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Presently pneumatic muscles (PMs) are used in various applications due to their simple construction, lightweight, and high
force-to-weight ratio. However, pneumatic muscles are facing various problems due to their nonlinear characteristics and various
uncertainties in real applications. To cope with the uncertainties and strong nonlinearity of a PM model, a nonlinear disturbance
observer (NDO) is designed to estimate the lumped disturbance. Based on the disturbance observer, the tracking control of PM is
studied. Stability analysis based on Lyapunov method with respect to our proposed control law is discussed.The simulation results
show the validity, effectiveness, and enhancing robustness of the proposed methods.

1. Introduction

Designing a robot arm that performs tasks in anthropic envi-
ronments in a fashion similar to a human arm is the goal of
many ongoing research projects. Task-oriented rehabilitation
therapy is becoming exciting as an important issue and needs
to be addressed in a sufficient way. In particular, safe and
not inducing further injury or pain during motor function
training need to be carefully investigated since they are the
main challenges in such kind of task [1, 2]. Owing to the
absence of compliance in robot, pneumatic muscle actuators
(PMAs) are considered to be basic actuators and offer the
advantage of intrinsic elasticity to achieve joint compliance
[3]. A PMA is an interesting actuator, which is very similar
to animal skeletal muscle action in size, weight, and power
output. It works in a similar manner to human or animal
muscles. There are several advantages of PMA, such as lower
cost, light weight, compliance, and very high power/weight
and power/volume ratios. These ratios are about five times
higher in comparison to an electric motor or a hydraulic
actuator [4].

However, all that glitter is not gold. The slower response
in force-generation and nonlinear parameters depending on

the load, position, and speed of PMAs compared to electric
motors is the main problem making pneumatic actuators
inaccurate and difficult to control [4, 5]. To overcome this
complexity and hindrance, in recent years a great effort in
human-friendly robotic systems has focused on the devel-
opment of actuation systems that can provide robots with
the characteristics of safety, accuracy, ease to control, and
high performance. So far, the researchers presented a number
of novel approaches to alleviate the design of controller in
practical applications of PMA. Repperger et al. modelled
the PMA as a stiffness-visco model consisting of a spring
element and damping element arranged in parallel [6].
Reynolds et al. proposed and constructed an improved new
phenomenological model, which is consisting of a contractile
element, a spring element, and a damping element based
on Repperger’s model [7]. With a progress in the area of
networked robotic systems interact closely with humans [8];
researchers have investigated nonlinear control methods,
with attention to safety requirements as well as the traditional
metrics of performance. Accordingly, there are an abundance
of researches on safe robots and new results on stability and
𝐻
∞
performance have been developed to help humans [9, 10].
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Xing et al. presented a wearable exoskeletal robot for
upper extremity stroke rehabilitation called “RUPERT”
which has four actuated degrees of freedomdriven by compli-
ant and safe pneumaticmuscles (PMs) on the shoulder, elbow,
and wrist [9]. A nonlinear control strategy as a cascaded
tracking control concept for pneumatic muscle actuators is
presented in [11]. The main objective is to control a trolley,
which is driven by an artificial muscle to follow a reference
path.

To improve the control performance of the PM,Xing et al.
have driven a new type of actuator, which comprises a
pneumatic muscle (PM) and a torsion spring; in this study,
the sliding mode approach is applied to the tracking control
problem of a planar arm manipulator system [12, 13].

In [14–16] a fuzzy logic control has been used to overcome
poor models, the approach is not mathematical and mimics
how a person would make decisions. Emanuel Todorov et al.
have worked with pneumatically actuated robots and
reported results on modeling and control of a 2-DOF robot,
as well as preliminary results on a state-of-the-art 38-DOF
humanoid [17]. Varga and Moučka have presented results
gained in research experiments with an artificial muscle;
the realized experiments were focused on finding the exact
mechanical features of artificial muscle, which will be used
for development of a theoretical model. This model can be
later used for direct control of the muscle [18].

It is found that using a disturbance observer can further
improve the robustness of nonlinear control system. Recently,
some works have been presented about the observer design
for nonlinear systems [1, 12, 19–21].

