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A new spectral conjugate gradient method (SDYCG) is presented for solving unconstrained optimization problems in this paper.
Our method provides a new expression of spectral parameter.This formula ensures that the sufficient descent condition holds.The
search direction in the SDYCG can be viewed as a combination of the spectral gradient and the Dai-Yuan conjugate gradient. The
global convergence of the SDYCG is also obtained. Numerical results show that the SDYCG may be capable of solving large-scale
nonlinear unconstrained optimization problems.

1. Introduction

As well known, a great deal of issues, which are studied
in scientific research fields, can be translated to uncon-
strained optimization problems. The spectral conjugate gra-
dient (SCG)methoddoes nice jobs among various algorithms
for solving nonlinear optimization problems. The spectral
conjugate gradient combines the spectral gradient and the
conjugate gradient. To the SCGmethod, the choice of spectral
parameter is crucially important. In this paper, we propose a
new spectral conjugate gradient method based on the Dai-
Yuan conjugate gradient method by providing a new spectral
parameter. Our purpose is to obtain an efficient algorithm for
the unconstrained optimization.

An unconstrained optimization problem is customarily
expressed as

min
𝑥∈R𝑛

𝑓 (𝑥) . (1)

The nonlinear function 𝑓 : R𝑛 → R considered in
this paper is continuously differentiable; the gradient of 𝑓 is
denoted by 𝑔(𝑥) fl ∇𝑓(𝑥). We usually impose the following
properties on function 𝑓.

(P1) The function 𝑓 is bounded below and is continuously
differentiable in a neighbourhood N of the level set

L fl {𝑥 ∈ R𝑛 | 𝑓(𝑥) ≤ 𝑓(𝑥
0
)}, where 𝑥

0
is the start-

ing point.

(P2) The gradient 𝑔(𝑥) of 𝑓 is Lipschitz continuous in N;
that is, there exists a constant 𝐿 > 0, such that ‖𝑔(𝑥)−
𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ N.

Generally, a sequence {𝑥
𝑘
} is obtained in an algorithm for

solving (1) and has the following format:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (2)

where 𝑑
𝑘
is a search direction and 𝛼

𝑘
is the step size. At each

iterative point 𝑥
𝑘
, we usually determine 𝑑

𝑘
firstly and then

compute 𝛼
𝑘
by some principles.

There are different ways to determine the direction 𝑑
𝑘
.

In the classical steepest-descent method, 𝑑
𝑘

= −𝑔
𝑘
. In the

conjugate gradient (CG) method, 𝑑
𝑘
is of the form

𝑑
0
= −𝑔
0
,

𝑑
𝑘+1

= −𝑔
𝑘+1

+ 𝛽
𝑘
𝑑
𝑘
, if 𝑘 ≥ 0,

(3)

where 𝛽
𝑘
is a scalar parameter characterizing the conjugate

gradient method. The best-known expressions of 𝛽
𝑘
are
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Hestenes-Stiefel (HS) [1], Fletcher-Reeves (FR) [2], Polak-
Ribiere-Polyak (PRP) [3, 4], andDai-Yuan (DY) [5] formulas.
They are defined by

𝛽HS
𝑘

=
𝑔𝑇
𝑘+1

𝑦
𝑘

𝑑𝑇
𝑘
𝑦
𝑘

,

𝛽FR
𝑘

=

𝑔𝑘+1

2

𝑔𝑘

2

,

𝛽PR
𝑘

=
𝑔𝑇
𝑘+1

𝑦
𝑘

𝑔𝑘

2
,

𝛽DY
𝑘

=

𝑔𝑘+1

2

𝑑𝑇
𝑘
𝑦
𝑘

,

(4)

respectively, where ‖ ⋅ ‖ denotes the Euclidean norm and 𝑦
𝑘
fl

𝑔
𝑘+1

− 𝑔
𝑘
.

