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This paper studies the disturbance preview optimal control problem for discrete-time systems with multirate output sampling. By
constructing the error system and using the discrete lifting technique, we reduce the multirate preview control problem to a single-
rate one for a formal augmented system.Then, applying preview control theory, the optimal preview control law of the augmented
error system is obtained. Meanwhile, we introduce a discrete integrator to eliminate the static error. Then we study a method to
design a controller with preview action for the original system. And the existence conditions of the controller are also discussed in
detail. Finally, numerical simulation is included to illustrate the effectiveness of the proposed method.

1. Introduction

In multirate output control systems, each component of the
input vectors only changes once, and each component of the
output vectors is detected several times during one sampling
period. The increase in sampling frequency of the output
vectors allows the controllers to obtain more information on
the controlled objects and to acquire stronger control ability
[1]. Reference [2] studied a “multirate output controller”
and designed a multirate output feedback controller for a
class of time-invariant continuous-time systems. References
[3, 4] studied the design of the multirate output sampling
functional observer and periodic output feedback controller
based on fast output sampling, respectively. The above two
papers take full advantage of the multirate output control
systems’ ability to increase the number of detecting output
vectors.

Optimal control theory has numerous applications in
both science and engineering. Recent reference [5] develops
a comprehensive optimality theory of problems described
by ordinary and partial differential inclusions and presents
a number of new and important results. The theoretical
basis of preview control is optimal control. Preview control
theory takes full advantage of the known future reference
signals or disturbance signals to improve the performance
of control systems. Preview control theory has generated a

whole set of theories and methods during its development
[6–8]. There are many studies in the literature on this theory,
and the perfect one is the study based on linear time-invariant
systems [9]. Lately, progress has beenmade in combining pre-
view control theory with stochastic systems [10], nonlinear
systems [11], and descriptor systems [12]. Moreover, preview
control theory has been applied successfully to vehicle active
suspensions [13], wind turbines [14], and other aspects.

The sampling rate for control systems may be limited
by physical hardware. For example, the sampling rate in the
control of hard-disk systems is determined by the number
of sectors on circular tracks and the spindle speed. A low
sampling rate can reduce the cost of hardware resources.
However, an overly low sampling rate has a bad effect on
system performance and system stability. Generally, the per-
formance of control systems can be improved by increasing
sampling frequency properly [15]. In [16], it has been shown
that there is an advantage in updating feedforward control
input at a higher rate in track-seeking control. These cases
motivate the research work for preview control theory of
multirate systems.

Research into preview control theory inmultirate settings
began with [17]. In that paper, Liao et al. presented an LQ
optimal preview servomechanism design method for linear
discrete-time systems with time-delay in a multirate setting.
The paper eliminated the time-delay by state augmentation,
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similar to the technique offered in [6]. Reference [18] dis-
cussed the optimal preview control problem for a class of
multirate sampled systems with state time-delay. Reference
[19] applied preview control theory to solve the optimal
preview control problem for discrete-time descriptor causal
systems in a multirate setting. But the above papers all study
the preview control problem for multirate input control sys-
tems. Compared with the frequent changes of input vectors
for multirate input control systems, multirate output control
systems make the structures of systems relatively simpler
and suitable for industrial process control. So this paper
studies optimal preview control for discrete-time systems in
multirate output sampling. We will use the following lemmas
repeatedly in [20].

Lemma 1 (PBH rank test). (𝐴, 𝐵) is stabilizable if and only if,
for any complex𝜆 satisfying |𝜆| ≥ 1, thematrix [𝜆𝐼 − 𝐴 𝐵]has
full row rank. (𝐶, 𝐴) is detectable if and only if, for any complex𝜆 satisfying |𝜆| ≥ 1, the matrix [ 𝜆𝐼−𝐴𝐶 ] has full column rank.

2. Problem Description and
Related Assumptions

Consider the following linear discrete-time system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐸𝑤 (𝑘)
𝑦 (𝑘) = 𝐶𝑥 (𝑘) , (1)

where 𝑥(𝑘) ∈ 𝑅𝑛, 𝑢(𝑘) ∈ 𝑅𝑚, 𝑦(𝑘) ∈ 𝑅𝑝, and 𝑤(𝑘) ∈ 𝑅𝑙
represent the state vector, the control input vector, the output
vector, and the disturbance vector, respectively. 𝐴, 𝐵, 𝐶, and𝐸 are known constant matrices with appropriate dimensions.

For system (1), we introduce the following assumptions.

Assumption 2. (𝐴, 𝐵) is stabilizable.
Assumption 3. (𝐶, 𝐴) is detectable.
Assumption 4. The input vector 𝑢(𝑘) can be input only at 𝑘 =𝑖𝑁 (𝑖 = 0, 1, 2, . . .), where𝑁 is a positive integer.

Remark 5. Assumptions 2 and 3 are basic assumptions of
control systems. Assumption 4 makes the system multirate.
That is, the input vector 𝑢(𝑘) can be input once during
every 𝑁 sampling interval and the output vector 𝑦(𝑘) can be
measured at every moment.