This study proposes a Nonlinear Disturbance Observer
Based Control (NDOBC) approach for the PM system. A
major advantage and novelty of our framework is that it
allows us to develop in a separate way the control law from
the observer design provided that each part satisfies some
stability properties. In general, themain objective of the use of
a disturbance observer is to deduce the external unknown or
uncertain disturbancewithout the use of an additional sensor.
Friction is a very common phenomenon in mechanical
systems and plays an important role in system performance.
Many friction models and compensation methods have been
proposed, one of the most promising methods is Nonlinear
Disturbance Observer Based Control (NDOBC) where a
NDO is used to estimate the friction.

To cope with the uncertainties and strong nonlinearity
of the pneumatic muscle a nonlinear disturbance observer
(NDO) is presented in this paper. Lyapunov concepts are
the fundamental tools invoked to analyze the closed-loop
PM behavior which leads, by carefully selecting the observer
gain function, to the stability and utilization of asymptotic
position tracking performance. Stabilization controller is
designed by using Lyapunov theory on the pneumatic muscle
system, and then the observer design theory is used for
interference suppression under the condition of existing
model error and external disturbance. The scheme enhances
the robustness of the position tracking and improves the
tracking accuracy.

PID controllers are one of the most used types of con-
trollers in practice. They are easy to realize and can stabilize

a system even without knowing the model. However, in spite
of the simplicity and the small number of parameters that
have to be adjusted, it is hard to analyze the stability and tune
the parameters when using PID controllers. Therefore, the
major significance of the proposed Nonlinear Disturbance
Observer Based Control (NDOBC) controller lies in its high
robustness against disturbance and superior performance
over the conventional PID controller (see Figure 10). More-
over, NDOBC’s engineering implementation is also easy,
which explores a convenient engineering method to improve
the performance of the PM control system.

The layout of this paper is as follows. In Section 2, we
derive the model of the PM system. Section 3 concerns
with Nonlinear Disturbance Observer Based Control design.
Section 4 discusses the stability analysis. Simulation results
are presented and discussed in Section 5. We finally end by
the conclusion in Section 6.

2. System Model

PMAs are assumed as actuators in many applications, where
their static and dynamic characteristics play an important
role in the overall behavior of the control system. Therefore,
improving the dynamic behavior of the pneumatic muscle
actuator is of prime interest to control system designers.

Two main categories for the mathematical models of a
pneumatic muscle actuator are prevalent: the theoretical and
the phenomenologicalmodels.The theoreticalmodels, which
are derived from the law of energy conservation, describe
PMA behavior based on quasistatic states without inclusion
of explicitly temporal information. However, this approach
limits its application for real-time control because not only
it is too complex in structure, but also it requires too many
parameters that are difficult to obtain during experimentation
[1, 22, 23].

In this paper, we adopt the phenomenological model as
a combination of effects from nonlinear friction, spring, and
contraction components to describe the dynamic behavior of
a pneumatic muscle (PM) pulling a mass against gravity as in
Figure 1(b).

The coefficients related to these three elements depend on
the input pressure of the PM [1]. The equations describing
approximately the dynamics of a PM are given by

𝑀�̈� + 𝐵 (𝑃) �̇� + 𝐾 (𝑃) 𝑥 = 𝐹 (𝑃) − 𝑀𝑔, (1)

𝐾 (𝑃) = 𝐾
0

+ 𝐾
1
𝑃, (2)

𝐵 (𝑃) = 𝐵
0𝑖

+ 𝐵
1𝑖

𝑃 (inflation) , (3)

𝐵 (𝑃) = 𝐵
0𝑑

+ 𝐵
1𝑑

𝑃 (deflation) , (4)

𝐹 (𝑃) = 𝐹
0

+ 𝐹
1
𝑃, (5)

where 𝑀 is the mass, 𝑔 is the acceleration of gravity, Δ𝑥 = 0

corresponds to the fully deflated position (see Figure 1(a)),
and 𝑃 is the input pressure. The coefficients 𝐾(𝑃) and 𝐵(𝑃)

are pressure dependent for the spring and the damping,
respectively. The contractile element presented the effective
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Figure 1: (a) The operational principle of a PM; (b) the three-element model of PM.
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Figure 2: Step-trajectory tracking result without NDO.

