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LetC = {C,} ey € [1500)7, of-index set. A quasi-triangular space (X, Pe.y)isaset X with family P, = {p, : X* — [0,00), a €
'} satistying Ve y Y, wex 1Pt w) < Colp,(u,v) + p,(v,w)]}. For any P, a left (right) family 7., generated by %, is
defined to be 7, = {J, : X> — [0,00), a € &/}, where Yoy V., wex Un(thw) < C,ulJ,(u,v) + J (v, w)]} and furthermore the
property V., {lim,, _, o p. (W, u,,) = 0} (Vyeo, {lim,, , o p,(u,,,w,) = 0}) holds whenever two sequences (u,, : m € N) and
(w,, : m € N)in X satisfy V., {lim,, _, sup,.,,Jo (U, 14,) = 0and lim,, _, ] (w,,,u,,) = 0} (Ve {lim,, , sup,.,.J. (4, 1,,) =0
and lim,, _, J, (4, w,,) = 0}). In (X, P ), using the left (right) families .7, generated by P, (P, is a special case of 7.,
we construct three types of Pompeiu-Hausdorffleft (right) quasi-distances on 2%; for each type we construct of left (right) set-valued
quasi-contraction T : X — 2%, and we prove the convergence, existence, and periodic point theorem for such quasi-contractions.
We also construct two types of left (right) single-valued quasi-contractions T : X — X and we prove the convergence, existence,
approximation, uniqueness, periodic point, and fixed point theorem for such quasi-contractions. (X, %) generalize ultra quasi-
triangular and partiall quasi-triangular spaces (in particular, generalize metric, ultra metric, quasi-metric, ultra quasi-metric, b-
metric, partial metric, partial b-metric, pseudometric, quasi-pseudometric, ultra quasi-pseudometric, partial quasi-pseudometric,
topological, uniform, quasi-uniform, gauge, ultra gauge, partial gauge, quasi-gauge, ultra quasi-gauge, and partial quasi-gauge
spaces).

1. Introduction Recall that a single-valued dynamic system is defined as a
pair (X, T), where X is a certain space and T is a single-valued
map T : X — X;thatis, V x {T(x) € X}. By Fix(T) and
Per(T) we denote the sets of all fixed points and periodic points
of T, respectively; that is, Fix(T) = {w € X : w = T(w)} and
Per(T) = {w € X : w = T™(w) for some k € N}. For each
w® € X, a sequence (w" = T (w®) : m € {0} UN) is called

The set-valued dynamic system is defined as a pair (X, T),
where X is a certain space and T is a set-valued map T : X —
2%; here 2 denotes the family of all nonempty subsets of the
space X. Form € {0} U N, we define TV = ToT oo T (m-
times) and T'°) = I, (an identity map on X). By Fix(T) and

Per(T) we denote the sets of all fixed points and periodic points
of T, respectively; that is, Fix(T) = {w € X : w € T(w)} and
Per(T) = {w € X : w € T™(w) for some k € N}. A dynamic
process or a trajectory starting at w’ € X or a motion of the
system (X, T') at w’isa sequence (w™ : m € {0} UN) defined
by w™ € T(w™ ") for m € N (see, [1-4]).

a Picard iteration starting at w’ of the system (X, T).

Let X be a (nonempty) set. A distance on X is a map p :
X? - [0;00). The set X, together with distances on X, is
called distance spaces.

The following distance spaces are important for several
reasons.



Definition 1. Let X be a (nonempty) set, and let p : X* —
(05 c0).

(A) (X, p)iscalled metricif (1) V, ,ex {p(u,w) = 0 iff u=
w}, (i) V, pex 1pu,w) = p(w,u)}, and (iii) Y, , yex {p(u,
w) < p(u,v) + p(v, w)}.

(B) (See [5]) (X, p) is called ultra metric if (i) Y, ,cx
{p(u,w) = 0 iff u = w}, (ii) ¥, yex {p(v, w) = p(w,u)}, and
(iii) ¥, wex 1P, w) < max{p(u,v), p(v,w)}}.

(C) (See [6, 7]) (X, p) is called b-metric with parameter
C € [1;00) if (1) V, yex {pu,w) = 0iff u = w}, (ii) ¥, yex
{p(u,w) = p(w,u)}, and (iii) V,, , yex {p(u,w) < Clp(u,v) +
pv,w)l}

(D) (See [8]) (X, p) is called partial metric if (i) V,, ,cx
{u=wilf pu,u) = p(u,w) = p(w,w)}, (i) ¥, yex 1P,
u) < plu,w)}, (iii) Y, yex {p(,w) = p(w,u)}, and (iv)
Vovwex 1P w) < p(u,v) + p(v,w) — p(v, v)}.

(E) (See [9]) (X, p) is called partial b-metric with param-
eter C € [1;00) if (i) VY, pex {u = wiff pu,u) = p(u,
w) = plw,w)}, (ii) V,pex {p,u) < plu,w)}, (iii) V,, pex
{p(u,w) = p(w,u)}, and (iv) V¥, ,, yex {p(u, w) < Clp(u,v) +
pv,w)] = p(v,v)}.

(F) (See [10]) (X, p) is called quasi-metric if (i) V,, ,cx
{p(u,w) =0 iff u=w}and (i) ¥, yex {pt, w) < p(u,v) +
pv,w)}.

(G) (X, p) is called ultra quasi-metric it (i) V,, ,ex {p(u,
w) = 0iff u = w}and (ii) ¥, ,, yex {p(u, w) < max{p(u,v),
pv,w)th

(H) The distance p is called pseudometric (or the gauge)
on X if (1) Ve x {p(u,u) = 0}, (i) V, yex {p(u,w) = p(w, )},
and (iii) ¥, yex {p(t, w) < p(u,v) + p(v, w)}.

(I) The distance p is called quasi-pseudometric (or the
quasi-gauge) on X if (1) V,cx {p(u,u) = 0} and (ii) V,,, ycx
{p(u,w) < p(u,v) + p(v, w)}.

(J) (See [11]) The distance p is called ultra quasi-
pseudometric (or the ultra quasi-gauge) on X it (i) V. x {p(u,
u) = 0} and (ii) V,,, e x {p(u, w) < max{p(u,v), p(v, w)}}.

Definition 2 (see [12]). Let X be a (nonempty) set, and let &/
be an index set.

(A) Each family @ = {d, : a« € &} of pseudometrics
d,: X* — [0,00), a € o, is called gauge on X. The gauge
P ={d, : « € o} on X is called separating if V,, ,.x {u #
w= Eloced {doc(u) LU) > 0}}

(B) Let the family & = {d, : « € o/} be separating gauge
on X. The topology J(2) having as a subbase the family
B(D) = {B(u,d,,e,) :u € X, g >0, a € g} ofall balls
B(u,d, ¢,) ={veX:d,(uv) <e}withu e X, ¢, >0,and
a € d is called topology induced by & on X; the topology
T (2) is Hausdorf.

(C) A topological space (X,J) such that there is a
separating gauge 9 on X with I = J(9) is called a gauge
space and is denoted by (X, 9).

Definition 3 (see [13]). Let X be a (nonempty) set, and let &/
be an index set.

(A) Each family & = {p,, a € o} of quasi-pseudom-
etrics p, : X* — [0,00), a € , is called quasi-gauge on X.

Abstract and Applied Analysis

(B) Let the family & = {p, : « € I} be quasi-gauge
on X. The topology 7 (%) having as a subbase of the family
B(P) = {Bu, pyr&,) : 4 € X, g, >0, a € g} of all balls
B(u, p,,e,) =1v € X: p,(u,v) < g} withu € X, g, > 0and
a € d is called topology induced by & on X.

(C) A topological space (X, 7) such that there is a quasi-
gauge &P on X with 7 = T(9P) is called quasi-gauge space
and is denoted by (X, ).

Remark 4 (see [13, Theorems 4.2 and 2.6]). Each quasi-
uniform space and each topological space is the quasi-gauge
space.

There is a growing literature concerning set-valued and
single-valued dynamic systems in the above defined distance
spaces. These studies contain also various extensions of the
Banach [14] and Nadler [15, 16] theorems. Of course, there
is a huge literature on this topic. For some such spaces and
theorems in these spaces, see, for example, M. M. Deza and
E. Deza [17], Kirk and Shahzad [18], and references therein.

Recall that the first convergence, existence, approxima-
tion, uniqueness, and fixed point result concerning single-
valued contractions in complete metric spaces were obtained
by Banach in 1922 [14].

Theorem 5 (see [14]). Let (X, d) be a complete metric space. If
T:X — Xand

Foarat Yayex {d(T ), T(y)<Ad (%)}, ()

then the following are true: (i) T has a unique fixed point w in X
(i.e., thereexistsw € X such thatw = T(w) and Fix(T) = {w});
and (ii) for each w’ € X, the sequence (T"@W®) : m e N)
converges to w.

The Pompeiu-Hausdorff metric H* on the class of all
nonempty closed and bounded subsets €% (X) of the metric
space (X, d) is defined as follows:

H? (U, W) = max {supd (u, W), supd (w, U)]» ,
ueU wew

(2)
UW e €% (X),

where for each x € X and V e €AB(X), dx,V) =
inf ., d(x, v). Using Pompeiu-Hausdorff metric new contrac-
tions were received by Nadler in 1967 and 1969 [15, 16] as a
tool to study the existence of fixed points of set-valued maps
in complete metric spaces.