There also are some approaches to determine the step
size 𝛼

𝑘
in (2). Unfortunately, the steepest-descent method

performs poorly. Barzilai andBorwein improved the steepest-
descent method greatly by providing a spectral choice of step
size in [6]. Their algorithm has the form

𝑥
𝑘+1

= 𝑥
𝑘
− 𝛼
𝑘
𝑔
𝑘
, (5)

where 𝛼
𝑘
= 𝑠𝑇
𝑘
𝑠
𝑘
/𝑠𝑇
𝑘
𝑦
𝑘
or 𝛼
𝑘
= 𝑠𝑇
𝑘
𝑦
𝑘
/𝑦𝑇
𝑘
𝑦
𝑘
with 𝑠

𝑘
= 𝑥
𝑘+1

−
𝑥
𝑘
. Many algorithms are proved convergent under the Wolfe

condition; that is, the step size 𝛼
𝑘
satisfies

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≥ −𝛿𝛼

𝑘
𝑔𝑇
𝑘
𝑑
𝑘
, (6)

𝑔 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘
≥ 𝜎𝑔𝑇
𝑘
𝑑
𝑘

(7)

with 0 < 𝛿 < 𝜎 < 1.
In recent years, some scholars developed a newmethod—

spectral conjugate gradient (SCG) method—for solving
(1). For example, Raydan introduced the spectral gradient
method for large-scale unconstrained optimization in [7].
He combined a nonmonotone line search strategy that
guarantees global convergence with the Barzilai and Borwein
method. Utilizing spectral gradient and conjugate gradient
ideas, Birgin andMartinez proposed a spectral conjugate gra-
dient method in [8]. In their algorithm, the search direction
has the form

𝑑
0
= −𝑔
0
,

𝑑
𝑘+1

= −𝜃
𝑘+1

𝑔
𝑘+1

+ 𝛽
𝑘
𝑑
𝑘
, if 𝑘 ≥ 0.

(8)

In [8], the best combination of this formula, the scaling, and
the initial choice of step-length is also studied. Following [8],
some papers discussed the various choices of the spectral
parameter 𝜃

𝑘
based on different 𝛽

𝑘
. For example, Du and

Chen [9] gave a modified spectral FR conjugate gradient
method with Wolfe-type line search based on FR formula.
Their spectral parameters 𝜃

𝑘
and 𝛽

𝑘
are expressed as

𝜃
𝑘+1

=
𝑑𝑇
𝑘
𝑦
𝑘

𝑔𝑘

2
,

𝛽
𝑘
= 𝛽FR
𝑘

.

(9)

Yu et al. [10] presented a modification of spectral Perry’s
conjugate gradient formula, which possessed the sufficient
descent property independent of line search condition.Their
search direction 𝑑

𝑘+1
is defined by (8) and 𝛽

𝑘
has the form

𝛽DSP
𝑘

= 𝛽SP
𝑘

−
𝐶
𝑦𝑘 − 𝛿

𝑘+1
𝑠
𝑘


2

𝛿
𝑘+1

(𝑦𝑇
𝑘
𝑑
𝑘
)
2

𝑔𝑇
𝑘+1

𝑑
𝑘
, (10)

where

𝐶 ≥
1

4
,

𝛽SP
𝑘

=
𝑔𝑇
𝑘+1

(𝑦
𝑘
− 𝛿
𝑘+1

𝑠
𝑘
)

𝛿
𝑘+1

𝑦𝑇
𝑘
𝑑
𝑘

,

𝛿
𝑘+1

=
1

𝜃
𝑘+1

=
𝑠𝑇
𝑘
𝑦
𝑘

𝑠𝑇
𝑘
𝑠
𝑘

,

𝑠
𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
.

(11)

Liu and Li [11] proposed a spectral DY-type projection
method for nonlinear monotone systems of equations. The
direction 𝑑

𝑘
is also determined by (8) and the parameters are

defined by

𝜃
𝑘+1

=
𝑠𝑇
𝑘
𝑠
𝑘

𝑠𝑇
𝑘
𝑦
𝑘

,

𝛽
𝑘
= 𝛽DY
𝑘

.

(12)

We will propose a new SCG method based on the Dai-
Yuan-type conjugate gradient method in this paper. A new
selection of 𝜃

𝑘+1
is introduced in our algorithm such that

the sufficient descent condition holds. In addition, the global
convergence of the new method is obtained.

The present paper is organized as follows. In Section 2, we
outline our new method for unconstrained nonlinear opti-
mization, and we show that the sufficient descent condition
holds under mild assumptions. The global convergence is
proved in Section 3, while the numerical results compared
with CG-DESCENT are given in Section 4. At last section,
we draw some conclusions about our new spectral conjugate
gradient method.