force 𝐹(𝑃). The damping coefficient depends on whether the
PM is inflated and deflated. From the dynamic equations (1)–
(5), we can write for the PM the following state model:

̇𝑞
1

= 𝑞
2
,

̇𝑞
2

=
1

𝑀
[(𝐹
0

− 𝑀𝑔 − 𝐵
0
𝑞
2

− 𝐾
0
𝑞
1
) + (𝐹

1
− 𝐵
1
𝑞
2

− 𝐾
1
𝑞
1
) 𝑃] ,

(6)

with state variable [𝑞
1
, 𝑞
2
]
𝑇

= [𝑥, �̇�]
𝑇. In summary, the

dynamics model of PM can be concretely represented as

𝑀�̈� + 𝐵
0
�̇� + 𝐾

0
𝑥 + (𝑀𝑔 − 𝐹

0
) = (𝐹

1
− 𝐵
1
�̇� − 𝑘
1
𝑥) 𝑃. (7)

Let us define 𝑒 = 𝑥 − 𝑥
𝑟
, ̇𝑒 = �̇� − �̇�

𝑟
, and ̈𝑒 = �̈� − �̈�

𝑟
where

𝑒, ̇𝑒 and ̈𝑒 are the position, speed, and acceleration tracking
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Figure 3: Step-trajectory tracking result with NDO.

error, respectively. Substituting these errors in (7) then we
have error-differential equation satisfying the following:

𝑀 ̈𝑒 + 𝑀�̈�
𝑟

+ 𝐵
0

̇𝑒 + 𝐵
0
�̇�
𝑟

+ 𝐾
0
𝑒 + 𝐾
0
𝑥
𝑟

+ (𝑀𝑔 − 𝐹
0
)

= (𝐹
1

− 𝐵
1

̇𝑒 − 𝐵
1
�̇�
𝑟

− 𝐾
1
𝑒 − 𝐾
1
𝑥
𝑟
) 𝑃.

(8)

Let us introduce an additional control component ] satisfying

(𝐹
1

− 𝐵
1

̇𝑒 − 𝐵
1
�̇�
𝑟

− 𝐾
1
𝑒 − 𝐾
1
𝑥
𝑟
) 𝑃

= 𝑀�̈�
𝑟

+ 𝐵
0
�̇�
𝑟

+ 𝐾
0
𝑥
𝑟

+ (𝑀𝑔 − 𝐹
0
) − 𝐾
𝑃

𝑒 + ],

(9)

] = 𝑀 ̈𝑒 + 𝐵
0

̇𝑒 + (𝐾
0

+ 𝐾
𝑃

) 𝑒 = 𝑀 ̈𝑒 + 𝐵
0

̇𝑒 + 𝛽𝑒, (10)

where 𝛽 = 𝐾
0

+ 𝐾
𝑃
is a constant.
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Figure 4: Step-trajectory comparison for position tracking
with/without NDO.
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Figure 5: Step-input tracking control error (amplitude = 15mm).

Let us define another state variable satisfying [𝑥
1
, 𝑥
2
]
𝑇

=

[𝑒, ̇𝑒 + 𝑒]
𝑇. Then the error dynamic model in (10) can be

translated into the following equation of state:

�̇�
1

= −𝑥
1

+ 𝑥
2
,

�̇�
2

=
1

𝑀
((𝐵
0

− 𝐾
0

− 𝐾
𝑃

− 𝑀) 𝑥
1

− (𝐵
0

− 𝑀) 𝑥
2

− 𝐻
0
)

+
𝐻
1

𝑀
𝑃,

(11)

where 𝐻
0

= 𝑀�̈�
𝑟

+ 𝐵
0
�̇�
𝑟

+ 𝐾
0
𝑥
𝑟

+ (𝑀𝑔 − 𝐹
0
) − 𝐾

𝑃
𝑒 and

𝐻
1

= 𝐹
1

− 𝐵
1

̇𝑒 − 𝐵
1
�̇�
𝑟

− 𝐾
1
𝑒 − 𝐾
1
𝑥
𝑟
.