Theorem 6 (see [15], [16, Theorem 5]). Let (X,d) be a
complete metric space. If T : X — €RB(X) and

EIAE[O;I) vx,;veX {Hd (T (x)’T(y))SAd (.X, )/)} > (3)
then Fix(T) + @ (i.e., there exists w € X such that w € T'(w)).

Markin [19, 20] gave a slighty defferent version of
Theorem 6.

Our primary interest is to construct new very general dis-
tance spaces, deliver new contractive set-valued and single-
valued dynamic systems in these distance spaces, present
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the new global methods for studying of these dynamic
systems in these spaces, and prove new convergence, approxi-
mation, existence, uniqueness, periodic point, and fixed point
theorems for such dynamic systems.

The goal of the present paper is to introduce and describe
the quasi-triangular spaces (X, Pc,;) (Section 2) and more
general quasi-triangular spaces (X, Pc.) with left (right)
families 7., generated by Pc. ., (Sections 3-5). Moreover,
we use new methods and adopt ideas of Pompeiu and
HausdorfI (Section 7) (see [21] for an excellent introduction
to these ideas), to establish in these spaces some versions of
Banach and Nadler theorems (Sections 8 and 9). Here studied
dynamic systems are left (right) 7 ¢, ,-admissible or left (right)
P, q-closed (Section 6). Examples are provided (Sections 10—
12) and concluding remarks are given (Section 13).

2. Quasi-Triangular Spaces (X,%.)

It is worth noticing that the distance spaces (X, %), intro-
duced and described below, are not necessarily topological or
Hausdorft or sequentially complete.

Definition 7. Let X be a (nonempty) set, let &/ be an index set,
andlet C = {C,},cy € [1;00)7.

(A) One says that a family P, = {p, : X° —
[0,00), a € o/} of distances is a quasi-triangular family on
X if

ered Vu,v,wEX {poc (u’ LU) < sz [Pa (u’ V) + Py (V’ w)]} . (4)

A quasi-triangular space (X, Pc.) is a set X together with
the quasi-triangular family %, on X.

(B) Let (X, P,y) be the quasi-triangular space. One says
that P, is separating if

Vu,weX {u Fw
€)
= Jpear {Pa (W) >0V p, (w, 1) >0}}.

(C) If (X, P¢.y) is an quasi-triangular space and V.,
Vwex {p. (w,w) = py(w,u)}, then Y, Yovwex {p. (u,
w) < Ca[p;I(u, V) + p;l(v, w)]}. One says that the quasi-
triangular space (X, Z¢.,), Pey = {py' + X> — [0,00),
o € o}, is the conjugation of (X, Pr.y).

Remark 8. In the spaces (X, P, y), in general, the distan-
ces p, : X* — [0,00), & € &, do not vanish on the diago-
nal; they are asymmetric and do not satisfy triangle ine-
quality (ie., the properties V., V,cx {po(t,u) = 0} or
vaed vu,wEX {pzx(u’ w) = pa(w’ u)} or voced vu,v,wGX {p(x(u’
w) < p,(u,v) + py(v,w)} do not necessarily hold); see
Section 10.

Definition 9. Let X be a (nonempty) set, let o be an index set,
andlet C = {C,} ey € [1500)7.

(A) One says that a family ., = {l, : X> — [0,00),
« € of} of distances on X is a ultra quasi-triangular family if

Vae.szf vu,v,wGX {loc (u) w)
(6)

<C, max {l, (u,v),l, (v,w)}}.

An ultra quasi-triangular space (X, Z..) is a set X together
with the ultra quasi-triangular family #,, on X.

(B) One says that a family S, = {s, : X2 > [0,00),
« € d} of distances on X is a partial quasi-triangular family
if

Vaed Vu,v,wEX {er (M, w) < Ca [soc (u’ V) + Sy (V’ w)]
7)

—s, (mv)}.

A partial quasi-triangular space (X, $..) is a set X together
with the partial quasi-triangular family ¢, ., on X.

Remark 10. Tt is worth noticing that quasi-triangular spaces
generalize ultra quasi-triangular and partial quasi-triangular
spaces (in particular, generalize metric, ultra metric, quasi-
metric, ultra quasi-metric, b-metric, partial metric, partial
b-metric, pseudometric, quasi-pseudometric, ultra quasi-
pseudometric, partial quasi-pseudometric, topological, uni-
form, quasi-uniform, gauge, ultra gauge, partial gauge, quasi-
gauge, ultra quasi-gauge, and partial quasi-gauge spaces).

3. Left (Right) Families 7., Generated by
Pc.y in Quasi-Triangular Spaces (X,%: )

In the metric spaces (X, d) there are several types of distances
(determined by d) which generalize metrics d. First these
distances were introduced by Tataru [22]. More general
concepts of distances in metric spaces (X, d) which generalize
d, of this sort, are given by Kada et al. [23] (w-distances),
Lin and Du [24] (7-functions), Suzuki [25] (r-distances),
and Ume [26] (u-distance). Distances in uniform spaces
were given by Vilyi [27]. In the appearing literature, these
distances and their generalizations in other spaces provide
efficient tools to study various problems of fixed point theory;
see, for example, [28-30] and references therein. In this paper
we also generalize these ideas.

Let P, be the quasi-triangular family on X. It is natural
to define the notions of left (right) families ¥ ..., generated by
P .4 which provide new structures on X.

Definition 11. Let (X, ¢, ) be the quasi-triangular space.

(A) The family 7o, = {J, : a € &} of distances
J.: X* — [0,00), a € &, is said to be a left (right) family
generated by P, if

(D) Vaeq Vuywex Udbw) < Coll(w,v) + J,(v,w)]h
and furthermore.



4
(£2) For any sequences (u,, : m € N) and (w,, : m € N) in
X satisfying
vzxe.szf {mlgn Sup]oc (um’ un) = 0} > (8)
® n>m

(Vtxed {mll_r,noo Sup](x (un’ um) = 0}) ’ (9)
Yoeo { lim 1 T (W th,) =0} , (10)
(Vaer | Jim Jo (1t ,,) =0}), )

the following holds
Vacr {,1im_po (w,14,,) =0}, (12)
(Yacwr {,Jim_pa (tw,) =0}). (13)

(B) J] P (J](ng ) is the set of all left (right) families
Fci ON X generated by g'c; "

Remark 12. From Definition 11 if follows that %, €

J](LX,Q,W) n J]fx)g,w). Moreover, there are families 7., €

J](LX, Pey) and 7, € J]fx, Pey) such that the distances J,, « €
&/, do not vanish on the diagonal, are asymmetric, and are
quasi-triangular and thus are not metric, ultra metric, quasi-
metric, ultra quasi-metric, b-metric, partial metric, partial
b-metric, pseudometric (gauge), quasi-pseudometric (quasi-
gauge), and ultra quasi-pseudometric (ultra quasi-gauge).

4. Relations between 7., and ¥,

Remark 13. The following result shows that Definition 11 is
correct and that J](LX@W) \ {Pcyt # @ and ‘DFX,%;M) \
{Peyt + 2.

Theorem 14. Let (X, P..) be the quasi-triangular space. Let
E ¢ X be a set containing at least two different points and let
() weer € (0500)7 where

5, (E)}’

Voceszf ‘[‘H“_ 2C

(14)
Ve 104 (E)=sup {p, (u,w) : u,w e E}}.

If ey = Uy + &« € A} where, for each a € , the distance
J.: X* — [0,00) is defined by

Po (,w) if ENn{u,w} = {u,w}
Jo (U, w) = (15)
Uy if En{u,w}# {u,w},
then 7 .. is left and right family generated by Pc. .

Proof. Indeed, we see that condition (1) does not hold only
if there exist some «, € o/ and u,, vy, w, € X such that

Ja, (ug> wy) > Ce, [Ioco (195 vo) +a, Vo’wo)] (16)
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Then (15) implies {uy, vo,wyt N E # {ugy, vy, wy} and the
following Cases 1-4 hold.

Case 1. If {uy, wy} C E, then v, ¢ E and, by (16) and (15),
P, (oo wy) > 2C, p, . Therefore, by (14), p, (uy, wy) >
2C, Yo, = O, (E). This is impossible.

Case 2. 1fu, € E and w, ¢ E, then (16) and (15) give p, >
Co, [Pa, (M0 Vo) + the,] = Cy phy, whenever vy € E or g, >
Cy, [Ha, * oy ] = 2C, o, whenever v, ¢ E. This is impossible.

Case 3. If uy ¢ E and w, € E, then (16) and (15) give oy >
Copltay + Pay (Voo wo)] = C, pty, whenever vy € E or p, >
Cop o, +to,] = 2C, Ho, Whenever v, ¢ E. This is impossible.