2. Spectral Dai-Yuan-Type Conjugate
Gradient Method

In this paper, we consider the spectral conjugate gradient
method in which the search direction is of the form

𝑑
0
= −𝑔
0
,

𝑑
𝑘+1

= −𝜃
𝑘+1

𝑔
𝑘+1

+ 𝛽DY
𝑘

𝑑
𝑘
, if 𝑘 ≥ 0,

(13)

where

𝜃
𝑘+1

= max{
2
𝑔
𝑇

𝑘
𝑑
𝑘


𝑑
𝑇

𝑘
𝑦
𝑘


,
2𝑔𝑇
𝑘+1

𝑑
𝑘
− 𝑔𝑇
𝑘
𝑑
𝑘

𝑑𝑇
𝑘
𝑦
𝑘

} (14)
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and the scalar parameter 𝛽DY
𝑘

is defined by (4). This is a
new spectral conjugate gradient method for solving problem
(1) because the expression (14) of spectral parameter 𝜃

𝑘+1
is

completely different from those in other papers. The search
direction (13) is a combination of the spectral gradient and
the Dai-Yuan conjugate gradient. We hope that (14) may be
an efficient choice.

In order to obtain the global convergence of our method,
we assume that the step size satisfies the strong Wolfe
condition; that is, the step size 𝛼

𝑘
satisfies (6) and


𝑔 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘


≤ −𝜎𝑔𝑇

𝑘
𝑑
𝑘

(15)

with 0 < 𝛿 < 𝜎 < 1. It is easy to see that (7) holds if (15) holds.
The following is a detailed description of the spectral Dai-

Yuan-type conjugate gradient (SDYCG) algorithm.

SDYCG Algorithm

Step 1 (initialization). Choose 𝑥
0
∈ R𝑛, set 𝑘 = 0, and take

𝜖 > 0.

Step 2 (check the convergence condition). Compute 𝑔
𝑘
; if

‖𝑔
𝑘
‖ ≤ 𝜖, then stop.

Step 3 (form the search direction). If 𝑘 = 0, then 𝑑
0

=

−𝑔
0
. Else, compute 𝜃

𝑘+1
and 𝛽DY

𝑘
by formulas (14) and (4),

respectively; then compute 𝑑
𝑘
by (13) and (14).

Step 4 (line search). Find 𝛼
𝑘
which satisfies the strong Wolfe

conditions (6) and (15).

Step 5 (compute the new point). Set 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
and

𝑘 = 𝑘 + 1 and go to Step 2.

The framework of the SDYCG algorithm is similar to
other spectral conjugate gradient algorithms. However we
choose a different spectral parameter 𝜃

𝑘+1
(see (14)) which is

the main difference between SDYCG and the others.
The global convergence of SDYCGalgorithmwill be given

in the next section. Before that, we will show that the search
direction (13) can ensure the sufficient descent condition.

Lemma 1. Suppose that the sequence {𝑑
𝑘
} is generated by the

SDYCG algorithm; then

𝑔𝑇
𝑘
𝑑
𝑘
≤ −

𝑔𝑘

2 (16)

for all 𝑘 ≥ 0.

Proof. Since 𝑑
𝑘
is calculated by formula (13), we can get, if

𝑘 = 0, that 𝑔𝑇
0
𝑑
0
= −‖𝑔

0
‖2 whereas when 𝑘 ≥ 0, from (14), we

find

𝜃
𝑘+1

≥
2𝑔𝑇
𝑘+1

𝑑
𝑘
− 𝑔𝑇
𝑘
𝑑
𝑘

𝑑𝑇
𝑘
𝑦
𝑘

=
𝑔𝑇
𝑘+1

𝑑
𝑘

𝑑𝑇
𝑘
𝑦
𝑘

+ 1

=

𝑔𝑘+1

2

𝑑𝑇
𝑘
𝑦
𝑘

⋅
𝑔𝑇
𝑘+1

𝑑
𝑘

𝑔𝑘+1

2
+ 1 = 𝛽DY

𝑘

𝑔𝑇
𝑘+1

𝑑
𝑘

𝑔𝑘+1

2
+ 1.