3. Nonlinear Disturbance Observer (NDO)
Based Control Design

In this section, we discuss the Nonlinear Disturbance
Observer Based Robust Control (NDOBRC) approach for
PM-tracking control. Estimation of nonlinear uncertainty
can be pursued through generating the uncertainties as the
output of some exogenous system, allowing estimation and
compensation under certain conditions. It is a matter of
fact that a model of the exosystems must be included into
the controller to reach the design goals. Owing to this, a
composite controller must be built consisting of two parts:
a controller without or having poor disturbance attenuation
ability and a disturbance observer.

As the dynamics of a PM is nonlinear and hard to model
precisely, the design of the model-based control algorithm
is more cumbersome. Besides the modeling uncertainties,
external disturbances are inevitable in real environments
which degrade the control performance. Therefore, the con-
troller should have a robust capability to achieve the desired
objective. Since the PMmodel shows highly nonlinear behav-
ior, it is difficult to estimate the proper normbound and, thus,
the usual robust control method for PM control often results
in a conservative design. Therefore, the use of a disturbance
observer resolves these difficulties.

Considering the external disturbances 𝜔 and the model
error in (11) the general PM model with interference is given
by

�̇� = 𝑓 (𝑋) + 𝑔
1

(𝑋) 𝑃 + 𝑔
2

(𝑋) 𝜔, (12)

where

�̇� = [�̇�
1

�̇�
2
]
𝑇

, 𝑔
1

(𝑋) = [0
𝐻
1

𝑀
]

𝑇

,

𝑔
2

(𝑋) = [0
1

𝑀
]

𝑇

,

𝑓 (𝑋)

= [−𝑥
1
+ 𝑥
2

1

𝑀

((𝐵
0
− 𝐾
0
− 𝐾
𝑃
−𝑀)𝑥

1
− (𝐵
0
−𝑀)𝑥

2
− 𝐻
0
)]

𝑇

.

(13)

To estimate the disturbance 𝜔 a nonlinear disturbance
observer is proposed as

̇̂𝜔 = 𝛼 (�̇� − 𝑓 (𝑋) − 𝑔
1

(𝑋) 𝑃 − 𝑔
2

(𝑋) �̂�) (14)

with 𝛼 = [𝑐
1

𝑐
2
] where 𝑐

1
> 0 and 𝑐

2
> 0.

Let us define observer residuals as �̃� = 𝜔 − �̂�; then the
observer in (14) can be given by

̇̂𝜔 = 𝛼 (�̇� − 𝑓 (𝑋) − 𝑔
1

(𝑋) 𝑃 − 𝑔
2

(𝑋) �̂�)

= 𝛼 ⋅ 𝑔
2

(𝑋) (𝜔 − �̂�) = [𝑐
1

𝑐
2
] 𝑔
2

(𝑋) �̃�.

(15)

Since 𝑔
2
(𝑋) = [0 1/𝑀]

𝑇 then we have ̇̂𝜔 = 𝑐
2
�̃�/𝑀.

Define an auxiliary vector 𝑧 = �̂� − 𝜌(𝑋) where 𝑧 ∈ 𝑅
2,

𝜌(𝑋) is a nonlinear function to be designed, and the nonlinear
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Figure 6: Sinusoidal-trajectory tracking result without NDO.

observer gain 𝛼 is defined as 𝛼 = 𝜕𝜌(𝑋)/𝜕𝑋. Taking the time
derivative of 𝑧 and substituting (14) give us

�̇� = −𝛼 (𝑓 (𝑋) + 𝑔
1

(𝑋) 𝑃 + 𝑔
2

(𝑋) (𝑧 + 𝜌 (𝑋))) . (16)

Substituting 𝛼 in (16) the disturbance observer can be
deduced as

�̂� = 𝑧 + 𝜌 (𝑋) ,

�̇� = −𝑐
1

(−𝑥
1

+ 𝑥
2
) −

𝑐
2

𝑀

× ((𝐵
0

− 𝐾
0

− 𝐾
𝑃

− 𝑀) 𝑥
1

− (𝐵
0

− 𝑀) 𝑥
2

− 𝐻
0

+ 𝐻
1
𝑃)

−
𝑐
2

𝑀
(𝑧 + 𝑐
1
𝑥
1

+ 𝑐
2
𝑥
2
) ,

(17)

where 𝜌(𝑋) = 𝑐
1
𝑥
1

+ 𝑐
2
𝑥
2
.