Case 4. 1f uy ¢ E and w, ¢ E, then (16) and (15) give p, >
Co, [Hay * ta,] = 2C, o, for vy € X. This is impossible.
Therefore, Vo s ¥y wex Uaw) < ColJ, (1, v) + T (v,
w)]}; that is, the condition (_#1) holds.
Assume now that the sequences (u,, : m € N) and (w,,
m € N) in X satisty (8) and (10). Then (12) holds. Indeed, (10)
implies

leé&{ vO<£<ya EImO:mo(oc)eN szmo {]tx (wm’ um) < 8} : (17)

Denoting m = min{my(«) : a € I}, we see, by
(17) and (15), that V. {E N {w,,, u,,} = (W, u,}}
Then, in view of Deﬁmtlon 11(A), (15), and (17), this 1mp11es
Vaea V0<.€<;4 Fwen vm>m {poc(wrrvu ) = Ja (wm’u ) < &}
Hence we obtain that the sequences (u,, : m € N) and
(w,, : m € N) satisfy (12). Thus we see that £, , is left family
generated by Z¢ .

In a similar way, we show that (13) holds if (u,, : m € N)
and (w,, : m € N) in X satisty (9) and (11). Therefore, 7.,
is right family generated by %, We proved that 7., €
Iy N Ik, holds. O
The following is interesting in respect to its use.

Theorem 15. Let (X, P.) be the quasi-triangular space, and
let 7.y be the left (right) family generated by Pe.y. If Py
is separating on X (i.e., (5) holds), then ¥, is separating on
X; that is,

vu,weX {u Fw
(18)
= Joear Vo (,w0) >0V ], (w,u)>0}}

holds.

Proof. We begin by supposing that uy, w, € X, u, # w,, and
Vew Usltigywy) = 0 A J (wy,u,) = 0}. Then (71) implies
Vew Ualtg, ttg) < Cy ], (ug, wy) + T (wy, 1y)] = 0} o1, equiv-
alently, Ve oy {15 (ug ttg) = Jo(wy,1y) = 0} and Ve 1T, (1405
uy) = Jo(ug, wy) = 0}. Assuming that u,, = u, and w,, = w,,
m € N, we conclude that V., {lim,,, _, sup,.,.Jo (¢, 1,,) =
limm—»oo]oc(wm’um) = 0} and vaed {limm—voosupn>m]a(un’
u,) = lim,  J.,(u,,w,) = 0} Therefore, it is not
hard to see that (8)-(11) hold and, by (f#2), the above
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considerations lead to the following conclusion: 1, # w, A
Vtxed {limmﬂmpa(wm’um) = limmﬁmpa(um’wm) = O} or,
equivalently, u, # wy A Vyey {Po(wp, 1) = puug, wy) =
0}. However, %, is separating. A contradiction. Therefore,
F c.or 18 separating. O

5. Left (Right) 7. ,-Convergences and Left
(Right) 7 .. ,-Sequentially Completeness

Definition 16. Let (X, P, 4) be the quasi-triangular space,
and let 7., be the left (right) family generated by %,
(A) One says that a sequence (u,, : m € N) c X is left
(right) 7 c.-Cauchy sequenceifV ., {lim,, _, . sup,,..J, (14,5
un) = 0} (ered {limm—mosupn>m]oc(un’um) = 0})
(B) Let u € X and let (u,, : m € N) ¢ X. One says that
the sequence (u,,, : m € N) is left (right) 7 c../-convergent to

. -7, R-gc,
uifu € LIM(um:;’ZN) +@ (ue LIM(um:rf[gN) + @) where
L-7
LM 76 = {x

€X Yooy { lim J, (xu,,) =0} },

19)
(LM
={xeX: Voey { lim J, (14,,%) =0}}).
(C) One says that a sequence (u,, m € N) cC
X is left (right) Jc. -convergent in X if LIML f;;’N) #

R-F,
@ (LIM, " &) # 2)-

(D) If every left (right) 7. ,-Cauchy sequence (u,,
m € N) c X is left (right) 7, ,-convergent in X (ie.,

LIM_ 7S # @ (LIM. 75 # @)), then (X, Pc,,) is

(u,:meN) (u,;;meN)

called left (right) 7 c.-sequentially complete.

Remark 17. The structures on X determined by left (right)
families 7., generated by &, are more general than the
structure on X determined by &, ; see Remark 34.

Remark 18. Let (X, Pc..) be the quasi-triangular space. It is
clear that if (u,, : m € N) is left (right) ¢ - convergent

in X, then LIM, 7% ¢ LIM 7% (LM, 794 c
LIMfV_?C“ ) for each subsequence (v,, : m € N) of (u,,
m € N).

Definition19. One says that (X, P ) is left (right) Hausdorff
if for each left (right) P convergent in X sequence (u,,,

m e N) the set LIM P

meN) (LIM(u " EN)) is a singleton.

6. Left (Right) 7. ,-Admissible and Left
(Right) Z, ,-Closed Set-Valued Maps

The following terminologies will be much used in the sequel.

Definition 20. Let (X, Pc.) be the quasi-triangular space,
and let 7., be the left (right) family generated by 2, ;. Let
(X, T) be the set-valued dynamic system, T : X — 2%,

(A) Given v’ € X, One says that (X, T) is left (right)
F c.-admissible in w’ if, for each dynamic processes (w”
m € {0} UN) starting at w’, V me{0JUN W™ e TW™)},

LIM 7% # @ (LIM(, 5%\ # @) whenever

(w™:me{0}UN) (w™:me{0}UN)

V(xEM {mlgnooigrlr)l]a (wm’ wn) = 0}
(20)
<Vaeﬂ { lim sup/, (w",w™) :0}>.
m—700n>m

(B) One says that (X, T) is left (right) 7 c.,,-admissible on
X, it (X, T) is left (right) 7 c.,-admissible in each point w’ e
X.

Remark 21. Let (X, P¢.) be the quasi-triangular space and
let 7., be the left (right) family generated by %..,. Let
(X, T) be the set-valued dynamic system on X. If (X, P y)
is left (right) 7. ,/-sequentially complete, then (X, T) is left
(right) 7 c..,-admissible on X but the converse not necessarily
holds.

We can define also the following generalization of conti-
nuity.

Definition 22. Let (X, Pc,) be the quasi-triangular space.
Let (X, T) be the set-valued dynamic system, T : X — 2%,

and let k € N. The set-valued dynamic system (X, T!") is said
to be a left (right) P y-closed on X if for every sequence

(x,, : m € N)in Tl (X), left (right) P, -converging in

X (thus LIM, 7% # & (LIM(, %4 # @) and having
subsequences (v,, : m € N) and (u,, : m € N) satisfying

e T (u,,)}, the following property holds: there

Vmen i -2 R-%
exists x € LIM(;m:;ZN) (x € LIM - rﬁjN)) such that x €

T™(x) (x € TH(x)).

7. Left (Right) Pompeiu-Hausdorff
Quasi-Distances and Left (Right)
Set-Valued Quasi-Contractions

In this section, in the quasi-triangular spaces (X, %¢.y),
using left (right) families 7, generated by %/, we define
three types of left (right) Pompeiu-Hausdorff quasi-distances
on 2%, and for each type a left (right) set-valued quasi-
contraction T : X — 2% is constructed.

Definition 23. Let (X, %) be the quasi-triangular space,
and let 7, be the left (right) family generated by & ,. Let
A = {Aueaq € [0 D, let (X, T) be a set-valued dynamic
system, T : X — 2%, and let € {1,2,3}. Let

Ve Vaex Yverx {Jo (%, V)=inf{], (x,v) : veV}

(21)
A (V,x)=inf{], (v,x) : veV}}.



(A) Let fcy € J]{JX,@C;&{)' If
pLFes
Vaea Yuwerx { 12(’}:C fuw)

—max<lsup] (u, W), sup] U, w)}}

uelU

Db
Vaca Yuwerx ‘[ zsz U, w) (22)

=max <lsup]“ (u,W), supJ, (w, U)}»} ,

uelU weW

Dt
Vaea Yuwer ‘[ 3235:“{ U, W)-sug] (u, W)}
ue

then a family 2, jc” = {DL ]C“’, o € gf} is said to be left
914 jC&i
2
If

-quasi- dzstance on 2%

Voced vx,yeX {sz : Df];{;d (T (X) , T ()’))
(23)

<AoJq (%, y)} ,

then we say that (X, T') is a left (QZ j‘”” , A)-quasi-contraction
on X.
(B) Let Fy € Iy - 1

R J
Vaea Yuwerx { 1o (UW)

= max {sup]‘x (u,W), supJ, (U, w)H» ,

uelU weWw

R 35
Vaea VU,WEZX { 2% zfc " (U,W) (24)

= max {sup]“ (u,W), supJ, (w, U)H» ,

uelU weWw

R 3%
Vaea Yuwer { 5, ch " (U,W) =sup], (u, W)}

uelU

then a family oo = {DR fz”, o € o} is said to be right
9?;{0““’—quasi—distance on 2%,
If

R-J¢,
Vaea vx,yEX {Ca ’ D,I;ZX;Zd (T (x),T (y))
(25)

A (22}

then we say that (X, T) is a right (9 ]C“ , A)-quasi-contrac-
tion on X.
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Remark 24. Observe that 91-.—;{@&1 and QZR__;(]C;"’ extend (2).
752 ;2
Quasi-contractions (23) and (25) extend (3).