Assumption 6. 𝑢(𝑖𝑁 + 𝑞) = 𝑢(𝑖𝑁), 𝑞 = 0, 1, 2, . . . , 𝑁 − 1; 𝑖 =0, 1, 2, . . ..
Remark 7. Suppose the system has zero-order-hold; that is,𝑢(𝑖𝑁 + 1) = 𝑢(𝑖𝑁 + 2) = ⋅ ⋅ ⋅ 𝑢(𝑖𝑁 + 𝑁 − 1) = 𝑢(𝑖𝑁) (𝑖 =0, 1, 2, . . .).
Assumption 8. Thematrix

Ψ = [𝐴 − 𝐼 𝐵
𝐶 0] (2)

has full row rank.

Remark 9. Assumption 8 is one of the basic assumptions of
preview control theory in [6].

We assume that the disturbance signal is previewable.

Assumption 10. The future values of the disturbance 𝑤(𝑘 +1), 𝑤(𝑘 + 2), . . . , 𝑤(𝑘 + 𝑀𝑑), as well as the present and past
values, are available at time 𝑘, where𝑀𝑑 is the preview length
of the disturbance and𝑀𝑑 = 𝑆𝑑𝑁, 𝑆𝑑 is a nonnegative integer.

Furthermore, we assume the following conditions, for
simplicity of discussion.

Assumption 11. The disturbance 𝑤(𝑘) converges to zero as
time 𝑘 goes to infinity. That is,

lim
𝑘→∞

𝑤 (𝑘) = 0. (3)

We assume reference signal 𝑟(𝑘) is given by the step
function

𝑟 (𝑘) = {{{
𝑟, 𝑘 ≥ 𝑘0
0, 𝑘 < 𝑘0. (4)

According to Assumptions 8 and 11, there always exist
constant vectors 𝑥(∞) and 𝑢(∞) such that

𝑥 (∞) = 𝐴𝑥 (∞) + 𝐵𝑢 (∞)
𝑟 = 𝐶𝑥 (∞) . (5)

That is,

[𝐴 − 𝐼 𝐵
𝐶 0][𝑥 (∞)

𝑢 (∞)] = [0𝐼] 𝑟. (6)

For the equation of [ 𝑥(∞)𝑢(∞) ], the rank of the coefficient matrix
is the same as that of the augmentedmatrix, by Assumption 8.
So, this equation has a solution. In general, we take one
solution from the above equation and express this solution
as

[𝑥 (∞)
𝑢 (∞)] = [𝐴 − 𝐼 𝐵

𝐶 0]
† [0𝐼] 𝑟, (7)

where (⋅)† denotes the right inverse.
Define the new vectors,

�̃� (𝑘) = 𝑥 (𝑘) − 𝑥 (∞) ,
�̃� (𝑘) = 𝑢 (𝑘) − 𝑢 (∞) , (8)

and the error signal,

𝑒 (𝑘) = 𝑦 (𝑘) − 𝑟 (𝑘) . (9)

From (1) and (5), we get the error system

�̃� (𝑘 + 1) = 𝐴�̃� (𝑘) + 𝐵�̃� (𝑘) + 𝐸𝑤 (𝑘)
𝑒 (𝑘) = 𝐶�̃� (𝑘) . (10)
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In this paper, we wish to design a type-1 servo controller
such that the output 𝑦(𝑘) can track reference signal 𝑟(𝑘)
without steady-state error. That is,

lim
𝑘→∞

𝑒 (𝑘) = 0. (11)

To achieve good transient response, we introduce the
quadratic performance index

𝐽 = ∞∑
𝑘=0

[𝑒𝑇 (𝑘) 𝑄𝑒𝑒 (𝑘) + �̃�𝑇 (𝑘)𝐻𝑢�̃� (𝑘)] , (12)

where the weight matrices satisfy 𝑄𝑒 > 0, 𝐻𝑢 > 0.
3. The Derivation of the Augmented

Error System

In this section, we eliminate the multirate feature of Assump-
tion 4 using the discrete lifting technique. Using the lifting
scheme of this paper, we can construct the necessary aug-
mented error system. Hence the preview control problem
for a multirate output sampling system is converted into
an optimal regulator problem for the normal augmented
error system. And the controller with preview action for the
augmented error system can be obtained by applying optimal
preview control theory.

3.1. Discrete Lifting for the Multirate Output Sampling System.
According to Assumptions 4 and 6, the input vector �̃�(𝑘) of
system (10) can be input at 𝑘 = 𝑖𝑁 (𝑖 = 0, 1, 2, . . .) and �̃�(𝑖𝑁+𝑞) = �̃�(𝑖𝑁) (𝑞 = 0, 1, 2, . . . , 𝑁 − 1).

Noticing the first equation in (10) and the characteristic
of �̃�(⋅), we get

�̃� (𝑖𝑁 + 1) = 𝐴�̃� (𝑖𝑁) + 𝐵�̃� (𝑖𝑁) + 𝐸𝑤 (𝑖𝑁)
�̃� (𝑖𝑁 + 2) = 𝐴�̃� (𝑖𝑁 + 1) + 𝐵�̃� (𝑖𝑁) + 𝐸𝑤 (𝑖𝑁 + 1)

...
�̃� (𝑖𝑁 + 𝑁) = 𝐴�̃� (𝑖𝑁 + 𝑁 − 1) + 𝐵�̃� (𝑖𝑁)

+ 𝐸𝑤 (𝑖𝑁 + 𝑁 − 1) .