Considering (9) and (12), the Nonlinear Disturbance
Observer Based Robust Control (NDOBRC) law can be given
by

𝑃 =
𝑀�̈�
𝑟

+ 𝐵
0
�̇�
𝑟

+ 𝐾
0
𝑥
𝑟

+ (𝑀𝑔 − 𝐹
0
) − 𝐾
𝑃

𝑒 + ] − �̂�

𝐹
1

− 𝐵
1

̇𝑒 − 𝐵
1
�̇�
𝑟

− 𝐾
1
𝑒 − 𝐾
1
𝑥
𝑟

. (18)

4. Stability Analysis

The main focus will be on control design based on the state-
space model for a given PM.There is typically some freedom
in the choice of Lyapunov function for the control design; we
call 𝑉 a Lyapunov function if, in a certain neighborhood of
the equilibrium point, V is positive definite and its derivative
along the system trajectories is negative semidefinite. The
main Lyapunov stability results for PM control systems can
be summarized by the following lemma and theorem.

Lemma 1 (see [24]). If, in a ball 𝐵
𝑅0

around the equilibrium
point 0, there exists a scalar function 𝑉(𝑥, 𝑡) with continuous
partial derivatives such that
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Figure 7: Sinusoidal-trajectory tracking result with NDO.
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Figure 8: Sinusoidal-trajectory comparison for position tracking
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(a) 𝑉 is positive definite
(b) �̇� is negative semidefinite

then the equilibrium point 0 is stable in the sense of Lyapunov.
If, furthermore,

(c) 𝑉 is decrescent

then the origin is uniformly stable. If condition (b) is strength-
ened by requiring that 𝑉 be negative definite, then the equilib-
rium point is uniformly asymptotically stable.

If the ball 𝐵
𝑅
is replaced by the whole state space, and

condition (a), the strengthened condition (b), condition (c), and
the condition

(d) 𝑉 (𝑥, 0) is radially unbounded
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Figure 9: Sinusoidal-input tracking control error.

0.04

0.03

0.02

0.01

0.00

0 2 4 6 8 10

Po
sit

io
n 

(m
)

Time (s)

Actual PID
Desired
Actual NDOBC

Figure 10: A comparison between NDOBC and conventional PID
controller.

are all satisfied, then the equilibrium point at 0 is globally
uniformly asymptotically stable.

Generally in �̃� = 𝜔 − �̂�, there is no prior information
about the derivative of the disturbance 𝜔. When the distur-
bance varies slowly relative to the observer dynamics, it is
reasonable to suppose that �̇� = 0, and then we have ̇̃𝜔 = − ̇̂𝜔.

Theorem 2. Consider the pneumatic muscle system (1) with a
NDOBRC controller (18). Assume that the disturbance𝜔 varies
slowly relative to the observer dynamics. Then, the trajectory
of system (1) can be driven asymptotically onto the desired
trajectory.

Proof. Consider a positive-definite Lyapunov function 𝑉(𝑡)

of the form

𝑉 =
1

2
̇𝑒
𝑇

𝑀 ̇𝑒 +
1

2
𝑒
𝑇

𝛽𝑒 +
1

2
�̃�
2

. (19)

By differentiating both sides of (19) we have

�̇� = ̇𝑒
𝑇

𝑀 ̈𝑒 + 𝑒
𝑇

𝛽 ̇𝑒 + �̃� ̇̃𝜔. (20)

From (10) we can write

𝑀 ̈𝑒 = ] − 𝐵
0

̇𝑒 − 𝛽𝑒. (21)

Substituting (21) in (20) �̇�can be deduced as

�̇� = ̇𝑒
𝑇

(] − 𝐵
0

̇𝑒 − 𝛽𝑒) + 𝑒
𝑇

𝛽 ̇𝑒 + �̃� ̇̃𝜔

= ̇𝑒
𝑇] − ̇𝑒

𝑇

𝐵
0

̇𝑒 + �̃� ̇̃𝜔 ≤ ̇𝑒
𝑇] + �̃� ̇̃𝜔.