Remark 25. Each (.92 jc“’ , A)-quasi-contraction ((9 "7“’,

L-Fca

/\)-qua51-contract10n), n € {1,2},is (93;2X

traction ((932;{“’ A)-quasi-contraction) but the converse

does not necessarily hold.

, )t)-quas1-con-

8. Convergence, Existence, Approximation,
and Periodic Point Theorem of
Nadler Type for Left (Right) Set-Valued
Quasi-Contractions

The following result extends Theorem 6 to spaces (X, Pc..).

Theorem 26. Let (X, P, ) be the quasi-triangular space, and
let (X, T) be the set-valued dynamic system, T : X — 2%, Let
n€{1,2,3}, andlet A = (A} ey € [0:1)7.
Assume that there exist a left (right) family 7 ., generated
by Py and a point w° € X with the following properties.
(A1) (X,T) is left (9L e , A)-quasi-contraction (right

R-7
(gn;zxcd

(A2) (X,T) is left (right) 7 c..;-admissible in w’.
(A3) Forevery x € X and forevery B = {B,}pey € (0;00)7
there exists y € T(x) such that

, A)-quasi-contraction) on X.

voce.d {]oc (x’y) <]oc (x,T(x))+ﬁ“}, (26)
(Vaear {Ja (7%) <Jo (T (x), %)+ Bo}) - (27)

Then the following hold.

(B1) There exist a dynamic process (W™ : m € {0} UN)
of the system (X, T) starting at w°, Y e fojun fw™! e T(W™},
and a point w € X such that (W™ : m € {0} UN) is left (right)
Pc.q-convergent to w.

(B2) If the set-valued dynamic system (X, T is left (right)
Pe.y-closed on X for some k € N, then Fix(T'™) #+ @ and
there exist a dynamic process (W™ : m € {0} UN) of the system
(X, T) starting at w°, ¥,,,coun (W™ € T(w™)}, and a point
w € Fix(T™) such that (W™ : m € {0} UN) is left (right)
Pc,q-convergent to w.

Proof. We prove only the case when f., is a left family
generated by P, (X, T) is left 7, -admissible in a point
w’ € X, and (X, T™) is left Pc.q-closed on X. The case of
“right” will be omitted, since the reasoning is based on the
analogous technique.

Part 1. Assume that (A1)-(A3) hold.

By (21) and the fact that ], : X2 5 [0;00), a € o, we
choose

r={ra} e € (0 o0)? (28)
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such that

Put

Ve {ﬁéo)=<l—%>ra— T, (wO,T(wO))}. (30)

[o4

In view of (28) and (29) this implies ﬁ(o) = {ﬁg’)}aed €
(0; 00)” and we apply (26) to find w' € T(w’) such that

Vaer U () <1, (7 () 160} 1)

We see from (30) and (31) that

Vaes {Ja (w°,w1)<<1—c—"‘>ra}. (32)

Put now

e () )n ]

Then, in view of (32), we get ) = {81}, € (0;00)” and
applying again (26) we find w? € T(w") such that

Voew 1o (W' w?)<J, (0T (w')) 480} (39)

Observe that

Vaess {Ja (wl,w2)<<%> <1—%>w}- (35)

o [o4

Indeed, from (34), Definition 23(A), and using (33), in the
eventthaty = 1 ory =2 or = 3, we get

Y., { T (w0 02) < J, (), T (w)) + B

<sup{J, (T (w')) :ueT (w’)}+pY

<D 7o (T (wo) ,T (wl)) + ,8&1)

1250 (36)
(oo
(&)(-2)x]
=\ = )J|1-=)rar-
Ca Ca
Thus (35) holds.
Next define
V{xe&i {ﬁt()cZ)
(37)

(IE) (-]

Then, in view of (35), B% = {P},cy € (0;00)”. Applying
(26) in this situation, we conclude that there exists w® ¢
T(w?) such that

Voew P (0 w?) <J, (Wi T (0%))+ B2} (38)

We seek to show that

Voca {Lx (wz,w3)<(é—z)2(1—%)m}. (39)

By (38), Definition 23(A), and using (37), in the event that
n=1orn=2orn =3, it follows that

Y oyews {]a (wz, w3) <Jy (wZ,T (wz)) + [3((,62>

< sup J, (u, T (wz)) + ﬁfxz)

ueT(w')

<DV 7o (1 ('), T (w?)) + B2 (40)

725500

(B )ty 2

[24

(&) (-2}

Thus (39) holds.
Proceeding as before, using Definition 23(A), we get that
there exists a sequence (w™ : m € N) in X satisfying

Voen 0™ €T (w™)} (41)

and for calculational purposes, upon letting V, ., {8 =

{ﬁ( )} ,} Where
( >
C(X

Vae.d VmEN {ﬁfxrm

(42)
A’(X e A’{X m— m
[(C_,x) <1_C_“>r“_]“(w 1’w )”»
we observe that V, ., {8 € (0;00)”},
voceszf’ VmEN {]OL (wm, wm+1) < ]oc (wm’ T (wm))
(43)
+B}
Voced vmEN {]a (wm’ wm+1)
(44)



Let now m < n. Using (1), we get

v(xed {]OL (wm’ wn) < Coc]oc (wm’ wm+1)

+C ] ( m+1 wm+2)+”'

O (W) £ O

(45)
ni ]+1 ( m+j)wm+j+l)
+ Cmefle (wnfl’ wn)}
Hence, by (44), for each « € o/,
A
m) n 1_ _a
J, (W™ w") < < Coc>
n—-m-2 m+j n-2
For () (2
o Cu
(46)
( =)
= 1— —
C(X
A m n—m-2 /\n
. C,| == )V .
e (&) T (%) 5]
This and (41) mean that
EI(u)”‘:mEN) Vme{O}UN {wm+1 erT (wm)} (47)
and since m < n implies A, < A7,
Ay
Vaeo 1,1im sup] (w",w") < lim sup I—C—
A\ -1 c, \ A
gl (2«) (122 Za ) Lo
oo (@) 0o (%) 5]
(48)

< lim <l—ﬁ>ra [Ca<&> (1-1,)"
m— 0o C(X C

o
Ca \ (Ao >m
Ze)(Ze) |=o0t.
' ( X ) (&
Now, since (X, T) is left 7. ,-admissible in w’ € X, by

Definition 20(A), properties (47) and (48) imply that there
exists w € X such that

Voew {Jim J, (w,w™) =0} (49)

Next, defining u,, = w™ and w,, = w for m € N, by
(48) and (49) we see that conditions (8) and (10) hold for
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the sequences (u,, : m € N)and (w,, : m € N)in X.
Consequently, by (#2), we get (12) which implies that

Vaew {,Jim_po (w,w™) = lim p, (w,,1,)=0}  (50)

L-Pc

and so in particular we see that w € LIM .. .

Part 2. Assume that (A1)-(A3) hold and that, for some k € N,
(X, T™Y is left P, y-closed on X.

P .
By Part 1, LIM(Lw :;Z ooy F 2 and since, by (47),

w™ VR e TR (™) for m € {0} U N, thus defining (x,, =

w" " m e N), we see that (x,, : m € N) C T[k](X)

LIML P = LIML P ) # @, the sequences (v,
:m e N) C

(x,,:me{0}UN) (w™:me{0}UN
w(m“)k :m e N) ¢ T™(X) and (1,, = w™

T (X) satisfy Ve 1V, € Tkl (u,,)} and, as subsequences
of (x,, : m € {0} UN), are left %, ,-converging to each
point of the set LIM(LJZJ melOJUN)"
LIM % < LIM(, 7% and LIM,/% ¢ LIM, 7%

(v,,:meN) (w™:meN) (u,,:meN)*
By the above and by Definition 22, since T is left P
L-Pey

(w™ me{O}UN)

Moreover, by Remark 18,

closed we conclude that there exist w € LIM

LIM eN) such that w € T™(w).

Part 3. The result now follows at once from Parts1and 2. [J

9. Theorem of Banach Type in Quasi-
Triangular Spaces (X,%. )

In this section, in the quasi-triangular spaces (X, %¢.y),
using left (right) families 7., generated by %.., we
construct two types of left (right) single-valued quasi-
contractions T : X — X, and convergence, existence,
approximation, uniqueness, periodic point, and fixed point
theorem for such quasi-contractions is also proved.

The following Definition 27 can be stated as a single-
valued version of Definition 23.

Definition 27. Let (X, P, ) be the quasi-triangular space,
and let 7, be the left (right) family generated by .
Let (X,T) be the single-valued dynamic system, let A =
At wew € [0;1)7, and let 7 € {1,2}.

A)If fey € J] ) then we define the left 9L S

quasi-distance on X by @L Fea - {Ds;x’ixc SR G [0, 00),
o € o/} where
-7,
Vaed Vuwex {th{xc'd (u, w)
=max {J, (u,w), J, (w, u)}} , (51)

L-
Vae&[ Vu,wGX { 2Xj;d (Lt, w) ] (M, w)}
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One says that (X, T) is left (QZL S , A)-quasi-contraction on
X if

Vaced Vx,yEX {C D.,I;X];M (T (x) N T (y))
<Aoo (%)}

(B) If oy € J]Rw

(52)

, then one defines the right

9R 7 cua -quasi-distance onbe QZR Jaa _ {Df;;({f‘“ D G
[0; oo) « € 9} where
R-7o,
Ve Yuwex {Dl;x;lxc’d (u, w)
=max {J,, (w,w), J,, w,w)}}, (53)

R Fca
vaed Vu,weX { zxacf(u,w) ] (u,w)}

One says that (X, T) is right (9R e , A)-quasi-contraction
on X if

Vaea vx)yeX {C DsX{cc . (T (x),T (y)) (54)

SWNESHI
Remark 28. Observe that (52) and (54) extend (1).