(13)

That is,

[[[[[[
[

�̃� (𝑖𝑁 + 1)
�̃� (𝑖𝑁 + 2)...
�̃� (𝑖𝑁 + 𝑁)

]]]]]]
]

= [[[[[
[

𝐴
𝐴

d

𝐴
]]]]]
]

[[[[[[
[

�̃� (𝑖𝑁)
�̃� (𝑖𝑁 + 1)...

�̃� (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

+ [[[[[
[

𝐵
𝐵

d

𝐵
]]]]]
]

[[[[[[
[

�̃� (𝑖𝑁)
�̃� (𝑖𝑁)...
�̃� (𝑖𝑁)

]]]]]]
]

+ [[[[[
[

𝐸
𝐸

d

𝐸
]]]]]
]

[[[[[[
[

𝑤 (𝑖𝑁)
𝑤 (𝑖𝑁 + 1)...

𝑤 (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

.

(14)

Similarly, we obtain the equation of the error signal 𝑒(𝑘)
[[[[[[
[

𝑒 (𝑖𝑁)
𝑒 (𝑖𝑁 + 1)...

𝑒 (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

= [[[[[
[

𝐶
𝐶

d

𝐶
]]]]]
]

[[[[[[
[

�̃� (𝑖𝑁)
�̃� (𝑖𝑁 + 1)...

�̃� (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

.
(15)

We introduce the vectors as follows:

�̂� (𝑖𝑁) =
[[[[[[
[

�̃� (𝑖𝑁)
�̃� (𝑖𝑁 + 1)...

�̃� (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

∈ 𝑅𝑁𝑛,

�̂� (𝑖𝑁) =
[[[[[[
[

�̃� (𝑖𝑁)
�̃� (𝑖𝑁)...
�̃� (𝑖𝑁)

]]]]]]
]

∈ 𝑅𝑁𝑚,

𝐸 (𝑖𝑁) =
[[[[[[
[

𝑒 (𝑖𝑁)
𝑒 (𝑖𝑁 + 1)...

𝑒 (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

∈ 𝑅𝑁𝑝,

𝑊 (𝑖𝑁) =
[[[[[[
[

𝑤 (𝑖𝑁)
𝑤 (𝑖𝑁 + 1)...

𝑤 (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

∈ 𝑅𝑁𝑙,
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�̂� =
[[[[[[[[
[

𝐴
𝐴

d

𝐴

]]]]]]]]
]

,

�̂� =
[[[[[[[[
[

𝐵
𝐵

d

𝐵

]]]]]]]]
]

,

�̂� =
[[[[[[[[
[

𝐶
𝐶

d

𝐶

]]]]]]]]
]

,

�̂� =
[[[[[[[[
[

𝐸
𝐸

d

𝐸

]]]]]]]]
]

.

(16)

Combining (14) and (15), we get

�̂� (𝑖𝑁 + 1) = �̂��̂� (𝑖𝑁) + �̂��̂� (𝑖𝑁) + �̂�𝑊 (𝑖𝑁)
𝐸 (𝑖𝑁) = �̂��̂� (𝑖𝑁) . (17)

Now we have successfully transformed the multirate output
sampling system into the single-rate system by the lifting
technique.

3.2. Introduction of Integral Compensation. To achieve the
robust servo property mentioned in the previous section and
eliminate the steady-state error, we need to introduce the
discrete integrator, defined by

𝑉 (𝑖𝑁 + 1) = 𝑉 (𝑖𝑁) + 𝐸 (𝑖𝑁) , (18)

where

𝑉 (𝑖𝑁) =
[[[[[[[[[
[

V (𝑖𝑁)
V (𝑖𝑁 + 1)

...
V (𝑖𝑁 + 𝑁 − 1)

]]]]]]]]]
]

. (19)

Equation (18) is the discrete integrator and we can derive the
following equation:

[[[[[[
[

V (𝑖𝑁)
V (𝑖𝑁 + 1)...

V (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

=

[[[[[[[[[[[[[[
[

V (0) + 𝑖𝑁−1∑
𝑠=0

𝑒 (𝑠)
V (1) + 𝑖𝑁−1∑

𝑠=0

𝑒 (𝑠 + 1)
...

V (𝑁 − 1) + 𝑖𝑁−1∑
𝑠=0

𝑒 (𝑠 + 𝑁 − 1)

]]]]]]]]]]]]]]
]

.
(20)

That is,

𝑉 (𝑖𝑁) = 𝑉 (0) + 𝑖𝑁−1∑
𝑠=0

𝐸 (𝑠) . (21)

Noticing the second equation in (17), we obtain

𝑉 (𝑖𝑁 + 1) = 𝑉 (𝑖𝑁) + �̂��̂� (𝑖𝑁) . (22)

If the closed-loop system is stabilized, there exists a stationary
value of 𝑉(𝑘). Let 𝑉(∞) = lim𝑘→∞𝑉(𝑘) and define

�̃� (𝑘) = 𝑉 (𝑘) − 𝑉 (∞) . (23)

From (22), we have

�̃� (𝑖𝑁 + 1) = �̃� (𝑖𝑁) + �̂��̂� (𝑖𝑁) . (24)

This enables us to add a degree of freedom to improve the
transient response of the closed-loop system since 𝑉(∞) can
be arbitrarily assigned [17].