(17)

Furthermore,

−𝜃
𝑘+1

𝑔𝑘+1

2

+ 𝛽DY
𝑘

𝑔𝑇
𝑘+1

𝑑
𝑘
≤ −

𝑔𝑘+1

2

. (18)

From the second formula of (13), we obtain

𝑔𝑇
𝑘+1

𝑑
𝑘+1

≤ −
𝑔𝑘+1


2

. (19)

The proof is completed.

This lemma gives the fact that the direction 𝑑
𝑘
is a descent

direction. Besides, 𝑑
𝑘
possesses the following property.

Lemma 2. Suppose that the SDYCG algorithm is implemented
with the step size 𝛼

𝑘
that satisfies the strong Wolfe conditions

(6) and (15). If 𝑔
𝑘

̸= 0 for all 𝑘 ≥ 0, then

(𝛽DY
𝑘

)
2

(𝑔𝑇
𝑘+1

𝑑
𝑘+1

)
2
≤

1

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
. (20)

Proof. By (14) and 0 < 𝜎 < 1, we have

𝜃
𝑘+1

≥ (𝜎 + 1)

𝑔
𝑇

𝑘
𝑑
𝑘


𝑑
𝑇

𝑘
𝑦
𝑘


= (𝜎 + 1)

𝑔𝑘+1

2

𝑑
𝑇

𝑘
𝑦
𝑘


⋅

𝑔
𝑇

𝑘
𝑑
𝑘


𝑔𝑘+1


2

= (𝜎 + 1)

𝛽
DY
𝑘

𝑔𝑇
𝑘
𝑑
𝑘


𝑔𝑘+1


2

.

(21)

With (15) and (21), we get
𝛽

DY
𝑘

𝑔𝑇
𝑘
𝑑
𝑘

 ≤ 𝜃
𝑘

𝑔𝑘+1

2

− 𝜎
𝛽

DY
𝑘

𝑔𝑇
𝑘
𝑑
𝑘



≤ 𝜃
𝑘

𝑔𝑘+1

2

−
𝛽

DY
𝑘

𝑔𝑇
𝑘+1

𝑑
𝑘



≤
−𝜃𝑘

𝑔𝑘+1

2

+ 𝛽DY
𝑘

𝑔𝑇
𝑘+1

𝑑
𝑘



=
𝑔
𝑇

𝑘+1
𝑑
𝑘+1

 .

(22)

Therefore, inequality (20) follows. This completes the proof.

Inequality (20) gives the close relationship of the inner
product of gradient and direction between the adjacent
two iterations. It will play an important role in our global
convergence analysis.

3. Convergence Analysis

Dai and Yuan stated in [5] that the following result had been
essentially proved by Zoutendijk and Wolfe.

Lemma 3. Suppose that the function 𝑓(𝑥) has the properties
(P1) and (P2). Assume that 𝑑

𝑘
is a descent direction and 𝛼

𝑘
is

obtained by the Wolfe conditions (6) and (7). Then

∑
𝑘≥0

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

𝑑𝑘

2

< +∞. (23)

One customarily calls (23) the Zoutendijk condition.
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Theorem 4. Suppose that the function 𝑓(𝑥) has the properties
(P1) and (P2). Sequences {𝑥

𝑘
}, {𝑔
𝑘
}, and {𝑑

𝑘
} are generated by

SDYCG algorithm. Then either 𝑔
𝑘
= 0 for some 𝑘 or

lim inf
𝑘→∞

𝑔𝑘
 = 0. (24)

Proof. Suppose that 𝑔
𝑘

̸= 0 for all 𝑘 and (24) is not true.Then
there exists a constant 𝑐 > 0, such that

𝑔𝑘
 ≥ 𝑐 (25)

for all 𝑘 of the iterations.
The second equality of (13) implies

𝑑
𝑘+1

+ 𝜃
𝑘+1

𝑔
𝑘+1

= 𝛽DY
𝑘

𝑑
𝑘
; (26)

we get

𝑑𝑘+1

2

= (𝛽DY
𝑘

)
2 𝑑𝑘


2

− 2𝜃
𝑘+1

𝑔𝑇
𝑘+1

𝑑
𝑘+1

− 𝜃2
𝑘+1

𝑔𝑘+1

2

.