The following terminologies will be much used in the
sequel.

Definition 29. Let (X, Pc,) be the quasi-triangular space,
and let 7, be the left (right) family generated by & ,. Let
(X, T) be the single-valued dynamic system, T : X — X.

(A) Given v’ € X, One says that (X, T) is left (right)
J c.q-admissible in w” if, for the sequence (w™ = T (w°) :
m € {0} UN), LIM(L;'{%{O}UN) + 0 (LIMﬁ;{fﬁZ{o}uN) + 2)
whenever

Yoeo { lim supJ, (wm,w")=0}
m%()on>m

wm)=o}).

(B) We say that (X, T) is left (right) 7 c..;-admissible on X,
if (X, T) is left (right) 7 ¢..;-admissible in each point w’ € X.

(55)
<voc€d {mlgnoo Sl:'p]oc (wn,

Remark 30. Let (X, %Pcy) be the quasi-triangular space,
and let 7., be the left (right) family generated by %.,.
Let (X,T) be the single-valued dynamic system on X. If
(X, Pc.y) is left (right) 7. ,-sequentially complete, then
(X,T) is left (right) 7. .,-admissible on X.

We can define the following generalization of continuity.

Definition 31. Let (X, %) be the quasi-triangular space.
Let (X, T) be the single-valued dynamic system, T : X — X,
and let k € N. The single-valued dynamic system (X, T™™) is

said to be a left (right) P, ,-closed on X if for each sequence
(x,, : m € N)in T™(X), left (right) Pc.g-converging in

X (thus LIM, 7% # & (LIM(, %4 # @) and having
subsequences (v,, : m € N) and (u,, : m € N) satistying

Ven W = T™(u,)}; the following property holds: there
exists x € LIM(, /%% (x € LIM(, o) such that x =

T (x) (x = T (x)).

The following result extends Theorem 5 to spaces (X,
@C;M)'

Theorem 32. Let (X, %) be the quasi-triangular space, and
let (X, T) be the single-valued dynamic system, T : X — 2%,
Letn € {1,2}, and let A = {A,}pey € [0:1)7.

Assume that there exist a left (right) family 7 .., generated
by Py and a point w° € X with the following properties.

(AD) (X,T) is left (QZ jw , A)-quasi-contraction (right
(QZR 7o A)-quasz-contractzon) on X.

(A2) (X,T) is left (right) 7 c..;-admissible in a point w’ €
X.

Then the following hold.
(BI) There exists a point w € X such that the sequence

W™ = T"™W°) : m € {0} UN) starting at w° is left (right)
Pc.q-convergent to w.

(B2) If the single-valued dynamic system (X, T™™) is left
(right) Pc.y-closed on X for some k € N, then Fix(T™) + &,
there exists a point w € Fix(T™) such that the sequence
w" = T (W) : m € {0} UN) starting at w° is left (right)
Pc.-convergent to w, and

vae&/ Vve Fix(T'])

Ja 0T )=, (T (v),v)=0}.  (56)

(B3) If the family P,y = {p,> & € 9} is separating on X
and if the single-valued dynamic system (X, T is left (right)
Pe.y-closed on X for some k € N, then there exists a point
w € X such that

Fix (T™) = Fix () = {w}, (57)

the sequence (W™ = T (w°) : m € {0} UN) starting at w° is
left (right) Py~ convergent to w, and

Voea {]{x (w,w)= 0} . (58)

Proof. By Theorem 26, we prove only (56)-(58) and only in
the case of “left.” We omit the proof in the case of “right,”
which is based on the analogous technique.

Part 1 Property (56) holds. Suppose that 3, ¢/ 3,epix(rivy /o, (%

T(v)) > 0}. Of course, v = T[k](v) = T[Zk](v), T(v) =
TEH(T(v)) and, for 17 € {1,2}, by Definition 27(A),
0 < Joy BT () = T, (T (), T (T (v)))

L-Jc,
< Dy 7o (TP (), 729 (1 (v)))
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(T ), " @ ()

11:X30

« ) pLFea (T[zk—u (v), T2 (T )
) (T[Zk_z] (V) , T[Zk—Z] (T (V))) <.

2
) Joy T () < Joo (W T (),
(59)
which is impossible. Therefore,
Ve Voerixry o 0T (v) =0} (60)

Suppose now that 3, ¢, J,epix(rivy (o, (T(v),v) > 0}. Then,
by Definition 27(A) and property (60), using the fact that v =
T™ () = TER (1), we get, for i1 € {1, 2}, that

0 < J, (T (1),9) = Jo, (T* (1), TP ()
k-2
< ch;]% (T[k+m] (V) ,T[k+m+1] (V))
m=1

+C’;0’2]% (T[Zk’” (v), T (v))

X506

k-2
< ZCZZ) -DL_jCM (T[k+m] (V) ’T[k+m+1] (V)) (61)
m=1

N Ck—2 'DL—jc;a! (T[Zk—l] ) ,T[Zk] (V))

%o 1:X500

Ag,

k-2

k+m
) Jo 2T (1)

%o

' Aao 2k-1
+CD‘0 c ],x0 (»T(v) =0,

%

which is impossible. Therefore,

vaed VvEFix(TU‘]) {]OL (T (V) > V) = 0} . (62)

We see that (56) is a consequence of (60) and (62).
Part 2. Properties (57) and (58) hold. We first observe that
vveFix(T[kJ) {T (v) =v}; (63)

in other words, Fix(T™") = Fix(T). In fact, if v € Fix(T"))
and T(v) # v, then, since the family P, = {p,, a € } is
separating on X, we get that T'(v) # v = ey {p(T(V),v) >
0V p,(v,T(v)) > 0}. In view of Theorem 15 this implies T'(v) #
v = Jpey U (TW),v) > 0V J,(v,T(v)) > 0}. However, by
property (56), this is impossible.

Next we see that Vg (i) _pix(r) {Jo(v,v) = O} In fact,
by Definition 11(A) and property (56), we conclude that
Vaea Voerixaty Ua(v:v) < Collo(v, T(V) + ], (T(v), v)] = O}
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Finally, suppose that u,w € Fix(T) and u # w. Then,
since the family P, = {p,, « € &} is separating on X,
we get 3y, ¢y {py,(,w) > 0V p, (w,u) > 0}. By applying
Theorem 15, this implies 3, ¢ {/,, (1, w) > 0V ], (w,u) >
0}. Consequently, for # € {1,2}, by Definition 27(A), we
conclude that

El%egi { []% (u,w) >0, ]% (u, w)

= Joy (T (), T (w)) < Dy 78 (T (), T (w))

A
< <C_%)]“° (W) < J,, (s w)] or [LXO (w, 1)

%o

(64)
50, Jo, ()= ], (T (), T (1))
< DL’]C;W T T < A“U
<D (T @) Tw)s( 5 ) g )
<, (w,u)” ,
which is impossible. This gives that Fix(T') is a singleton.
Thus (57) and (58) hold. O

10. Examples of Spaces (X,%,)

Example 1. Let X = [0;6],y > 8l and let p : X2 > [0;00)
be of the form

p(u,w)
0 if u>w, {u,w}n(0;6) = {u,w},
(65)
=d(w-w! fu<w, {wwin0;6)={uw},
y if {u,w} N (0;6) # {u, w}.

(1) (X, Pgy)> Pispny = {ph is the quasi-triangular
space. In fact,

Viywex {pw)<8[pv)+pmw)t.  (66)
Inequality (66) is a consequence of Cases 1-6.

Case L. If u,v,w € (0;6) and v < u < w, then p(u,v) = 0 and
w —u < w — v. This gives p(u,w) = (w-u)* < w-v*<
8(w—v)* = 8[p(u,v) + p(v,w)].

Case 2. Ifu,v,w € (0;6),u < wandu < v < w, then p(u, w) =
(w — u)* and f(vy) = min,_,, f(v) = (w - u)* where, for
us<v<w, f(v) = 8[pu,v)+ p(v,w)] = 8[(v—u)* + (w-v)*]
and vy = (u + w)/2.

Case 3. Supu,wE(O;G);u<wP(u’ w) = supu,wE(O;G);u<w(w - u)4 =
6* = 1296 and SUP,, e(0:6)u<w MMy 8[ P14 V) + p(v,w)] =
supu)we(o;(s);uwminugvsw8[(v —w+ w-v)*=8[B3-0*+
(6 —3)*] = 8[81 + 81] = 1296.
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Case 4. Ifu,v,w € (0;6) and u < w < v, then p(v,w) = 0 and
w —u < v —u. This gives p(u,w) = (w —u)t < (v-uwt <
8(v—u)* = 8[p(u,v) + p(v, w)].

Case 5. If u,w € (0;6), u < wand v € {0,6}, then p(u,w) <
1296 < 8[p(u,v) + p(v,w)] = 8[y + yI.

