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Decadal prediction experiments are conducted by using the coupled global climate model FGOALS-s2, following the CMIP 5
protocol.The paper documents the initialization procedures for the decadal prediction experiments and summarizes the predictive
skills of the experiments, which are assessed through indicators adopted by the IPCC AR5.The observational anomalies of surface
and subsurface ocean temperature and salinity are assimilated through amodified incremental analysis update (IAU) scheme.Three
sets of 10-year-long hindcast and forecast runs were started every five years in the period of 1960–2005, with the initial conditions
taken from the assimilation runs. The decadal prediction experiment by FGOALS-s2 shows significant high predictive skills in the
Indian Ocean, tropical western Pacific, and Atlantic, similar to the results of the CMIP5 multimodel ensemble.The predictive skills
in the Indian Ocean and tropical western Pacific are primarily attributed to the model response to the external radiative forcing
associated with the change of atmospheric compositions. In contrast, the high skills in the Atlantic are attributed, at least partly, to
the improvements in the prediction of the Atlantic multidecadal variability coming from the initialization.

1. Instruction

In recent years, near-term climate predictions for the next
10–30 years is increasingly concerned by the community
of climate modeling and policy makers for its potential
values in dealing with the economic and social problems
associated with the climate change (e.g., [1]). The pioneering
decadal prediction studies based on climate models were
published during 2007–2009 (e.g., [2–5]). Then extensive
cooperative researches involving decadal predictions, the
ENSEMBLES projects [6], and a coordinated decadal predic-
tion experiment under the framework of the CMIP5 [7, 8]
were launched successively. Sixteen modeling centers had
submitted their decadal prediction experiment results to the
CMIP5, which were used in the fifth assessment report of the
Intergovernmental Panel onClimateChange (IPCCAR5 [9]).

As noted in Meehl et al. [7], decadal prediction is a com-
bination of an initial value problem and a forced boundary
condition problem, because decadal prediction encompasses

the climate system changes due to internally generated vari-
ability as well as externally forced variability. The externally
forced variability is driven by external forcing factors, such as
changes of atmospheric compositions associated with human
activity or volcanic eruption, solar variations, and others,
which can be considered as specified external forcing in
climate models, as done by historical simulations or RCP
projections [8].

Predictive skills of internal variability coming from ini-
tializations are primary added value of the decadal prediction
experiments relative to the historical simulations and RCP
projections. As an initial condition problem, the prediction
of internal variability depends on the accurate estimation
of initial climate states, which is also the most challenging
problem of the decadal prediction. Different institutions have
their own distinctive initialization schemes, which are simply
introduced in Kirtman et al. [9] and Meehl et al. [1].

For the CMIP5, model initializations performed by most
institutions just assimilated oceanic surface and subsurface
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temperature and salinity. However, there were also some
explorations that involve observational atmosphere and
sea ice data in the assimilation processes (Table 11.1 in
Kirtman et al. [9]).

In terms of the approaches of dealing with themodel drift
in the forecast, the initialization schemes can be classified into
two types, full-field initialization and anomaly initialization
[10]. For the full-field initialization, though model biases are
largely removed during initialization, the model drifts back
towards its preferred state inevitably during hindcast/forecast
due to inherent model biases. Therefore, forecast results
must be corrected through posterior bias adjustments [10–
14]. In the anomaly initialization, the model is constrained
by observational anomalies plus model mean state [15].
Therefore, the model is not far away from its preferred state
after the initialization and thus minimizes the drift during
hindcast/forecast. But, so far, it is not clear which approach
is better for the decadal prediction [10]. In the CMIP5, about
2/3 models use the full-field initialization, while the other 1/3
use the anomaly initialization [9].

The motivation of this study is to systematically assess
the predictive skills of the decadal predictions experiments
by using a coupled global climate model, FGOALS-s2, which
has been submitted to the CMIP5. To make horizontal
comparisons with other models’ results, we use the indicators
proposed by Doblas-Reyes et al. [16] to measure the predic-
tion quality, which have been adopted as key indicators by the
IPCC AR5 [9].