Combining (17) and (24) and matching the correspond-
ing block, we obtain the augmented system

𝑋0 (𝑖𝑁 + 1) = 𝐴0𝑋0 (𝑖𝑁) + 𝐵0�̂� (𝑖𝑁) + 𝐸0𝑊(𝑖𝑁)
𝐸 (𝑖𝑁) = 𝐶0𝑋0 (𝑖𝑁) , (25)

where

𝑋0 (𝑖𝑁) =
[[[[[[
[

𝑥 (𝑖𝑁)
𝑥 (𝑖𝑁 + 1)...

𝑥 (𝑖𝑁 + 𝑁 − 1)

]]]]]]
]

,

𝐴0 =
[[[[[[
[

𝐴
𝐴

d

𝐴

]]]]]]
]

,
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𝐵0 =
[[[[[[
[

𝐵
𝐵

d

𝐵

]]]]]]
]

,

𝐸0 =
[[[[[[
[

𝐸
𝐸

d

𝐸

]]]]]]
]

,

𝐶0 =
[[[[[[
[

𝐶
𝐶

d

𝐶

]]]]]]
]

,

𝑥 (𝑖𝑁) = [�̃� (𝑖𝑁)
Ṽ (𝑖𝑁)] ,

𝐴 = [𝐴 0
𝐶 𝐼] ,

𝐵 = [𝐵0] ,
𝐸 = [𝐸0] ,
𝐶 = [𝐶 0] .

(26)

Augmented system (25) is the formal system for designing the
controller.

3.3. Modification of the Performance Index Function. From
(12) and the structure of 𝐸(𝑖𝑁) and �̂�(𝑖𝑁), we can see

𝐽 = ∞∑
𝑘=0

[𝑒𝑇 (𝑘) 𝑄𝑒𝑒 (𝑘) + �̃�𝑇 (𝑘)𝐻𝑢�̃� (𝑘)]
= ∞∑
𝑖=0

𝑁−1∑
𝑗=0

[𝑒𝑇 (𝑖𝑁 + 𝑗)𝑄𝑒𝑒 (𝑖𝑁 + 𝑗)
+ �̃�𝑇 (𝑖𝑁 + 𝑗)𝐻𝑢�̃� (𝑖𝑁 + 𝑗)] = ∞∑

𝑖=0

[𝐸𝑇 (𝑖𝑁)
⋅ �̂�𝑒𝐸 (𝑖𝑁) + �̂�𝑇 (𝑖𝑁) �̂�𝑢�̂� (𝑖𝑁)] ,

(27)

where �̂�𝑒 = diag( 𝑄𝑒 𝑄𝑒 ⋅ ⋅ ⋅ 𝑄𝑒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

), �̂�𝑢 =
diag( 𝐻𝑢 𝐻𝑢 ⋅ ⋅ ⋅ 𝐻𝑢⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

), and �̂�𝑒 ∈ 𝑅(𝑁𝑝)×(𝑁𝑝), �̂�𝑒 > 0,
�̂�𝑢 ∈ 𝑅(𝑁𝑚)×(𝑁𝑚), �̂�𝑢 > 0.

Noticing the second equation of (17), the performance
index (27) can be rewritten as

𝐽 = ∞∑
𝑖=0

[�̂�𝑇 (𝑖𝑁) (�̂�𝑇�̂�𝑒�̂�) �̂� (𝑖𝑁)
+ �̂�𝑇 (𝑖𝑁) �̂�𝑢�̂� (𝑖𝑁)] .

(28)

In order to regularize the LQ optimal control problem
and guarantee the existence of a stabilizing solution to the
associated Riccati equation, we modify the performance
index as follows:

�̂� = 𝐽 + ∞∑
𝑖=0

�̃�𝑇 (𝑖𝑁) �̂�V�̃� (𝑖𝑁)
= ∞∑
𝑖=0

[�̂�𝑇 (𝑖𝑁) (�̂�𝑇�̂�𝑒�̂�) �̂� (𝑖𝑁)
+ �̂�𝑇 (𝑖𝑁) �̂�𝑢�̂� (𝑖𝑁) + �̃�𝑇 (𝑖𝑁) �̂�V�̃� (𝑖𝑁)]
= ∞∑
𝑖=0

[𝑋𝑇0 (𝑖𝑁) �̂�0𝑋0 (𝑖𝑁) + �̂�𝑇 (𝑖𝑁) �̂�𝑢�̂� (𝑖𝑁)] ,

(29)

where 𝑄V > 0, �̂�V = diag( 𝑄V 𝑄V ⋅ ⋅ ⋅ 𝑄V⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

), �̂�0 =
diag( 𝑄 𝑄 ⋅ ⋅ ⋅ 𝑄⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

), and 𝑄 = [ 𝐶𝑇𝑄𝑒𝐶
𝑄V

].
Now, the preview control problem of multirate output

control system (1) becomes a standard LQ optimal preview
control problem of augmented system (25) with performance
index (29).

Applying the results in [6–8], we can derive the following
theorem.