Case 6. If {u,w} N (0;6) # {u, w}, then V. {p(u,w) =y <
8y < 8[p(u,v) + p(v,w)]}.

(2) Pigy.1y = {p} is asymmetric. Indeed, we have that 0=
p(5,1) # p(1,5) = 256. Therefore, condition V, ,.x {p(u,
w) = p(w, u)} does not hold.

(3) Pgy.1y = {p} does not vanish on the diagonal. Indeed,
ifu € {0,6}, then p(u,u) = y # 0. Therefore, the condition
Vyex 1p(u, u) = 0} does not hold.

(4) For the constant sequence of the form (u,, = 3 :

m
m € N) C X the sets LIM(L;J:Z;SEKI}) and LIMY 780 e pot

(u,,,:meN)

singletons. Indeed, by (65), Remark 12, and Definition 16(B),
we have that LIM, 7% — [3;6] and LIM,. ~ % = [0;3],

(u,,;:meN) — (u,,:meN)
Example2. Let X beaset(nonempty), A ¢ X, A+ @,A + X,
y >0,andlet p: X* — [0;00) be of the form

0 if An{u,w}={u,w},
Pl w) = { , (67)
y it An{u,w} + {u,w}.

(1) A pair (X, Pyap)> Pupy = {ph is the quasi-trian-
gular space. Indeed, formula (67) yields V,, ,, ,cx {q(u, w) <
q(u,v) + q(v,w)}. Otherwise, 3, , ., cx {q(ug, wy) > gluy,
Vo) + q(vy, wy)}. It is clear that then q(u,, wy) =y, q(ugy, vy) =
0, and g(vy, w,) = 0. From this we see that A N {uy, w,} #
{ug, wol, A N {ug, vo} = {ug, v}, and A N {vy, wo} = {vy wel.
This is impossible.

(2) P13,y = {p} does not vanish on the diagonal. Indeed,
ifu € X\ A, then p(u,u) = y # 0. Therefore, the condition
Vyex 1p(u, u) = 0} does not hold.

(3) Pyiyqy = {p} is symmetric. This follows from (67).

(4) We observe that 150 PR § Y L for

(u,;:meN) (u4,,,:meN)
each sequence (u,, : m € N) ¢ A. We conclude this from (67).

Example 3. Let X = [0;6] and let p : X2 5 [0;00) be of the
form

if u>w,

0
p (w,w) = { (68)

(w-u)® ifu<w.

(1) (X, Pyy1y)> Py = Aph is the quasi-triangular
space. In fact, V, , ,cx {q(u, w) < 4[q(u,v) + q(v,w)]} holds.
This is a consequence of Cases 1-3.

Case 1. If v < u < w, then p(u,v) = 0, w —u < w — v, and,
consequently, p(u, w) = (w - u)® < (w-v)* < 4w -v)* =

4p(v,w) = 4[p(u,v) + p(v, w)].

Case 2. Ifu < wand u < v < w, then q(u,w) = (w - u)® and
f(vy) = min, o, f(v) = (w - u)® where vo = (u+w)/2is

1

a minimum point of the map f(v) = 4[p(u,v) + p(v,w)] =
4(w - u)[w? + wu + 1v* + 3V = 3v(w + u)).

Case 3. If u < w < v, then p(v,w) = 0 and, consequently,
plu,w) = (w-u)<-u)?’ <4v-u)= 4p(u,v) = 4[p(u,
v) + p(v,w)].

(2) Pay1y = {p} is asymmetric. Indeed, we have that 0=
p(6,0) # p(0,6) = 216. Therefore, condition V, ,x {p(u,
w) = p(w, u)} does not hold.

(3) Py 1y = {p} vanishes on the diagonal. In fact, by (68),

itis clear that V. {p(u,u) = 0}.
L=y

(4) We observe that LIM = [2;6] and

(u,,,:meN)
LIMfM;ﬁ;’:g}) = [1;2] for sequence (u,, = 2 : m € N). We con-
clude this from (68).

Example 4. Let X = [0;6] and let Py, = {p} where p :
X% = [0;00) is of the form

0 ifu>w,
plthw) = {(u —w) ifu<w. )
Let
E=1[0;3)uU(3;6] (70)

and let y > 36/4 and 75y, = {J} where J : X2 = [0;00) is
of the form

pw,w) if En{u,w} = {u,w},
J (u,w) = (71)
U if En{u,w} #+ {u, w}.

(1) 7 21,11 is not symmetric. In fact, by (69)—-(71), J(0,6) =
36 and J(6,0) = 0.
L R
() iy = U € Sy, 0 My, - Se€ Theorem 14.

Remark 33. By Examples 1-4 it follows that the distances
p defined by (65) and (67)-(69) and ] defined by (70) and
(71) are not metrics, ultra metrics, quasi-metrics, ultra quasi-
metrics, b-metrics, partial metrics, partial b-metrics, pseu-
dometrics (gauges), quasi-pseudometrics (quasi-gauges), and
ultra quasi-pseudometrics (ultra quasi-gauges).

11. Examples Illustrating Theorem 26

Example 1. Let X = [0; 6], let y > 2048 be arbitrary and fixed,
and, for u, w € X, let

pu,w)
0 ifu>w, {u,w}n(0;6) = {u,w}, 72)
=Jd(w-uw! fu<w, {ww}n(0;6)={uuw,
y if {u,w}N(0;6) + {u, w}.

Define the set-valued dynamic system (X, T') by

rhﬂ if u e [0;3) U (4;6],
T (u) = (73)
(4;6) if u € [3;4].
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Let
E =1[0;3)U(46] (74)
andletJ : X x X — [0; 00) be of the form

pw,w) if En{u,w} = {u,w},
J (u,w) = (75)
y if EN{u,w} # {u,w}.

(1) (X, Pgpq1y)> where Py, = {ph, is the quasi-
triangular space, and 7 5.1, = {J} is the left and right family
generated by Pg.(1y. This is a consequence of Definitions 7
and 11, Example 1, and Theorem 14; we see thaty = y > 81.

(2) (T isa(D = D, 190 = @ 700} ¢ [2048/
Vs 1))-quasi-contraction on X; that is, Ve p048/y51) Vx,yex 18

D(T(x), T(y)) < AJ(x, y)} where

D (U,W) = max {sup] (u, W), supJ (U, w)]» ,

uelU wew (76)

U W e 2%

Indeed, we see that this follows from (73)-(76) and from
Cases 1-4 below.

Casel. Ifx, y € [0;3)U(4;6],thenT(x) = T(y) = [1;2] =U ¢

E and sup,, . {inf e, J(u, w)} = sup, ., AJ(u,u) = p(u,u) =
0} = 0. Thus 4D(T'(x), T(y)) = 0 < AJ(x, ).

Case2.If x € [0;3)U(4;6] and y € [3;4], then T'(x) = [1;2] =
UCE, T(y) = (4,6) =W C E, and sup,, . {inf e J (1, w)} =
sup,,cptinf e (w — w?'l = sup,y(4 - w)? = 81 and
sup,eptinf, o J(w, w)} = supyepinf,p(w - wh =
sup, (W — 2)* = 256. Thus 8D(T(x), T(y)) = 2048. On
the other hand, y ¢ E which gives J(x, y) = y. Therefore,
8D(T(x),T(y)) < AJ(x,y) whenever 2048 < Ay. This gives
2048/y < A < 1 whenever y > max{2048; 81}.

Case 3. If x € [3;4] and y € [0;3) U (4;6], then T(x) =
(4,6) = U c Eand T(y) = [1;2] = W c E. Hence we
obtain sup,, . {inf, o J (1, w)} = sup,Ainf, o plu, w)} =
supewtinf, e/, w)} = sup, ey dinf, opu, w)y = 0.
Therefore, 8D(T'(x), T(y)) = 0 < AJ(x, ).

Case 4. If x, y € [3;4], then T(x) = T(y) = (4;6) =U C E.
Therefore 4D, (T(x), T(y)) = 0 < AJ(x, y).

(3) Property (26) holds; that is, ¥ e x ¥ ge(o,00) Fyerix) (%,
y) < J(x,T(x)) + B}. Indeed, this follows from Cases 1-4
below.

Casel.If x, =0and y, = 1 € T(x,) = [1;2], then J(xy, ) =
V> ](x())T(xo)) = infwe[1;2]](x0a w) = Vs and vﬁg(o;oo) {](x();
Yo) < J(x0, T(x)) + B}

Case 2. It x, € (0;1] and y, = 1 € T(x,) = [1;2], then
](x()r )’o) =1- x()) ](x()) T(x())) = infwe[l;z]](xo, w) =1- x()’
and Vﬁe(o;oo) {J (x> ¥o) < J(xg, T(xy)) + ﬁ}

Case 3. If x, € (1;3) U (456) and y, = 1 € T(x,) = [1;2],
then J(xy, 9) = 0, J(x9, T(x,)) = 0, and Vgeg,00) {J (9> ¥o) <
J(x0, T(x,)) + B}
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Case 4. If x,, € [3;4] and y, € T(x,) = (4;6), then J(x,, y,) =
> p(x0, T(xy)) = y, and V Be(0500) {J (x> y0) < J(x0, T(x0)) +
Bt

Case 5. If x, = 6 and y, € T(x,) = [1;2], then J(xy, ¥;) = >
P(x0, T(x0)) = p> and Vpeg00) 1 (%05 ¥o) < J(x0, T(x0)) + B}

(4) (X, T) is left and right 7 g,.(,,-admissible in each point
w® € X.Infact,ifw’ € X and (W™ : m € {0}UN) are such that
Yeopon W™ € T(w™)} and lim,, , o, sup,.,,J (W™, w") =
0 (lim,, _, oSup,,s,,J(W",w™) = 0), then V., {w™ € [1;2]}
and, consequently, by (72), V,,c26)cx {lim,, _, o, p(w,w™) =
0} (Yyeoajex {lim,, , ,p(w™ w) = 0}). Hence, by (75)
and (76), we get V,cpayuaecx im, . oJ(w,w™) =
0} (Vype(o)ex {lim,, oo J(w™, w) = 0}).