The rest of the paper is organized as follows. The model
FGOALS-s2, experiment designs, observation data, and anal-
ysis methods are introduced in Section 2. The skills of the
decadal prediction experiments are assessed in Section 3.
Finally, Section 4 summarizes the major content.

2. Model, Experiment Design, Observational
Data, and Analysis Method

2.1. Model. FGOALS-s2 is a coupled global climate model
developed in the State Key Laboratory of Numerical Model-
ing for Atmospheric Sciences andGeophysical Fluid Dynam-
ics (LASG) at the Institute of Atmospheric Physics (IAP),
Chinese Academy of Sciences (hereafter LASG/IAP/CAS).
It has four components, atmosphere, land, ocean, and sea
ice, which are coupled together by a coupler developed in
the National Center for Atmospheric Research (NCAR) [17].
The atmospheric component is Spectral Atmosphere Model
in IAP LASG version 2 (SAMIL2) [18], with the horizontal
resolution of about 2.81∘ (longitude) × 1.66∘ (latitude) and 26
levels in the vertical direction.The ocean component is LASG
IAP Climate System OceanModel version 2 (LICOM2), with
a horizontal resolution of about 1∘ × 1∘ in extratropical zone
and 0.5∘×0.5∘ in tropics and 30 levels in the vertical direction
[19, 20]. The land and ice components are Community Land
Model version 3 (CLM3) [21] and Community Sea Ice Model
version 5 (CSIM5) [17], respectively. Detailed description of
the FGOALS-s2 and its general performances can be found
in Bao et al. [18].

2.2. Experiment Designs

2.2.1. Decadal Prediction Experiments. The decadal predic-
tion experiments include the following two steps.
(a) Initialization. The model was initialized through assim-
ilating observational oceanic temperature and salinity over
upper 1000m for the period of 1955–2005 (hereafter ASSIM
run). The observational oceanic data was derived from
EN3 v2a, which is gridded objective analysis data, with
horizontal resolution of 1∘ × 1∘ and 42 levels in the vertical
direction [22]. Only the anomalies relative to the climatology
during 1961–1990 were assimilated (anomaly initialization
approach noted in the introduction). The assimilation was
confined in the zone of 70∘S–70∘N, with 60–70∘N and 60–
70∘S being set as transitional zone.

The observational information was introduced into the
model integration through a method similar to an incre-
mental analysis update (IAU) method. The IAU technology
was designed for data assimilation system for meteorology
[23] and then applied to the ocean assimilation [24] and
coupled model initialization [25]. Its major advantage over
the nudging approach is that it can keep analysis increment
constant in model’s prognostic equations and thus effectively
suppress short-wave noises in the assimilation processes [23].

Because the ocean objective analysis data, EN3 v2a, is
monthly mean data, the analysis interval in the assimilation
processes was specified as one month (𝜏 = 1mon). In
one assimilation cycle from 𝑡 to 𝑡 + 𝜏, the model was
integrated freely firstly, which produced the first guess for the
assimilation. The analysis increments (Δ𝑋󸀠) were calculated
as

Δ𝑋
󸀠

= 𝑋
󸀠

𝐹

− 𝑋
󸀠

𝑂

, (1)

in which 𝑋󸀠
𝐹

and 𝑋󸀠
𝑂

represent monthly mean anomalous
ocean states (temperature and salinity) derived from the free
integration and the observation.Then themodel was restated
from 𝑡 again and integrated to 𝑡 + 𝜏, with analysis increments
being introduced through the following way:

𝐷𝑋

𝐷𝑡

= MTs + 1
𝜏

Δ𝑋
󸀠

. (2)

The left-hand-side term is the time tendency term. The
first term in the right hand side represents the forcing and
dissipation terms calculated by the model. The last term is
the correction term, which keeps constant in the integration
interval. The modified IAU scheme has been used in the
decadal prediction experiments by using FGOALS-gl [26].
(b) Hindcast/Forecast. The 10-year-long hindcasts/forecasts
were started every five years over the period of 1960–2005.
Initial conditions were obtained from the ASSIM runs. In
the hindcast and forecast stages (before and after 2005), the
model was driven by the time-varying radiative forcing con-
sistent with the historical and representative concentration
pathways 4.5 (RCP4.5) simulations, respectively. The second
step was conducted in strict accordance with the standard
experiment design of the CMIP5 [8].
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To estimate the uncertainties of the prediction, we per-
formed 3-member ASSIM runs with different initial condi-
tions, which further offered initial conditions for three sets of
hindcasts/forecasts runs.