Theorem 12. If (𝐴0, 𝐵0) is stabilizable and (�̂�1/20 , 𝐴0) is
detectable, the optimal preview controller of system (25) mini-
mizing the performance index (29) is given by

�̂� (𝑖𝑁) = �̂�𝑋0 (𝑖𝑁) + 𝑆𝑑−1∑
𝑗=0

𝐹𝑑 (𝑗)𝑊 ((𝑖 + 𝑗)𝑁) , (30)

where

�̂� = − [�̂�𝑢 + 𝐵𝑇0 �̂�𝐵0]−1 𝐵𝑇0 �̂�𝐴0
𝐹𝑑 (𝑗) = − [�̂�𝑢 + 𝐵𝑇0 �̂�𝐵0]−1 𝐵𝑇0 (𝐹𝑇𝑐)𝑗 �̂�𝐸0

(𝑗 = 0, 1, . . . , 𝑆𝑑 − 1)
𝐹𝑐 = 𝐴0 + 𝐵0�̂�

= 𝐴0 − 𝐵0 [�̂�𝑢 + 𝐵𝑇0 �̂�𝐵0]−1 𝐵𝑇0 �̂�𝐴0,

(31)

and �̂� is the unique symmetric semi-positive definite solution
of the algebraic Riccati equation,

�̂� = 𝐴𝑇0�̂�𝐴0 − 𝐴𝑇0�̂�𝐵0 [�̂�𝑢 + 𝐵𝑇0 �̂�𝐵0]−1 𝐵𝑇0 �̂�𝐴0 + �̂�0. (32)
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3.4. Realization of the System. In the processes of construct-
ing the augmented system, the order of formal system (25)
increases highly. As a result, the order of corresponding
Riccati equation (32) is very high. We study a method to
solve high-order Riccati equation (32) by solving a low-order
Riccati equation. Noticing the structure of the coefficient
matrices 𝐴0 and 𝐵0 for system (25) and the weight matrices�̂�0 and �̂�𝑢 for performance index (29), the solution of the
Riccati equation (32) can be decomposed into

�̂� = [[[[[
[

𝑃
𝑃

d

𝑃
]]]]]
]

. (33)

Substituting the partitioned matrix of �̂� into (32), we derive

𝑃 = 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 [𝐻𝑢 + 𝐵𝑇𝑃𝐵]−1 𝐵𝑇𝑃𝐴 + 𝑄. (34)

In fact, we can obtain (32) by repeating (34)𝑁 times.Thus, the
solution of high-order Riccati equation (32) is transformed
into solving low-order Riccati equation (34).

And this is equivalent to solving (34) for the following
system:

𝑥 (𝑖𝑁 + 1) = 𝐴𝑥 (𝑖𝑁) + 𝐵�̃� (𝑖𝑁) + 𝐸𝑤 (𝑖𝑁) . (35)

That is,

[�̃� (𝑖𝑁 + 1)
Ṽ (𝑖𝑁 + 1)] = [𝐴 0

𝐶 𝐼][�̃� (𝑖𝑁)
Ṽ (𝑖𝑁)] + [𝐵0] �̃� (𝑖𝑁)

+ [𝐸0]𝑤 (𝑖𝑁) .
(36)

We know that (34) has a unique symmetric semi-positive
definite solution if and only if (𝑄1/2, 𝐴) is detectable. Notice
that (25) can be written as

[�̃� (𝑖𝑁 + 1)
Ṽ (𝑖𝑁 + 1)] = [𝐴 0

𝐶 𝐼][�̃� (𝑖𝑁)
Ṽ (𝑖𝑁)] + [𝐵0] �̃� (𝑖𝑁)

+ [𝐸0]𝑤 (𝑖𝑁)
[�̃� (𝑖𝑁 + 2)
Ṽ (𝑖𝑁 + 2)] = [𝐴 0

𝐶 𝐼][�̃� (𝑖𝑁 + 1)
Ṽ (𝑖𝑁 + 1)] + [𝐵0] �̃� (𝑖𝑁)

+ [𝐸0]𝑤 (𝑖𝑁 + 1)
...

[�̃� (𝑖𝑁 + 𝑁)
Ṽ (𝑖𝑁 + 𝑁)] = [𝐴 0

𝐶 𝐼][�̃� (𝑖𝑁 + 𝑁 − 1)
Ṽ (𝑖𝑁 + 𝑁 − 1)]

+ [𝐵0] �̃� (𝑖𝑁) + [𝐸0]𝑤 (𝑖𝑁 + 𝑁 − 1) ,

(37)

and the first equation of (37) is (36). We can obtain �̃�(𝑖𝑁)
by the solution of the Riccati equation (34) and the state
vector [ �̃�(𝑖𝑁)Ṽ(𝑖𝑁) ]. Substituting �̃�(𝑖𝑁) into the first equation of
(37), [ �̃�(𝑖𝑁+1)Ṽ(𝑖𝑁+1) ] is obtained. Then, substituting [ �̃�(𝑖𝑁+1)Ṽ(𝑖𝑁+1) ] and�̃�(𝑖𝑁) into the second equation of (37), [ �̃�(𝑖𝑁+2)Ṽ(𝑖𝑁+2) ] is obtained.
By that analogy, [ �̃�(𝑖𝑁+𝑁)Ṽ(𝑖𝑁+𝑁) ] is obtained. Then, the simulation
can be realized.

4. Existence Conditions of the Controller

It is a well-known fact that the stabilizability of (𝐴0, 𝐵0) guar-
antees that the state feedback gain in Theorem 12 exists. And
the detectability of (�̂�1/20 , 𝐴0) ensures that Riccati equation
(32) has a unique symmetric semi-positive solution [20].