(27)

Dividing both sides by 𝑔𝑇
𝑘+1

𝑑
𝑘+1

, we have

𝑑𝑘+1

2

(𝑔𝑇
𝑘+1

𝑑
𝑘+1

)
2
=

(𝛽DY
𝑘

)
2

(𝑔𝑇
𝑘+1

𝑑
𝑘+1

)
2

𝑑𝑘

2

−
2𝜃
𝑘+1

𝑔𝑇
𝑘+1

𝑑
𝑘+1

−
𝜃2
𝑘+1

𝑔𝑘+1

2

(𝑔𝑇
𝑘+1

𝑑
𝑘+1

)
2

=
(𝛽DY
𝑘

)
2

(𝑔𝑇
𝑘+1

𝑑
𝑘+1

)
2

𝑑𝑘

2

− (
1

𝑔𝑘+1

+

𝜃
𝑘+1

𝑔𝑘+1


𝑔𝑇
𝑘+1

𝑑
𝑘+1

)

2

+
1

𝑔𝑘+1

2
.

(28)

Combining (20) in Lemma 2, we see the inequality

𝑑𝑘+1

2

(𝑔𝑇
𝑘+1

𝑑
𝑘+1

)
2
≤

𝑑𝑘

2

(𝑔𝑇
𝑘
𝑑
𝑘
)
2
+

1
𝑔𝑘+1


2
. (29)

Summing both sides, we obtain

𝑘

∑
𝑖=0

𝑑𝑖+1

2

(𝑔𝑇
𝑖+1

𝑑
𝑖+1

)
2
≤
𝑘

∑
𝑖=0

𝑑𝑖

2

(𝑔𝑇
𝑖
𝑑
𝑖
)
2
+
𝑘

∑
𝑖=0

1
𝑔𝑖+1


2
. (30)

So, from (25) and (30), we get

𝑑𝑘+1

2

(𝑔𝑇
𝑘+1

𝑑
𝑘+1

)
2
≤
𝑘+1

∑
𝑖=0

1
𝑔𝑖


2
≤

𝑘 + 2

𝑐
. (31)

This relation is equivalent to

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

𝑑𝑘

2

≥
𝑐

𝑘 + 2
. (32)

Summing over 𝑘, we obtain

∑
𝑘≥0

(𝑔𝑇
𝑘
𝑑
𝑘
)
2

𝑑𝑘

2

= +∞. (33)

From the SDYCG algorithm, the step size satisfies the strong
Wolfe condition, so the Wolfe condition (7) holds. And
the directions obtained by the algorithm are descent from
Lemma 1. But the last equality contradicts the Zoutendijk
condition (23). Hence, our original assertion (25) must be
false, giving that either 𝑔

𝑘
= 0 for some 𝑘 or (24) holds.

4. Numerical Results

In order to test the numerical performance of the SDYCG
algorithm, we choose some unconstrained problems with the
initial points from CUTEr library [12, 13]. They are listed in
Table 1.

The experiments are run on a personal computer with a
64-bit processor, 2.5 GHz of CPU, and 4GB of RAMmemory.
All the codes are written in MATLAB language and are
compiled with this software.

We would like to compare the SDYCG with the CG-
DESCENT. The CG-DESCENT is a conjugate gradient algo-
rithmwith guaranteed descent proposed byHager and Zhang
in [14]. It has been proven an excellent algorithm in recent
years.

To make the comparison as fair as possible, we use the
criterion ‖𝑔‖ ≤ 10−5 to terminate the executions and impose
restriction on the number of iterations less than 500 in
both algorithms. All the step sizes satisfy the strong Wolfe
conditions (6) and (15).

We use the performance profiles proposed by Dolan and
Moré [15] to show the efficiency of comparisons. Perfor-
mance profiles can be used as a tool for benchmarking and
comparing optimization software. The performance profile
for a solver is the (cumulative) distribution function for
a performance metric. For example, if computing time is
chosen as a metric, then we compute the ratio of the
computing time of the solver versus the best time of all of the
solvers. That is, for each method, we plot the fraction 𝑃(𝑦-
axis) of problems for which themethod is within a factor 𝜏(𝑥-
axis) of the best time.The curve of a solver being above others
means that it has the highest probability of being the optimal
solver. We use a log

2
scale for 𝜏 to capture the performance of

all the solvers.
In order to observe the numerical results of the SDYCG

and theCG-DESCENT,we choose three different dimensions
of each test function. The dimensions are 𝑛 = 102, 𝑛 = 103,
and 𝑛 = 104, respectively. According to the numerical results
obtained in every dimension, we plot two figures based on
CPU time and iterations, respectively.