2.2.2. Historical and RCP4.5 Simulations. For the historical
simulation, the FGOALS-s2 was integrated from 1850 to
2005 under the various historical forcing agents, including
the concentrations of greenhouse gases and sulfate aerosols,
solar cycle variations, and major volcanic eruptions [27].
After 2005, the model was driven by projected radiative
forcing under the RCP4.5 scenario, which is referred to as the
RCP4.5 simulation. The historical and RCP4.5 simulations
are repeated three times with different initial conditions,
following the recommendation of the CMIP5 [8].

2.3. Observational Data. The following two datasets are used
as observational references to assess the predictive skills of the
decadal prediction experiments: (1) HadCRUT3 combined
global land and ocean gridded (5∘ × 5∘) surface temperature
datasets for the period of 1850 to present [28] and (2)
Global Precipitation Climatology Centre monthly precipita-
tion dataset (2.5∘ × 2.5∘) from 1901 to present (GPCC), which
is gridded from global station data [29].

2.4. Analysis Method. As noted in Section 2.2, the approach
of anomaly initialization was used in the study, which can
inhibit model drift during hindcast/forecast effectively [10].
Thus bias correction was not conducted as done for full-field
initializations [10]. However, to prevent negative effects of
any possible slight model drifts during hindcast/forecast to
the predictive skill evaluations, we calculated anomalies as
follows [16]:

𝑌
󸀠

𝑗𝑡

= 𝑌
𝑗𝑡
−

1

𝑁

⋅ (

𝑁

∑

𝑘=1

𝑌
𝑘𝑡
) , (3)

where 𝑌󸀠
𝑗𝑡

and 𝑌
𝑗𝑡
are anomalous and raw fields, respectively,

for the hindcast/forecast 𝑗 at lead time 𝑡.𝑁 denotes ensemble
size. The observational anomalies were also calculated by
using corresponding years. Then to filter out interannual
variability, the annual values were smoothed by a 4-year
running average. In the study, we analyzed the predictions
averaged over the hindcast/forecast years 2–5, 3–6, 4–7, 5–8,
and 6–9.

The main strategy of evaluating the skills of the decadal
prediction experiments is to compare it with corresponding
historical simulations. In terms of the experiment designs
(Section 2.2), their only difference is that the former is started
from initialized states every five years, while the latter is
successive integrations. Thus the predictions by the two
experiments are referred to as INIT and NoINIT predictions,
respectively. The comparisons between INIT and NoINIT
demonstrate the change of the decadal predictions due to the
initialization.

In this study, the skills are quantified by correlation, root
mean square error (RMSE), and root mean square skill score

(RMSSS), which generally followDoblas-Reyes et al. [16].The
RMSSS is defined as

RMSSS = 1 − RMSE (hindcast)
RMSE (climatology)

, (4)

in which RMSE (climatology) represents no skill baseline.
The climatology is equivalent to the persistent zero anomalies.
Thus high positive values of RMSSS represent high skills,
while negative values represent no skills. The statistical
significance of the correlation is tested by one-sided Student’s
𝑡-test.The significance of the ratio in RMSE between the INIT
and NoINIT predictions is tested by a two-sided 𝐹 test. The
significance of the RMSSS is assessed by using a one-sided 𝐹
test.

3. Results

We first assess the spatial distributions of the predictive skills
on near-surface air temperature and land precipitation.Then
we turn to the predictive skills of the global mean near-
surface air temperature and two dominant modes on the
interdecadal time scales, the Atlanticmultidecadal variability,
and the Pacific interdecadal variability.