First, we examine the stabilizability of (𝐴0, 𝐵0).
Lemma 13. (𝐴0, 𝐵0) is stabilizable if and only if (𝐴, 𝐵) is
stabilizable.

Proof. By the PBH rank test,

𝐴0 = diag( 𝐴 𝐴 ⋅ ⋅ ⋅ 𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

) ,

𝐵0 = diag( 𝐵 𝐵 ⋅ ⋅ ⋅ 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

) ,
(38)

for any complex 𝜆, if |𝜆| ≥ 1, we have
rank [�̂� − 𝜆𝐼 | �̂�]

= rank
[[[[[[
[

𝐴 − 𝜆𝐼 𝐵
𝐴 − 𝜆𝐼 𝐵

d d

𝐴 − 𝜆𝐼 𝐵

]]]]]]
]

= rank
[[[[[[
[

[𝐴 − 𝜆𝐼 | 𝐵]
[𝐴 − 𝜆𝐼 | 𝐵]

d

[𝐴 − 𝜆𝐼 | 𝐵]

]]]]]]
]

= 𝑁 ⋅ rank [𝐴 − 𝜆𝐼 | 𝐵] .

(39)

Thus,matrix [�̂�−𝜆𝐼 | �̂�]has full row rank if and only ifmatrix[𝐴 − 𝜆𝐼 | 𝐵] has full row rank. So, Lemma 13 is established.

Lemma 14. (𝐴, 𝐵) is stabilizable if and only if (𝐴, 𝐵) is
stabilizable and the matrix [ 𝐴−𝐼 𝐵𝐶 0 ] has full row rank.

Noticing the structure of 𝐴 and 𝐵, one gets this lemma in
[6].

Therefore, one obtains the following theorem on the stabi-
lizability of (𝐴0, 𝐵0).
Theorem 15. (𝐴0, 𝐵0) is stabilizable if and only if (𝐴, 𝐵) is
stabilizable and the matrix [ 𝐴−𝐼 𝐵𝐶 0 ] has full row rank.
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Theorem 15 guarantees that (𝐴0, 𝐵0) is stabilizable under
Assumptions 2 and 8.

Next, we discuss the detectability of (�̂�1/20 , 𝐴0).
Lemma 16. (�̂�1/20 , 𝐴0) is detectable if and only if (𝑄1/2, 𝐴) is
detectable.

Noticing the structure of 𝐴0 = diag( 𝐴 𝐴 ⋅ ⋅ ⋅ 𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁

) and
�̂�0 = diag( 𝑄 𝑄 ⋅ ⋅ ⋅ 𝑄⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

), one can prove Lemma 16 by using

the similar method in Lemma 13. Here, one omits the proof.

Lemma 17. (𝑄1/2, 𝐴) is detectable if and only if (𝐶, 𝐴) is
detectable and 𝑄V > 0.
Proof. According to [17], (𝑄1/2, 𝐴) is detectable if and only
if (𝑄1/2𝑒 𝐶,𝐴) is detectable and 𝑄V > 0. And 𝑄𝑒 > 0, so the
detectability of (𝑄1/2𝑒 𝐶,𝐴) is equivalent to that of (𝐶, 𝐴).Then
Lemma 17 holds.

From Lemmas 16 and 17, we obtain.

Theorem 18. (�̂�1/20 , 𝐴0) is detectable if and only if (𝐶, 𝐴) is
detectable and 𝑄V > 0.

Consequently, we see from Theorems 15 and 18 that the
solvability of the Riccati equation (32) is guaranteed under the
standard servomechanism assumptions for the original system.

5. Design of an Optimal Preview Controller for
the Original System

Now we return to the controller design with preview action
for the original system. We can see that Riccati equation (32)
can be obtained by repeating (34) 𝑁 times, as pointed out
above.Thenwe consider the optimal input (30) of system (25)
and associated (31) and (32) in Theorem 12.

Noticing the structure of �̂�, �̂�𝑢, and 𝐵0 and calculating�̂�𝑢 + 𝐵0𝑇�̂�𝐵0, we have

�̂�𝑢 + 𝐵𝑇0 �̂�𝐵0 = [[[[
[

𝐻𝑢 𝐻𝑢
d

𝐻𝑢
]]]]
]

+
[[[[[[
[

𝐵
𝐵

d

𝐵

]]]]]]
]

𝑇

[[[[[
[

𝑃
𝑃

d

𝑃
]]]]]
]

[[[[[[
[

𝐵
𝐵

d

𝐵

]]]]]]
]

=
[[[[[[[
[

𝐻𝑢 + 𝐵𝑇𝑃𝐵
𝐻𝑢 + 𝐵𝑇𝑃𝐵

d

𝐻𝑢 + 𝐵𝑇𝑃𝐵

]]]]]]]
]

.