(5) (X, T) is a left and right P g, (;,-closed on X. Indeed,
let (x,, : m € N) € T(X) be aleft (right) &g, (,-converging

sequence in X (thus LIM(L}:Q;SE,Q’) + @ (LIMiC_‘G{:SQ;\If) + @))
and having subsequences (v,, : m € N) and (u,, : m € N)

satisfying V,,cn {v,, € T(u,,)}. Then Vo, {x,, € [1;2]},2 €
T(2)and2 € LIM, %% (1 € T(1)and 1 € LIM, ).
(6) All assumptions of Theorem 26 are satisfied. This
follows from (1)-(5) in Example 1.
We conclude that Fix(T) = [1;2] and we have shown the
following.
ClaimA.2 € T(2) and 2 € LIM(L;;ZDZ}:%}W) for each w® € X
and for each dynamic process (W™ : m € {0} U N) of the
system (X, T).
ClaimB.1 € T(1)and 1 € LIMfujfr‘n”e;‘{l(’)}uN) for each w® € X

and for each dynamic process (W” : m € {0} U N) of the
system (X, T).

Example 2. Let X, Py = {p}, and (X, T) be such as in
Example 1.

(1) For each A € [0;1), condition Y yex {8D(T'(x),
T(y)) < Ap(x,y)}, where D(U,W) = max{sup,,p(u,
W), sup,, i p(U,w)}, U, W € 2% does not hold. Suppose that
neion) Vxpex 8D(T(x), T(y)) < Agp(x, y)}. Letting xo = 2
and y, = 3, it can be shown that p(xy, ¥,) = 1, T(x,) =
[152] = U, T(p) = (46) = W, sup,cqroplts (4:6)) =
SUP,c(12)(4 — u)* = 3* = 81, and SUP e P([152],w) =
SUP e (456) (W — 2)* = 4* = 256. Therefore 2048 = 8D(T(x,),
T(y,)) = 8max{81;256} < Ayp(xy ¥y) = Ay which is
absurd.

Remark 34. We make the following remarks about Examples
1 and 2 and Theorem 26: (a) By Example 1, we observe that
we may apply Theorem 26 for set-valued dynamic systems
(X,T) in the left and right quasi-triangular space (X, ¢, y)
with left and right family 7., generated by %, where
Fca * Pcg- (b) By Example 2, we note, however, that
we do not apply Theorem 26 in the quasi-triangular space
(X, Pc.y) when Zc. oy = Pe.y. (c) From (a) and (b) it follows
that, in Theorem 26, the existence of left (right) families 7.,
generated by &, and such that 7, # P, are essential.
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Example 3. Let X = (0;6),y > 0, and

A=AUA, A, =(02], A,=[46). (77)

Letp: X2 = [0;00) be of the form
if An{u,w}={u,w},

0
pluw) = { | (78)
y it An{u,w} + {u,w},

and let 71y, = Ppq1y = {p} Define the set-valued dynam-
ic system (X, T') by

A, forue(0;3),

T(u)=4A foru=3, (79)

A, foruce(36).
(1) (X, Pyyqy) is quasi-triangular space. See Example 2,

Section 11.
A € [0;1))-quasi-contraction

2) (X, T)isa (EZ
on X; that is, V¢ (o) nyex {szf)(l}'{l’(T(x) T(y)) < Ap(x,

y)}. Indeed, if x, y € X, then, by (77)-(79), T(x), T(y) cA
and max{sup,, . x)p(u, T(y)), SUPer(y) p(T(x), w)} =

(3) Property (16) holds; that is, Viex Vﬁg(o;oo)
Jyer (P, ) < plx, T(x)) + B}. Indeed, this follows from
Cases 1-3 below.

L- 9(1} g

Case 1. Let x;, € (0;3) and 8 € (0; 00) be arbitrary and fixed.
If y, € T(x,) = A,, then, by (78),
P (x0, 70) = P (%0, T (%))
0 ifxyeA, (80)
- y for x, € (0;3)\ A;.

Therefore, p(x,, ¥y) < p(x, T(xq)) + 5.

Case 2. Let x, = 3 and let € (0; 00) be arbitrary and fixed. If
¥o € T(x,) = A, then, by (78), p(xy, ¥y) = p(x0, T(xg)) =y
Therefore, p(xy, y,) < p(xq, T(x,)) + B.

Case 3. Let x;, € (3;6) and 3 € (0; 00) be arbitrary and fixed.
If y, € T(x,) = A,, then, by (78),

P (x0, y0) = p (%0, T (%))

0 ifx, €A, (81)
- y for x, € (3;6) \ A,.

Therefore, p(xq, ¥,) < p(xg, T'(x,)) + B

(4) (X, T)is left and right P(yy.(,-admissible in X. Assum-
ing that w’ € X is arbitrary and fixed we prove that if the
dynamic process (w™ : m € {0} UN) of (X,T) starting
at w’ is such that lim,,_, sup,., p(w™ w") = 0, then
Jex {lim,, o plw,w™) = 0}. Indeed, if w’ € X, then, by
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(79), V51 {w™ € T(Ww™ ™) c A}and, by (78), we immediately

L-Puy _ R=Puyq
get A= LIM(w :me{O}uN) — LIM(w :me{0}UN)*

(5) Set-valued dynamic system (X, T'?) is a left and right
Pyay-closed on X. Indeed, if (x,, : m € N) € T¥(X) = A
is a left or right &;.(;,-converging sequence in X and having
subsequences (v,, : m € N) and (u,, : m € N) satistying
VmeN {v,, € T(u,)}, then, by (77)-(79), we have that

m eN vm>m {x € A} A= LIML J“}e(&l}) - LIMic_m@r:llg{l()}}UN)’
and Fix(T®?) =

(6) For (X, 9’{1},{1})’ Puyqy = ph Ly = Popy and
(X, T) defined by (77)-(79), all assumptions of Theorem 26 are
satisfied. This follows from (1)-(5) in Example 3.

We conclude that Fix(T™®') = A and we claim that if w®° €
X, w' € Tw"), and w? = u € T(w") are arbitrary and fixed,
and Y, {w™ = u}, then sequence (W™ : m € {0} UN) is a
dynamic process of T starting at w® and left and right Puny-
converging to each point of A. We observe also that Fix(T') =
.

Example 4. Let X = [0;6] and let Py, = {p} where p :
X2 5 [0;00) is of the form

if u>w,

0
pww) = (82)

(u-w) ifu<w.
Define the set-valued dynamic system (X, T') by

T (u) = ([0;3)U(3;6]) \ {u} for u € [0;6]. (83)

Let
=1[0;3)U(3;6] (84)

and let 4 > 36/4 and 7 5.1, = {J} where ] : X? = [0;00) is

of the form

{p(u,w) if E N {u, w} = {u,w},
(w,w) = (85)
7 if EN{u,w} # {u,w}.

(1) 7 (1,11 is not symmetric. In fact, by (82), (84), and (85),
J(0,6) = 36 and J(6,0) = 0.
L R
@) F ey = U} € Iz, NI

XZa)
B)(X,T)isa (D = 91’;{“”“’, A € [0;1))-contraction on
X; that is, Yy yex {2-D(T(x), T(y)) < AJ(x, y)} where A €

[0;1) and

. See Theorem 14.

D (U, W) = max {sup] (u,W), supJ (U, w)}> ,

ueU wew (86)

UW ¢ 2X

Indeed, we see that this follows from (1), (2) in Example 4,
and from Cases 1-4 below.



14

Casel. Letx, y € [0;3)U(3;6]. Thenx, y € E, T(x) = ([0;3)U
(3;6])\{x} =U c E,;and T(y) = ([0;3)U(3;6)\{y} =W C E.
If u € U, then we have W = W” UW, and

ulfelxgz J (u, w)

_ [dnpatew <o
T inf u-w)?=0 ifW,={weW:u<uw}+ o

wew,

fW'={weW:u>w}+a, (87)

and if w € W, then we have U = U* UU,, and
1141615 J (u, w)

ifU={ueU:u>w}+a, (838

inff (u-—w)>=0 ifU,={uelU:u<w+o.

uel,

{ u1€nUqu (u,w) =0

By (86), 2D(T'(x),T(y)) =0 < AJ(x, y).