Mathematical Problems in Engineering 5

Table 1: Test problems.

Number Function name
1 ENGVAL1
2 FLETCBV2
3 TOINTGSS
4 COSINE
5 ARWHEAD
6 EDENSCH
7 EG2
8 GENROSE
9 LIARWHD
10 Generalized White & Holst
11 Extended Wood
12 Extended quadratic penalty QP1
13 BDEXP
14 HIMMELBG
15 Hager
16 Extended TET
17 Diagonal 5
18 Extended Himmelblau
19 Diagonal 6
20 Extended DENSCHNF
21 LIARWHD
22 Extended BD1
23 Extended Hiebert
24 Extended Tridiagonal 2
25 QUARTC
26 Extended DENSCHNB
27 Extended Rosenbrock
28 Raydan 2
29 Diagonal 2
30 Diagonal 4
31 Extended Maratos
32 Quadratic QF1
33 Extended quadratic exponential EP1
34 DQDRTIC
35 NONSCOMP
36 Extended Freudenstein & Roth
37 Extended White & Holst
38 Raydan 1
39 Extended Tridiagonal 1
40 Extended Cliff
41 Extended Trigonometric
42 Extended Beale
43 Generalized Tridiagonal 1
44 Generalized PSC1
45 Extended PSC1
46 Extended Powell
47 BDQRTIC
48 FLETCBV3
49 FLETCHCR
50 FREUROTH
51 GENHUMPS

Table 1: Continued.

Number Function name
52 NONDIA
53 NONDQUAR
54 SROSENBR
55 TQUARTIC
56 Extended Penalty
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Figure 1: Performance profiles in a log
2
scale (𝑛 = 102).

We can find from Figure 1 that the SDYCG is similar
to the CG-DESCENT when 𝑛 = 102 because their curves
crosses each other.The predominance of the SDYCG appears
in Figure 2 when 𝑛 = 103. If the test dimension is chosen as
𝑛 = 104, the SDYCG is better than the CG-DESCENT from
the fact that its curve is almost completely above that of the
CG-DESCENT in Figure 3.
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Figure 2: Performance profiles in a log
2
scale (𝑛 = 103).
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Figure 3: Performance profiles in a log
2
scale (𝑛 = 104).

Furthermore, we are interested in the robustness of our
SDYCG algorithm. Ten problems are selected from CUTEr
to be tested. The numerical results listed in Table 2 are
obtained by changing the initial iteration point every time.
“𝑥
0
” represents the standard initial iteration point of the

problem; “iter.” and “time(s)” indicate the iterative number
and time (in seconds).

The conclusion that can be drawn is that the SDYCG is a
robust algorithm and it may be capable of solving large-scale
nonlinear unconstrained optimization problem.

5. Conclusions

We propose a new spectral conjugate gradient method for
nonlinear unconstrained optimization. This method, which
we call the SDYCG, is built based on the Dai-Yuan con-
jugate gradient method. A new spectral choice is provided
in the search direction. Numerical results show that the
SDYCG is comparable with the CG-DESCENT. The SDYCG
algorithm may be capable of solving large-scale nonlinear
unconstrained optimization problems.
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Table 2: Test of the robustness of SDYCG.

Number Function name 𝑥
0

10 ∗ 𝑥
0

100 ∗ 𝑥
0

Iter. Time(s) Iter. Time(s) Iter. Time(s)
1 DQDRTIC 245 0.3436 290 0.3951 338 0.4567
2 QUARTC 1 0.0012 28 0.1273 27 0.1482
3 Diagonal 6 5 0.0176 8 0.0267 4 0.0153
4 Extended DENSCHNB 13 0.0110 18 0.0159 16 0.0177
5 Extended DENSCHNF 22 0.0636 17 0.0519 24 0.0820
6 LIARWHD 12 0.0186 11 0.0193 17 0.0320
7 EDENSCH 30 0.1897 30 0.18753 30 0.1860
8 EG2 9 0.0404 9 0.0392 9 0.0404
9 ENGVAL1 28 0.0893 29 0.1064 31 0.1294
10 FLETCBV2 53 0.1080 53 0.1377 53 0.1355
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