(40)

This is the block diagonal matrix. Similarly, we notice that�̂�, 𝐹𝑑(𝑗), and 𝐹𝑐 are all block diagonal matrices and the
submatrix blocks of the diagonal are identical. Calculating
these block diagonal matrices and submitting them into (30)
we get

�̃� (𝑖𝑁) = 𝐹𝑥 (𝑖𝑁) + 𝑆𝑑−1∑
𝑗=0

𝑀𝑑 (𝑗) 𝑤 ((𝑖 + 𝑗)𝑁) , (41)

where

𝐹 = − [𝐻𝑢 + 𝐵𝑇𝑃𝐵]−1 𝐵𝑇𝑃𝐴
𝑀𝑑 (𝑗) = − [𝐻𝑢 + 𝐵𝑇𝑃𝐵]−1 𝐵𝑇 (𝑀𝑇𝑐 )𝑗 𝑃𝐸

(𝑗 = 0, 1, . . . , 𝑆𝑑 − 1)
𝑀𝑐 = 𝐴 + 𝐵𝐹 = 𝐴 − 𝐵 [𝐻𝑢 + 𝐵𝑇𝑃𝐵]−1 𝐵𝑇𝑃𝐴

(42)

and𝑃 is the unique symmetric semi-positive definite solution
of algebraic Riccati equation (34).

We decompose 𝐹 into

𝐹 = [𝐹𝑥 𝐹V] . (43)

Equation (41) can be written as

�̃� (𝑖𝑁) = [𝐹𝑥 𝐹V] [�̃� (𝑖𝑁)
Ṽ (𝑖𝑁)]

+ 𝑆𝑑−1∑
𝑗=0

𝑀𝑑 (𝑗) 𝑤 ((𝑖 + 𝑗)𝑁) .
(44)

That is,

�̃� (𝑖𝑁) = 𝐹𝑥�̃� (𝑖𝑁) + 𝐹VṼ (𝑖𝑁)
+ 𝑆𝑑−1∑
𝑗=0

𝑀𝑑 (𝑗) 𝑤 ((𝑖 + 𝑗)𝑁) . (45)

Further, the above equation can be written as

𝑢 (𝑖𝑁) − 𝑢 (∞) = 𝐹𝑥 [𝑥 (𝑖𝑁) − 𝑥 (∞)]
+ 𝐹V [V (𝑖𝑁) − V (∞)]
+ 𝑆𝑑−1∑
𝑗=0

𝑀𝑑 (𝑗) 𝑤 ((𝑖 + 𝑗)𝑁) .
(46)

From (21), we have V(𝑖𝑁) = V(0) + ∑𝑖𝑁−1𝑠=0 𝑒(𝑠); that is,
𝑢 (𝑖𝑁) = 𝐹𝑥𝑥 (𝑖𝑁) + 𝐹V𝑖𝑁−1∑

𝑠=0

𝑒 (𝑠)
+ 𝑆𝑑−1∑
𝑗=0

𝑀𝑑 (𝑗) 𝑤 ((𝑖 + 𝑗)𝑁) − 𝐹𝑥𝑥 (∞)
+ 𝑢 (∞) + 𝐹V (V (0) − V (∞)) .

(47)
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By substituting (7) into the above equation, we have

−𝐹𝑥𝑥 (∞) + 𝑢 (∞) = [−𝐹𝑥 𝐼] [𝑥 (∞)
𝑢 (∞)]

= [−𝐹𝑥 𝐼] [𝐴 − 𝐼 𝐵
𝐶 0]

† [0𝐼] 𝑟.
(48)

Then we obtain the main theorem of this paper.

Theorem 19. If the following conditions hold:

(1) (𝐴, 𝐵) is stabilizable (Assumption 2 holds);
(2) (𝐶, 𝐴) is detectable (Assumption 3 holds);
(3) the matrix [ 𝐴−𝐼 𝐵𝐶 0 ] has full row rank (Assumption 8

holds);
(4) 𝑄𝑒 > 0, 𝐻𝑢 > 0, 𝑄V > 0.

Riccati equation (32) has a unique symmetric semi-positive
definite solution, and the optimal control input of system (1)
with multirate output sampling is

𝑢 (𝑖𝑁) = 𝐹𝑥𝑥 (𝑖𝑁) + 𝐹V𝑖𝑁−1∑
𝑠=0

𝑒 (𝑠)
+ 𝑆𝑑−1∑
𝑗=0

𝑀𝑑 (𝑗) 𝑤 ((𝑖 + 𝑗)𝑁) + Γ𝑟
+ 𝐹V (V (0) − V (∞)) ,

(49)

where 𝐹𝑥, 𝐹V, and 𝑀𝑑(𝑗) are determined by (42) and (43) and
where

Γ = [−𝐹𝑥 𝐼] [𝐴 − 𝐼 𝐵
𝐶 0]

† [0𝐼] ; (50)

𝑢(𝑖𝑁 + 𝑗) = 𝑢(𝑖𝑁), 𝑗 = 1, 2, . . . , 𝑁 − 1.
The closed-loop system of (1) is

𝑥 (𝑖𝑁 + 1) = 𝐴𝑥 (𝑖𝑁) + 𝐵𝑢 (𝑖𝑁) + 𝐸𝑤 (𝑖𝑁)
𝑥 (𝑖𝑁 + 2) = 𝐴𝑥 (𝑖𝑁 + 1) + 𝐵𝑢 (𝑖𝑁) + 𝐸𝑤 (𝑖𝑁 + 1)

...
𝑥 (𝑖𝑁 + 𝑁) = 𝐴𝑥 (𝑖𝑁 + 𝑁 − 1) + 𝐵𝑢 (𝑖𝑁)

+ 𝐸𝑤 (𝑖𝑁 + 𝑁 − 1)
𝑢 (𝑖𝑁) = 𝐹𝑥𝑥 (𝑖𝑁) + 𝐹V𝑖𝑁−1∑

𝑠=0

𝑒 (𝑠)
+ 𝑆𝑑−1∑
𝑗=0

𝑀𝑑 (𝑗) 𝑤 ((𝑖 + 𝑗)𝑁) + Γ𝑟
+ 𝐹V (V (0) − V (∞))

(𝑖 = 0, 1, 2, . . .) .