3.1. Spatial Distributions of Predictive Skills. Figure 1 shows
the global distributions of the RMSSS to quantify the skills
of the ensemble mean of the INIT runs in predicting near-
surface air temperature. For the prediction averaged over
hindcast years 2–5, the forecast system has positive skills over
much of the Atlantic and Indian Ocean and some areas in
the Eurasia continent at 15% level of significance, while the
system shows the low skills over the most of the Pacific,
expect for the tropical western Pacific. These regions with
significant high skills are generally consistent with theCMIP5
multimodel ensemble (MME) mean (Figure 11.4a in Kirtman
et al. [9]). Themajor disadvantage of the FGOALS-s2 relative
to the MME mean is that the former skills in the midlatitude
North Atlantic are lower than the latter.

Many previous studies have noted that the Indian Ocean
and western Pacific are primarily dominated by warming
trend associated with anthropogenic forcing, which can be
reasonably reproduced by historical simulations [30, 31]. To
estimate the added skills coming from the initialization, the
ratios of the RMSEs between the ensemble mean of the INIT
runs and that of theNoINIT runs are calculated. It is clear that
the RMSE of the INIT is less than that of the NoINIT over the
majority of the globe. However, it is only over some areas of
the Atlantic and Indian Ocean that the skill improvements
pass 15% significance level.

For the prediction averaged over the hindcast years 6–
9, the spatial distribution of the RMSSS generally resembles
that for the hindcast years 2–5. Obvious increase of the INIT
skills relative to the NoINIT is just seen over the midlatitude
North Atlantic and southern Indian Ocean. The ratio of
the RMSEs is also less than 1 over majority of the globe.
However, there is nearly no area passing the significance test.
The results indicate that the prediction information due to
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Figure 1: Forecast qualities of near-surface air temperature. (a) RMSSS (multiplied by 100) of the ensemble mean of the INIT runs for
predictions averaged over the hindcast years 2–5. The white dots represent that the skill scores at these points are statistically significant at
the 15% level based on the one-sided 𝐹 test. (b) Ratio of RMSE between the ensemble mean of the INIT runs and that of the NoINIT runs for
predictions averaged over the hindcast years 2–5. ((c), (d)) The same as (a) and (b) but for the years 6–9.

the initialization becomes smaller with the increase of the
prediction time [1].

Compared with the near-surface air temperature, the
ensemble mean of the INIT runs shows very low skills in
the prediction of land precipitation for both the hindcast
years 2–5 and 6–9. The global distribution of the RMSSS
indicates that there are only sporadic regions with pos-
itive skills. These positive skills cannot pass 15% signifi-
cance test (Figures 2(a) and 2(b)). Meanwhile, the ratio of
RMSEs between the INIT and INI runs indicates that the
skill improvement due to the initialization is very limited
(Figures 2(c) and 2(d)). The results are consistent with the
CMIP5 MME (Figure 11.5 in Kirtman et al. [9]).

3.2. Global Mean Near-Surface Temperature. Predictive skills
of the area-weighted global mean near-surface air tem-
perature (GMST) are quantified by correlation and RMSE
(Figures 3(a) and 3(b)). The GMSTs simulated by all the
individual members and ensemble means of the INIT and
NoINIT runs for different hindcast range are highly corre-
lated with the corresponding observational references at 5%
significance level. In terms of the correlations, the skills of
the INIT runs are somewhat lower than those of the NoINIT
runs, especially in the early prediction time. In contrast,
in terms of the RMSEs, former skills are higher than the
latter. However, it is clear that the skill differences between
the INIT and NoINIT become smaller with the increase
in the prediction time, in terms of both the correlations

and the RMSEs. It indicates that the prediction information
coming from the initialization gradually decreases with the
increase of the prediction time, and the evolution of the
GMST is dominated by the external forcing associated with
atmospheric composition increasingly.