Case 2. If x = y = 3, then J(x,y) = p and T(x)
T(y) = [0;3) U (3;6] = U c E. Therefore, 2D(T(x), T(y))
2D(U,U) =0 < A (x, y).

Case 3. If x € [0;3)U(3;6] and y = 3,thenx € E, y ¢ E,
J(x, y) = T(x) = ([0;3) U (336]) \ {x} = U  E,and T(y) =
[0;3) U (3;6] = W C E. We see that sup,,. {inf e J (1, w)} =
0since ifu € U, then also w = u € W and inf ., J (1, w) =
q(u,u) = 0. Next, we see that sup, ., {inf,,J(, w)} = 0
since if w € W, thenU = U¥ UU,, and

if) e

_ [t =0
inUf (u-w)>=0 iftU,={ueU:u<uw}+a.
ueU,,

ifU“={ueU:u>w}+a, (89)

Thus 2D(T'(x), T(y)) = 0 < AJ(x, ).

Case 4. If x =3 and y € [0;3) U (3;6],thenx ¢ E, y € E,
J(x, ) = 4 T(x) = [033) U (3:6] = U € E, T(y) = ((0:3) U
(3;6]) \ {y} = W c E, and sup,,,{inf .y, J (1, w)} = 0 since,
forueU,

ul)rel‘fv J (u, w)

{ inf gu,w)=0 fW'={weW:u2wl+ga, (90)
< weWw"

invlf, u-wi?=0 ifW,={weW:u<w}+o
and sup,, .y Ainf,, . J (1, w)} = 0 since inf ., J(u, w) = J(w,
w) = 0 for w € W. Thus 2D(T(x), T(y)) = 0 < AJ(x, y).

(4) Property (26) holds; that is, Ve x V\e(0;00)3yer(x) {(
y) < J(x,T(x)) + y}. Indeed, this follows from Cases 1-3
below.

Case 1. Let x,, € [0;3) and y € (0;00) be arbitrary and fixed.
If y, € T(x,) = ([0;3) U (3;6]) \ {x,} = W is such that
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X < Yo < 3, then J(xy, ¥y) = (xg — yo)2 and J(x,, T(x,)) =
inf ey J(xy, w) = 0 since

g o)
iI&f q(xpw)=0 W ={weW:x,>w}+a, (91)
wew*o
ir‘}g (xg-w)> =0 if W, ={weW:x, <w}+a.
weW,,

Then we see that J(xg, y,) = (xo — y0)2 <y implies y, < xy +
y/2. From this we conclude that if y, € (x,; min{3, x,+y'/*}),

then J(xy, yp) < J(xg, T(x)) + y-

Case 2. Let x, = 3. Assume that y, € T(x,) = [0;3) U (3;6]
is arbitrary and fixed. Then J(xy, y) = u, J(xg, T(x,)) =
inf co3uz6/ (Xow) = u and, for each y € (0;00),
J (%05 ) < J (%0, T(x0)) + ¥

Case 3. Let x, € (3;6] and y € (0; co) be arbitrary and fixed.
If yy € T(xy) = ([0;3) U (3;6]) \ {xg} = W is such that 3 <
Yo < X, then J(x,, ¥;) = 0 and, analogously as in Case 1, we
get J(xg, T(x)) = inf e J(xp, w) = 0. Therefore, J(x,, y,) <
J(xg, T(x)) + -

(5) (X,T) is left 7 (5),1-admissible in X. Assuming that
X is arbitrary and fixed we prove that if the
dynamic process (w” : m € {0} UN) of (X,T) starting
at w° is such that lim,, _, sup,., J(w™ w") = 0, then
Jyex {lim, , J(w,w™) = 0}. We consider the following
cases.

w’ €

Case 1. If w® € [0;3) U (3;6], then w' € T(W") = ([0;3) U
(3;6]) \ {w’} and Vs (W™ € T(w™ ™) ¢ [0;3) U (3;6]} and
L=F gy

using (82) we immediately get 6 € LIM . <01 -

Case 2. If w® = 3, then w' € TW®) = [0;3) U (3;6], w* €

Tw") = ([0;3) U (3;6]) \ {w'}, and V.55 {w™ € T(W™™") ¢

[0;3) U (3;6]} and using (82) we also immediately get 6 €
L-7 o0

LIM(w’":{m}E{{)O}UN)'

This shows that 6 € LIMZ,{: {;l’zl{}o}uN) for each w’ € X and

for each dynamic process (w™ : m € {0} U N) of the system
(X, T); we see that here property lim,, _, . sup,,.,,,J (w", w") =
0 of (w™ : m € {0} UN) is not required.

(6) Set-valued dynamic system (X, ™) is a left Py
quasi-closed on X. Indeed, if (x,, : m € N) ¢ T?(X) =
[053) U (35 6] is a left P(y).()-converging sequence in X and
having subsequences (v,, : m € N)and (4, : m € N)
satistying V,,en {v,, € T(u,,)}, then, by (83), we have that
FnyeN Vimzm, (%m € [053) U (3;6]}. Therefore, in particular,

6 € LIM~ 72 and 6 € T (6).

(x,,,:meN)

(7) For 9{2};{1} = {p}, j{Z};{l} = {]}, and (X, T) deﬁned by
(82)-(85), all assumptions of Theorem 26 in the case of “left”
are satisfied. This follows from (1)-(6) in Example 4.

We conclude that Fix(T[Z]) = [0;3) U (3; 6] and we claim

that 6 € T'?(6) and that 6 € LIM(Lujff r‘fq’é‘{lz)}uN) foreachw® € X
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and for each dynamic process (W™ : m € {0} U N) of the
system (X, T). We observe also that Fix(T) = @

12. Example Illustrating Theorem 32

E.xample 1 Let X = (0, 6), A, and j{l};{l} = 9{1};{1} = {p}
be as in Example 3. Define the single-valued dynamic system
(X, T) by

4 for u € (0;3),
T (u) = (92)
2 for u € [3;6).
(1) (X, T) is a (2] "0,
on X; that is, Ve Yy ex 1D DY, ‘@“””(T(x) T(y) =
max{p(T'(x), T(y)), p(T(y), T(x))} < /\p(x ¥)} and Fix(T) =
@. Indeed, we see that if x, y € X, then T'(x), T(y) € A and,
by (77) and (78), DYy " (T(x), T(y)) = 0 < Ap(x, y).

(2) (X, T)isleft and right Pyyy.q1;-admissible in X. Assume
thatw’ € Xis arbitrary and fixed, (w™ : m € {0} UN) satisfies
Y e iojun {w™! = T(w™)}, and lim,, _, . sup, ., p(w™, w") =
0. Then, by (92) and (78), we have V., {w™ € A}. This gives

L=y _ R=Puyq
A= LIM(w :me{0}UN) LIM(wm:me{O}UN)'

(3) Single-valued dynamic system (X, T is a left and
right Pyy.q,-closed on X. Indeed, if (x,, : m € N) ¢
TR(X) = {2,4} is a left P1p1)-converging sequence in X
and having subsequences (v : m e N) and (u,, : m € N)

satisfying V,,,c 1v,, = T (u,,))}, then, by (77), (78), and (92),
we have that A = LIML 9“”” . In particular, 2 = T®(2) €

LIM, 7% and 4 = T[2 (4) c LIM(LX T

) Property (56) holds. Indeed, ‘we have Y eFix(T2)=(2,4}
{p(v,T(v)) = p(T(v),v) = 0} since T(2) = 4, T(4) = 2, and
T({2,4}) = {2,4} c A.

(5) Py = {p} is not separating on X. Indeed, if u, w €
X/A, then p(u, w) = p(w,u) =y > 0.

(6) For Pyyyy = {ph (X.T), and Fuyyy = Py
defined by (77), (78), and (79) parts (Bl) and (B2) of
Theorem 32 hold but part (B3) of Theorem 32 does not hold.
This follows from (1)-(5) in Example 1.

A € [0;1))-quasi-contraction

13. Concluding Remarks

Remark 1. In Theorems 5 and 6 the following play an
important role: (i) Distances d and HY, as metrics, satisfy
conditions (A) of Definition 1on X and € %(X), respectively.
(ii) (X, d) and (B (X), H?), as metric spaces, are topological
and Hausdorft spaces and the completeness of (X, d) implies
completeness of (€%(X), H?). (iii) The continuity of d and
H? on X x X and €B(X) x €RB(X), respectively; (iv)
The continuity of maps T (X,d) —» (X,d)and T
(X,d) — (EAB(X),H?) (as consequences of contractive
properties defined in (1) and (3), resp.); (v) In Theorem 6 the
assumption that, for each x € X, T'(x) € €RB(X).

Remark 2. Conclusions in Theorems 5 and 6 concern only
fixed points but not periodic points; this is a consequence
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of separability of spaces (X, d) and (€B(X), H*) and also
continuity of T.

Remark 3. In Theorems 26 and 32, properties concening the
spaces and maps such as mentioned above generally need not
hold, since spaces (X, P¢,,) with left (right) families 7.,
generated by &, are very general, which is an obstruction
to use Nadler’s and Banach’s reasoning. Theorems 26 and 32
show how to rectify this situation and are obtained without
restrictively required assumptions and with conclusions more
profound as in the well known results of this sort existing in
the literature.
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