(51)

6. Numerical Example

Consider a linear discrete-time system:

𝑥 (𝑘 + 1) = [−1.2 −0.79
0.6 0.15 ] 𝑥 (𝑘) + [1.512.1 ] 𝑢 (𝑘)

+ [−0.30.23]𝑤 (𝑘)
𝑦 (𝑘) = [−3.3 −2.1] 𝑥 (𝑘) ,

(52)

where the coefficient matrices are

𝐴 = [−1.2 −0.79
0.6 0.15 ] ,

𝐵 = [1.512.1 ] ,
𝐶 = [−3.3 −2.1] ,
𝐸 = [−0.30.23] .

(53)

Let𝑁 = 2; that is, the input vector 𝑢(𝑘) can be input only
at 𝑘 = 2𝑖 (𝑖 = 0, 1, 2, . . .). Let the initial conditions be 𝑥(0) =𝑥(1) = [ 00 ] and V(0) = 26. Take the weight matrices 𝑄𝑒 = 5,𝐻𝑢 = 1, and 𝑄V = 0.1.

Through verifying, system (52) satisfies Assumptions 2, 3,
and 8. In this case, 𝐴, 𝐵, and 𝑄 are calculated to be

𝐴 = [[
[
−1.20 −0.79 0
0.60 0.15 0
−3.30 −2.10 1.00

]]
]

,

𝐵 = [[
[
1.51
2.10
0

]]
]

,

𝑄 = [[
[
54.45 34.65 0
34.65 22.05 0

0 0 0.10
]]
]

.

(54)

Riccati equation (34) is

𝑃 = [[
[
−1.20 −0.79 0
0.60 0.15 0
−3.30 −2.10 1.00

]]
]

𝑇

𝑃[[
[
−1.20 −0.79 0
0.60 0.15 0
−3.30 −2.10 1.00

]]
]

− [[
[
−1.20 −0.79 0
0.60 0.15 0
−3.30 −2.10 1.00

]]
]

𝑇
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⋅ 𝑃 [[
[
1.51
2.10
0

]]
]

[[[
[
1 + [[

[
1.51
2.10
0

]]
]

𝑇

𝑃[[
[
1.51
2.10
0

]]
]
]]]
]

−1

⋅ [[
[
1.51
2.10
0

]]
]

𝑇

𝑃[[
[
−1.20 −0.79 0
0.60 0.15 0
−3.30 −2.10 1.00

]]
]

+ [[
[
54.45 34.65 0
34.65 22.05 0

0 0 0.10
]]
]

.
(55)

To solve this, we obtain

𝑃 = [[
[
62.8002 39.9785 −2.5095
39.9785 25.4540 −1.5962
−2.5095 −1.5962 0.8622

]]
]

𝐹 = [0.2406 0.2141 0.0140] ,
𝑀𝑐 = [[

[
−0.8368 −0.4668 0.0211
1.1052 0.5995 0.0294
−3.300 −2.100 1.000

]]
]

.
(56)

Now, let the disturbance signal be

𝑤 (𝑘) =
{{{{{{{{{

0, 𝑘 < 120
1, 120 ≤ 𝑘 < 160
0, 𝑘 > 160.

(57)

For the following step reference signal, we perform
MATLAB simulation results for themultirate controllers with
preview action (let the preview length be 𝑀𝑑 = 10, i.e.,𝑆𝑑 = 5) and the one without preview action.

𝑟 (𝑘) = {{{
0, 𝑘 < 50
3, 𝑘 ≥ 50. (58)

The output responses of the linear discrete-time system
in multirate output sampling are shown in Figure 1.The error
signals are shown in Figure 2.We see from the figures that the
preview action restrains the system disturbance effectively.
And the simulation result shows better tracking in the case
of disturbance preview action. Note that the error signal is
asymptotically zero. Furthermore, the vibrations of output
response curves are the multirate feature of this system.

7. Conclusion

This paper studies the disturbance preview optimal control
problem for linear discrete-time systems in multirate output
sampling. Instead of introducing a first-order difference oper-
ator we constructed the error system by the technique in [17],
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Figure 1:The output response of system (52) to step reference signal
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Figure 2: The tracking error of system (52) to step reference signal
(58).

which made the process of constructing the augmented error
system simpler.Then themultirate output control systemwas
converted into a single-rate one by using the lifting scheme
of this paper. We introduce the integral compensation in
the process of constructing augmented error system, which
can make the output track the reference signal and eliminate
static error. Furthermore, we study a method that the high-
order Riccati equation can be solved by solving a low-order
Riccati equation. Finally, we obtain the preview controller
for the original system. And the existence conditions of the
controller were discussed. The numerical simulation showed
the effectiveness of the proposed controller in this paper.
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