The temporal evolutions of the GMST for the hind-
cast/forecast years 6–9 and corresponding observational
reference are shown (Figure 3(c)). During the latter half of
the 20th century, the GMST is dominated by a significant
warming trend. However, during early 21st century, a hiatus
of the GMST rise is observed (e.g., [32–35]; Figure 3(c)). Both
the ensemblemean of INIT runs averaged over hindcast years
6–9 and that of NoINIT runs failed to simulate the hiatus of
the GMST rise; however, the former warming trend is much
smaller than the latter and more close to the observation,
especially after 2000 (Figure 3(c)). This feature can be seen
more clearly in the hindcast years 1–4 (Figure 3(d)).The result
is robust among different models (e.g., [3, 9, 36]).

It is interesting to further investigate what cause the
correlation skills of the INIT runs to be lower than those of
theNoINIT runs in the early prediction time. Comparedwith
the hindcast years 6–9, the GMSTs over the hindcast years
1–4 are closer to the corresponding observation references,
except for the prediction started from 1985 (Figure 3(d)).The
GMST over 1986–1989 (hindcast years 1–4) is much higher
than the observation. In the observation, 1986 and 1987 are
dominated by a strong El Nino event, while 1988 and 1989
are dominated by a strong La Nina event (Figures 4(a)–4(d)).
For the four-year average, the GMST is nearly in a neutral
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Figure 2: As in Figure 1, but for the land precipitation.
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Figure 3: Hindcast qualities of the global mean near-surface air temperature (GMST). (a) Correlations between the model runs and the
observational references along the forecast time for 4-year averages. The red (blue) lines denote INIT (NoINIT) runs. The dashed (solid)
lines denote ensemble members (means).The dots represent that corresponding correlation coefficients reach the 5% significance level based
on one-sided Student’s 𝑡-test. (b) RMSE of the model runs along the forecast time for 4-year averages. Dots are used when RMSEs of the
ensemble mean of the INIT runs are statistically significantly less than those of the ensemble mean of the NoINIT runs at 5% level, based
on the one-sided 𝐹 test. (c) Time series of the GMST indices predicted by the ensemble mean of the INIT (NoINIT) runs for predictions
averaged over the hindcast years 6–9 and corresponding observational reference (units: K). (d) As in (c) but for hindcast years 1–4.
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Figure 4: Left panel: (a)–(d) annul mean SST anomalies from 1986 to 1989 derived from the observation (units: K). (e) Average of (a)–(d).
Center (right) panels: as in the left panel but from the ensemble mean of the INIT (NoINIT) runs.

state (Figure 4(e)). The hindcast started from 1985 repro-
duces the El Nino during 1986-1987 (Figures 4(f) and 4(g)).
However, the simulated El Nino persists longer than that in
the observation and evolves to a neutral state rather than
a strong La Nina as in the observation (Figures 4(h) and
4(i)). Therefore, the predicted GMST averaged over the four

years is dominated by El Nino-like pattern (Figure 4(j)). For
the NoINIT runs, though the ENSO evolution is completely
different from that in the observation (Figures 4(k)–4(n)), the
simulatedGMST averaged over the four years is in the neutral
state (Figure 4(o)). The results indicate that the decadal pre-
diction is sometimes influenced by the interannual variability,
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Figure 5: As in Figures 3(a)–3(c), but for the Atlantic multidecadal variability index.
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Figure 6: (a) Climatological Atlantic Meridional Overturning Circulation (AMOC) simulated by the ensemble mean of the NoINIT runs
(units: Sv). (b) As in (a) but simulated by the ensemble mean of the ASSIM runs.

especially in the early prediction time. The negative impacts
may be partly overcome through increasing the number of
the hindcasts; that is, hindcasts are performed once per year
instead of once every five years.

3.3. Atlantic Multidecadal Variability. The spatial distri-
butions of the RMSSS for the near-surface temperature
(Figure 1(a)) indicate that the ensemble mean of the INIT
runs shows high skills in the Atlantic. In the subsection, we
assess the skills of the individual members of the INIT and
their ensemble mean in predicting the Atlantic multidecadal
variability (AMV).The AMV is depicted by an index defined
as area-averaged SST anomalies in the 0∘–60∘N, 80∘–0∘W
minus the area-averaged near global SST anomalies in the
60∘S–60∘N [37].