(22)

Using ̇̃𝜔 = − ̇̂𝜔 = −𝑐
2
�̃�/𝑀 in (22) we get

�̇� ≤ ̇𝑒
𝑇] + �̃� ̇̃𝜔 = ̇𝑒

𝑇] −
𝑐
2
�̃�
2

𝑀
,

�̇� ≤ ̇𝑒
𝑇].

(23)

Consider Lemma 1 and the simple control law for the addi-
tional control component ] with a real and positive constant
𝐾 satisfying the condition ] = −𝐾 ̇𝑒with𝐾 > 0.TheLyapunov
function is decreasing. This completes the proof.

Considering (18) with ] = −𝐾 ̇𝑒, our Lyapunov control
law-based disturbance observer can be deduced as

𝑃 =
𝑀�̈�
𝑟

+ 𝐵
0
�̇�
𝑟

+ 𝐾
0
𝑥
𝑟

+ (𝑀𝑔 − 𝐹
0
) − 𝐾
𝑃

𝑒 − 𝐾 ̇𝑒 − �̂�

𝐹
1

− 𝐵
1

̇𝑒 − 𝐵
1
�̇�
𝑟

− 𝐾
1
𝑒 − 𝐾
1
𝑥
𝑟

.

(24)

Substituting (24) in (17) and using 𝑥
1

= 𝑒, 𝑥
2

= ̇𝑒 + 𝑒 the
nonlinear disturbance observer can be deduced as

�̂� = 𝑧 + 𝜌 (𝑋) ,

�̇� = − [𝑐
1

̇𝑒 +
𝑐
2

𝑀
(−𝛽𝑒 − (𝐵

0
+ 𝐾 − 𝑀) ̇𝑒)]

= (
𝑐
2

𝑀
(𝐵
0

+ 𝐾 − 𝑀) − 𝑐
1
) ̇𝑒 +

𝑐
2

⋅ 𝛽

𝑀
𝑒

= 𝛼
1

⋅ ̇𝑒 + 𝛼
2

⋅ 𝑒,

(25)

where 𝛽 = 𝐾
0

+ 𝐾
𝑃
, 𝛼
1

= (𝑐
2
/𝑀)(𝐵

0
+ 𝐾 − 𝑀) − 𝑐

1
, and

𝛼
2

= (𝑐
2

⋅ 𝛽)/𝑀.

5. Simulation Results and Discussion

The simulation has been undertaken in MATLAB/
SIMULINK. The simulation objective is to reveal the
strength of the proposed controller. In our simulation, we
let the load 𝑀 = 0.829 kg; the parameters 𝐾 and 𝐾

𝑃
have

been selected as 700 and 500, respectively. The PM
coefficients used for the simulation are shown in Table 1.
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Table 1: PM coefficient sets used for the simulation.

Coefficient 𝐶 (Evaluation) 𝐶
1
(0.9 × 𝐶) 𝐶

2
(1.1 × 𝐶)

𝐹
0
(×10
2) −1.0336 −0.9302 −1.137

𝐹
1
(×10
−6) 719.75 647.78 791.73

𝐾
0
(×10
4) 1.5010 1.351 1.651

𝐾
1
(×10
−2) −5.703 −5.133 −6.2733

𝐵
0

52.08 46.87 57.29
𝐵
1
(×10
−6) −124.5 −112.1 −137.0

The parameters 𝐹(𝑃), 𝐾(𝑃), and 𝐵(𝑃) of columns 𝐶
1
and 𝐶

2

are chosen assuming ±10% error in the evaluation values (𝐶);
the simulation interval time was selected as 10ms.

