain in the isotropic case

−
]󸀠 (𝜌 + 𝑝

𝑟
)

2
−
𝑑𝑝
𝑟

𝑑𝑟
= 0. (34)
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Figure 1: Energy conditions of the first model: the constant 𝑐
3
assumes a positive value so that the density is positive and also the pressure.

Equation (34) demonstrates the equilibrium of the stellar
configuration under the action of different forces, that is,
gravitational force 𝐹

𝑔
and hydrostatic force 𝐹

ℎ
; therefore, as

an equilibrium condition, wewrite (34) in the following form:
𝐹
𝑔
+ 𝐹
ℎ
= 0, (35)

where

𝐹
𝑔
= −

]󸀠 (𝜌 + 𝑝
𝑟
)

2
,

𝐹
ℎ
= −

𝑑𝑝
𝑟

𝑑𝑟
.

(36)

Using (14), (20), (25), and (28), we plot the feature of TOV
equation for the above two models in Figure 5.

5. Conclusion and Discussion

In this study, we have used two nondiagonal different tetrad
fields having spherical symmetry and reproduce the same
associated metric. These tetrads are connected by local
Lorentz transformation. We have used the CKV mechanism
to reduce the highly nonlinear partial differential equations.
We have applied the field equations of 𝑓(𝑇) to the first
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Figure 2: Energy conditions of the secondmodel: the constant 𝑐
7
assumes a positive value so that the density is positive and also the pressure.

tetrad and have obtained anisotropic system that consists of
four nonlinear differential equations. One of these deferential
equations put a constraint on the form of 𝑓(𝑇). This con-
straint makes the form of 𝑓(𝑇) be 𝑓(𝑇) = 𝑇. Using this
form and the isotropic condition, that is, 𝑝

𝑟
= 𝑝
𝑡
, we get an

isotropic solution.
For the second tetrad, we have obtained anisotropic

system that consists of three nonlinear differential equations.
We cannot solve this system without any constraints on the
form of 𝑓(𝑇). Using the constraint of 𝑓(𝑇) applied to the first

tetrad, that is, 𝑓(𝑇) = 𝑇, and the condition of isotropy, we get
another solution.

We have studied the physics relevant to each solution
and have shown that the first and second tetrads satisfied
the energy conditions provided that the two constants of
integration involved in these solutions are positive. We have
shown that the first tetrad is not stable one because the sound
speed is negative; that is, 𝑑𝑝/𝑑𝜌 < 0 [84]. However, the
second model has confirmed stable manner and has shown
a dynamical behavior. We have indicated that the first tetrad
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Figure 3: (a) shows that the first model does not have stability because the sound velocity V
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2 ∉ [0, 1] as is required while (b) shows a stability
behavior.
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Figure 4: Radius of the star is given where the pressure 𝑝 cuts 𝑟-axis.

is not suitable to construct a stellar model because the radius
has an imaginary quantity. In the meanwhile, the second
model has illustrated a stellar model that has a radius about
1 km and the value of density is not intensive enough on
the surface. Finally, we have shown that the plots for the
generalized TOV equation show that static equilibrium has
been attained by different forces, that is, gravitational force
𝐹
𝑔
and hydrostatic force𝐹

ℎ
. Figure 5(b) shows that the second

model has a tendency toward equilibrium while the first one
did not show such equilibrium.
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