Thepredictive skills aremeasured by correlation along the
hindcast time for 4-year averages (Figure 5(a)). There is only
one INIT member that reproduces the AMV index highly

correlated with the observation reference at 5% significance
level over the hindcast years 5–8 and 6–9. The skills of the
ensemble mean are higher than any individual member over
the hindcast years 5–8 and 6–9. The AMV in the ensemble
mean is highly correlated with the observation reference at
most hindcast ranges. The highest correlation is reached in
the hindcast years 6–9. In contrast, the NoINIT runs do
not have any significant correlations with the observation
references.

The skills of the INIT runs are further quantified byRMSE
(Figure 5(b)). The skills of the ensemble mean of the INIT
runs are also higher than all the members. For the ensemble
mean, the smallest RMSE is reached in the forecast years
6–9. It is significantly smaller than the counterpart of the
ensemblemean of theNoINIT runs, indicating that the added
skill coming from the initialization is significantly in the
prediction of the AMV.The high skills of the ensemble mean
of the INIT runs are more clearly demonstrated by the high
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Figure 8: Lag correlations between the AMV index and anomalous
northward oceanic heat transport (units: PW) from 20∘S to 80∘N for
the ensemble mean of the INIT runs. The AMV index is averaged
over the hindcast years 6–9 (red line in Figure 5(c)). Lag 0 represents
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lags the heat transport anomalies by 2 and 5 years, respectively.That
is, the heat transport anomalies are averaged over the hindcast years
6–9 (lag 0), 4–7 (lag 2), and 1–4 (lag 5), respectively.

consistency of the predicted time series of the AMV index
for the hindcast years 6–9 and corresponding observation
reference (Figure 5(c)).

The enhanced predictive skills of the AMV because
of the initialization stand out in most decadal prediction
experiments as themajor added value relative to the historical
and RCP simulations (e.g., [1, 3, 38–40] and many others).
However, the performances of the FGOALS-s2 are somewhat
different from previous studies. Kim et al. [41] showed that
correlation skills of the AMV of seven models from the
CMIP5 MME generally decrease with the prediction time far
away from the initial time. In contrast, the predictive skills of

the FGOALS-s2 change little in the various hindcast ranges,
and skills in the late prediction time (hindcast years 5–8 and
6–9) are even higher than the early time (Figures 5(a) and
5(b)).

Previous studies proposed that the AMV is closely asso-
ciated with the low-frequency fluctuation of the Atlantic
Meridional Overturning Circulation (AMOC) [42, 43].
Hence we further investigate whether the predictive skills
of the AMV depend on the prediction of the AMOC vari-
ations. Figure 6 shows the climatological AMOC simulated
by the ensemble mean of the NoINIT runs. The strongest
overturning is about 19 Sv, which is located at about 25∘–
35∘N, between 800 and 1200m. The maximum value is very
close to the observed value (18.5 Sv) at 26.5∘N [44].Themajor
discrepancy of the simulated AMOC is that the northward
mass flux does not reach high latitudes and the strongest
downwelling is located at about 35∘N. It causes the northward
heat transport also not to be able to reach the high latitudes,
which has some impacts on the prediction of the AMV, as we
will see below.

The fluctuation of the AMOC influences the SST anoma-
lies over the North Atlantic through modulating the north-
ward oceanic heat transport [40, 42, 43]. Hence, we investi-
gate the skills of the INIT runs in predicting the northward
oceanic heat transport in theNorthAtlantic through compar-
ing with the results from the ASSIM runs, which assimilate
observational oceanic temperature and salinity and thus are
taken as observational references here. Since the northward
mass flux associated with the AMOC does not reach high
latitudes, the northward heat transport is averaged over the
0–40∘N. The ensemble mean of the INIT runs shows high
skills in all the hindcast ranges.The highest skill is reached in
the hindcast years 6–9 (Figures 7(a) and 7(b)). The temporal



Advances in Meteorology 9

0

OBS FGOALS-s2

−0.4

−0.2

−0.05

0.1
0.3
0.5

−0.4

−0.2

−0.05

0.1
0.3
0.5

(a) (c)

(b) (d)