The exogenous disturbance in our simulation system was
considered as Coulomb and viscous friction. When we use
our proposed Nonlinear Disturbance Observer based Robust
Control (NDOBRC), the external nonlinear disturbance can
be approximately estimated by this nonlinear disturbance
observer (NDO).Theperformance of the proposed controller
was assessed by setting a step and a sinusoidal-trajectory
tracking problem.

Using amplitude of 0.015m of step response, in Figure 2
we show the representations of the position with respect to
time without integrating the nonlinear disturbance observer
(NDO) in the controller. As we can see from the figure, the
curves obtained from the proposed controller tend to the
desired position after small number of fluctuations. This is
due to the fact that the system needs time before reaching the
stability point.

When using our proposed NDOBRC method, the influ-
ence of disturbances is estimated by a disturbance observer
and then compensated for the controller. Therefore, the
effects of disturbances and uncertainties are reduced signif-
icantly, as depicted in Figure 3. As we can see in this figure, a
more satisfactory tracking performance can be achieved.

Figure 4 shows a comparison of control efforts
with/without the NDO, as we can see in this figure, the
maximum effort was made near the peaks. This is an
expected result due to the high rate of change in the peak
which makes the disturbance effect of the system stronger.
Also the figure indicates that the controller with NDO leads
to more accurate tracking performance compared to the
controller without NDO.

In Figure 5, we further show the tracking error with
respect to the time for the step input. From the figure we can
observe that the tracking error tends to zero after the transient
phase, which confirms again the accuracy and robustness of
our controller.

The next simulation shows the ability to follow a slow
changing reference value represented by a sinusoidal input.
For this purpose and for evaluating the performance of the
proposed controller, a sinusoidal trajectory-tracking problem
was studied.The desired trajectory is given by 0.015 sin(3𝑡) +

0.015, and the simulation interval time was selected as 0.01s.
Furthermore a nonlinear disturbance observer is presented to
estimate the unknown exogenous disturbances. The simula-
tion results for evaluation of the tracking performance with-
out/with NDO are depicted in Figures 6 and 7, respectively.

FromFigure 6, it is obvious that the tracking performance
of the system using only the proposed controller without
integrating the nonlinear disturbance observer (NDO) is
not satisfactory when there are modeling uncertainties and
perturbations. On the other hand, as shown in Figure 7, the
deviation between the actual and the desired trajectory is
significantly reduced, when we integrate the NDO in the
simulation system. The difference between the actual and
the desired trajectory applying or not applying the nonlinear
disturbance observer is highlighted by a comparison as
depicted in Figure 8.

In Figure 9 a tracking error comparison between the
desired and actual trajectory is illustrated. We can see that
the tracking error with NDO tends asymptotically, with
very small overshoot at the initial transients caused by the
disturbances, to the zero. While the tracking error without
NDO shows a number of fluctuations above the zero, this
ensures again that the tracking performance or regulation
obtained from the proposed controller (NDOBC) behaves
better than the system without NDO.

As addressed earlier, it is hard to analyze the stability and
tune the controller parameters when using PID controllers,
in spite of the simplicity and the small number of parameters
that they have to be adjusted. Therefore, a comparison has
been conducted between NDOBC and conventional PID
controller in Figure 10 to illustrate the advantage of our
proposed Nonlinear Disturbance Observer Based Control
(NDOBC) and its superior performance over the conven-
tional PID controller.

6. Conclusion

The proposed Nonlinear Disturbance Observer Based Con-
trol law (NDOBC) provides a relatively new thread for the
control of PMA. The advantage of this method not only is
reflected in its high accuracy, but also manifests itself in
convenience.The proposed approach represents a simple, yet
robust, mechanism for guaranteeing finite time performance
of zero error condition. The results of simulations demon-
strate the validity of the proposed controller and show its
superiority in tracking performance. In particular, the rapid
response to parameter’s changes and following of the desired
trajectory are the deciding features. Based on the obtained
results it is possible to realize the trajectory tracking control
of pneumatic muscle (PM) pulling a mass against gravity
practically.
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