−2

−1

0

1

2

3

−2

−1

0

1

2

3

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

Mega-ENSO
IPO

Mega-ENSO
IPO

0 018060E

30S

30N

60W120E 120W

0

0 018060E

30S

30N

60W120E 120W

Figure 9: Left panel: the spatial pattern of IPOmode in the observation (a) and corresponding time series (blue line in (b)).The IPOmode is
defined as the second EOF mode of 4-year running-averaged annul near global SST (50∘S–50∘N).The black line in (b) is Mega-ENSO index,
defined as the difference in the SST anomalies between the western K-shape zone and eastern triangle zone in (a). Right panel: the same as
the left panel, but for the FGOALS-s2.

1–4 2–5 3–6 4–7 5–8 6–9

−0.8

−0.4

0.0

0.4

0.8

(a) Cor

0.0

0.10

0.20

0.30

0.40

0.50

0.60

1–4 2–5 3–6 4–7 5–8 6–9

(b) RMSE

Figure 10: The same as Figures 3(a)-3(b), but for Mega-ENSO index. Mega-ENSO index is defined as the difference in area-averaged SST
anomalies between the western K-shape zone and the eastern triangle zone in Figures 9(a) and 9(b).

evolution of the anomalous heat transport for the hindcast
years 6–9 predicted by the ensemble mean of the INIT runs
is very consistent with the corresponding results from the
ensemble mean of the ASSIM runs (Figure 7(c)). In contrast,
the skills of the heat transport simulated by the NoINIT
runs are significantly lower than the counterparts of the INIT
runs in the latter three hindcast ranges. For the former three
hindcast ranges, the correlation skills of the ensemblemean of
theNoINIT runs are close to the counterparts of the ensemble
mean of the INIT runs. However, it is clear that the three
NoINIT members show high spread and only one member
shows similar skills with the INIT runs. It indicates that the
skills of the ensemble mean of the NoINIT runs may be
overestimated due to small sample sizes.

To test relationships between the AMV and preceding
anomalous northward heat transport associated with the
AMOC variations in the decadal predictions, we calculate
the lag correlations between the AMV indices averaged over
the hindcast years 6–9 with the heat transports averaged
over the hindcast years 1–4, 3–7, and 6–9, respectively

(Figure 8). It is clear that the AMV is highly correlated with
the preceding northward heat transport anomalies from the
South Atlantic to about 45∘N. The correlation coefficients
decrease drastically to the north of 45∘N, which is consistent
with the location of the edge of the AMOC. In contrast,
their simultaneous correlations are much lower in the North
Atlantic (Figure 8). The results indicate that the predicted
AMV is mainly induced by the northward heat transport
anomalies associated with the precedingAMOCfluctuations.
Correspondingly, the high predictive skills of the AMV in
the hindcast years 6–9 mainly come from the accurate pre-
dictions of the preceding AMOC fluctuations and associated
heat transport anomalies.

3.4. Interdecadal Variability in the Pacific. The interdecadal
variability of the Pacific is dominated by the Pacific decadal
oscillation (PDO) [45] or interdecadal Pacific oscillation
(IPO) [46, 47], both ofwhich are extracted throughEOFanal-
ysis. Because the INIT runs are not successive integrations,
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EOF analysis applied to the artificially linked predicted fields
may yield false modes.

Wang et al. [48] defined aMega-ENSO index to represent
interdecadal variability in the Pacific. The index can be
calculated easily and is highly correlated with the PDO or
IPO indices. Therefore, we use the index as a substitute to
assess the decadal predictive skills in the Pacific. Following
Wang et al. [48], 4-year, instead of 13-year, weighted running
averages are applied to the observed SST anomalies from
1960 to 2005, due to the short data length (in Wang et al.
[48], 3-year running average was conducted). But the results
are not sensitive to the choice of the window length. Then
EOF analysis is conducted by using the 4-year running-
averaged SST in the region 50∘S–50∘N. The spatial pattern
of the second EOF mode shows typical characteristics of the
IPO (Figure 9(a)).The principal component time series of the
second EOF mode is defined as the IPO index. Based on the
spatial pattern,Mega-ENSO index is defined as the difference
in the area-averaged SST anomalies between the western K-
shape zone and the eastern triangle zone in Figure 9(a). It is
clear that the Mega-ENSO index is highly consistent with the
IPO index, with correlation reaching 0.97 (Figure 9(b)). The
same analysis processes are applied to the first NoINIT run.
The spatial pattern of the IPO simulated by the FGOALS-
s2 resembles that in the observation (Figure 9(c)). Thus the
FGOALS-s2 shares the same definition of the Mega-ENSO
index with the observation. The Mega-ENSO index in the
NoINIT run is also highly correlated with the corresponding
IPO index (Figure 9(d)).

The skills of INIT (NoINIT) runs in predicting the
Mega-ENSO index are measured by correlation and RMSE
(Figure 10). Unfortunately, in terms of both measures, none
of the simulations can reproduce the temporal evolution of
the Mega-ENSO significantly and the skills of the INIT runs
are even lower than the NoINIT runs. The low skills are
consistent with Figure 1(a), in which the ensemble mean of
the INIT runs shows negative skills in the most areas of the
Pacific. The results indicate that the initialization does not
enhance the predictive skills of the interdecadal variability in
the Pacific significantly, which is also indicated by the CMIP5
MME results [9].

4. Summary

In the paper, the procedures of the decadal prediction
experiments by the coupled global climate model FGOALS-
s2, which participated in theCMIP5, are introduced.Then the
predictive skills of the experiments are assessed based on the
indicators adopted by the IPCCAR5 [9, 16].Themain content
is summarized as follows.

(1)The decadal prediction experiments involve two steps,
initialization and hindcast/forecast. The initialization was
performed by assimilating observational ocean temperature
and salinity over upper 1000m through a modified incre-
mental analysis update (IAU) scheme. Based on the scheme,
the analysis increment keeps constant in one assimilation
cycle (1 month) and thus effectively suppresses the increase
of the short-wave noises in the integration. Meanwhile, in
the initialization, only observational anomalous fields are

assimilated to avoid the model drift in the hindcast and
forecast runs. Started from the initial conditions derived
from the initialization run, three sets of the 10-year-long
hindcast/forecast runs are conducted with 5-year intervals
between start dates from 1960 to 2005, following the CMIP5
protocol.

(2) The overall predictive skills of the decadal prediction
in near-surface air temperature (TAS) and land precipitation
are measured by the global distribution of the RMSSS. For
the TAS, the model shows significant high skills in the Indian
Ocean, tropical western Pacific, and Atlantic. However, com-
pared with the historical simulations, the decadal prediction
experiments do not show significant skill improvements,
except for the Atlantic. The results indicate that the skills
of the decadal prediction experiments in the Indian Ocean
and tropical western Pacific are primarily attributed to the
specified external radiative forcing, while the skills in the
Atlantic are attributed to the initialization. For the land
precipitation, the decadal prediction experiments do not
show significant skill improvements relative to the historical
simulations.

(3) On the interdecadal time scales, the dominant vari-
ability modes are IPO/PDO/Mega-ENSO in the Pacific and
AMV in the Atlantic, which are the major forecast objects
of the decadal prediction experiments.The prediction system
based on the FGOALS-s2 shows high predictive skills in the
AMV but low skills in the IPO/PDO/Mega-ENSO, which is
similar to the CMIP5 MME. An interesting point is that the
predictive skills of AMV of the FGOALS-s2 change little with
the increase of the prediction time and even reach highest
level in the hindcast years 6–9, rather than decrease as many
CMIP5 models [41]. Further investigations indicate that the
predictive skills of the AMV in the hindcast years 6–9 mainly
come from the accurate predictions of the northward heat
transport anomalies associated with the preceding AMOC
fluctuations.

(4) Historical and RCP simulations cannot capture the
global warming hiatus during the early 2000s.With the intro-
duction of the initialization, the rise of the globally averaged
surface air temperature predicted by the decadal prediction
experiments of the FGOALS-s2 significantly weakens, which
is consistent with CMIP5 MME [9].
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