
Research Article
Low-Cost Fault Tolerant Methodology for Real
Time MPSoC Based Embedded System

Mohsin Amin, Muhammad Shakir, Aqib Javed, Muhammad Hassan, and Syed Ali Raza

Department of Electrical Engineering, COMSATS Institute of Information and Technology, Abbottabad, Pakistan

Correspondence should be addressed to Mohsin Amin; mohsinamin@hotmail.com

Received 28 July 2014; Revised 27 October 2014; Accepted 27 October 2014; Published 19 November 2014

Academic Editor: Nadia Nedjah

Copyright © 2014 Mohsin Amin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We are proposing a design methodology for a fault tolerant homogeneous MPSoC having additional design objectives that include
low hardware overhead and performance. We have implemented three different FT methodologies on MPSoCs and compared
them against the defined constraints. The comparison of these FT methodologies is carried out by modelling their architectures in
VHDL-RTL, on Spartan 3 FPGA.The results obtained through simulations helped us to identify the most relevant scheme in terms
of the given design constraints.

1. Introduction

There has always been an urge of high performance; subse-
quent to this, plenty of efforts have beenmade to attain higher
levels in said aspect. In past, technology scaling was mainly
used for performance improvement.This approach was quite
helpful in handling various applications with high processing
demands; however bottleneck of this approach has been
reached now [1]. Continuous transistor scaling resulted in
reduced nodal capacitances and low supply voltages making
the devices more prone to the transient faults caused by
external (alpha particles and neutrons) and internal (power
supply noise and cross talk noise) noises [2].

Transient faults are more likely to occur than permanent
faults [3]; that is, product monitoring shows that permanent
faults rate as a result of external events is notmore than 10 FIT
(failure in time) whereas the transient fault rate of 1Mbit of
SRAM is around 1,000 FIT for modern process technologies.
Thus transient faults have major part in disturbing the
reliability of the system [4].

Methods such as rollback are considered effective in
rectifying transient errors. However in hard real time systems
such corrections have a huge influence on the response time
of the system. A deadline miss in the task can result in the
failure of the system [5]. For example, ATM machines, cell
phones, and thumbprint scanners are some real time systems.

In last decade, to address high performance need there
has been a shift towards multiple resource system. Different
interconnect structures have been employed in such systems
including point to point (P2P) and bus based [6]. Both
these architectures were quite useful until we had only
few processors connected through them but as the number
of processing elements (P.E) increased several issues were
spotted and P2P has limited scalability due to increased
complexity [7] while, in buses, scalability is restrained due to
the fact that by raising the number of processing elements
the resulting propagation delay increases [8]. Bus based
architecture can be implemented conveniently if number of
processors are less than five [9].

To overcome the deficiencies of the above mentioned
interconnect structures network on chip (NoC) communi-
cation architecture has been adopted. This approach has
the tendency to fulfil high performance requirements and it
provides the designers with several options to optimize their
design according to their requirement [10].

Multiple processors system on chips (MPSoCs) con-
nected through NoC have the ability to perform communi-
cation and computation separately.

MPSoCs featuring NoC can be used to perform various
complicated tasks in parallel such as multimedia streaming,
telecommunication protocols, and GPS [11]. A lot of effort
has been put into the improvement of NoC’s components.

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2014, Article ID 806237, 8 pages
http://dx.doi.org/10.1155/2014/806237



2 International Journal of Reconfigurable Computing

A flexible and fault tolerant network interface for NoC have
been developed by Saponara et al. which can accomplish var-
ious functions including safety and security [12]. Moreover,
fast and redundant communication protocols like FF-LYNX
are another achievement in the field of NoC based designs
for implementation in harsh environments, for example,
in astrophysics, nuclear medicines, and space engineering.
Interfaces based on these protocols are tested and verified
under different circumstances before adoption [13, 14].

The market share of embedded systems in different
industries is increasing significantly over the past few years.
MPSoCs based high performance embedded systems are
likely to replace these current embedded systems in future.
For instance, the share in the value of car contributed by
electronic embedded systems is 40% [15]. And it is believed
that these traditional electronics embedded systems in cars
would soon be completely substituted by MPSoCs [16].

In the last few decades, there has been a need for high
performance and improvements. Technology scaling is not
very effective in addressing high performance demands. So,
nowadays MPSoCs are being employed to perform tasks
which require intense computation and communication.

Our long term objective is to design a heterogeneous
MPSoC, forwhich the design objectives are already set in [17].
In the current work we are analysing different fault tolerance
techniques on the basis of hardware overhead, performance,
and reliability to conclude the optimal scheme.

The other sections of paper are summarized as follows.
Section 2 presents the related work; methodology is dis-
cussed in Section 3. Experimental setup is demonstrated in
Section 4, while experimental results and conclusions are
discussed in Section 5 and Section 6, respectively.

2. Related Work

Various techniques have been developed to make the system
fault tolerant. However, in general, there are threemajor types
of redundancies: hardware redundancy, information redun-
dancy, and temporal redundancy. All these techniques have
their own characteristics in terms of defined design objective.
Our concern is to make the system reliable with minimum
cost and it should have minimal impact on performance;
therefore a suitable technique is required to meet our design
constraints.

Dual modular redundancy (DMR) and triple modular
redundancy (TMR) are two well-known hardware redun-
dancy techniques. TMR is a fault masking technique that
has 3.7 times hardware overhead [18] and is intended to be
used in highly critical scenarios, for example, nuclear plants,
space applications, and avionics [19–21]. DMR has low area
overhead as compared to TMR when employed with SW
based rollbackmechanism [22].DMRalongwith rollback can
be used to perform error correction. Ziv and Bruck employed
check pointing technique with DMR for error correction and
determined the time consumed by a task under different fault
models [23].

Information redundancy which is implemented by send-
ing extra informationwith data uses different error correcting
and error detecting schemes. Error correcting codes have

less hardware overhead as compared to hardware redundant
techniques; however the latter is considered more reliable
[24]. Parity check code is one of the simplest error detecting
codes that can be used to detect single bit error and odd
number of bit flips [25]. Its advantage is that it can be
implemented with low hardware overhead [26]. Nicolaidis
employed parity prediction and double rail checking together
to devise a self-checking mechanism for ALUs and adders.
Furthermore, different hardware reduction techniques were
used to minimize the cost [27].

Then comes temporal redundancy which requires reex-
ecution of the same task after certain amount of time; thus
there is prolonged fault recovery process as compared to
hardware redundancy [28]. A system with such redundancy
is only capable of detecting errors caused by transient faults
while errors due to permanent faults are not traceable.
However, fault tolerance can be achievedwith small hardware
overhead [29]. Mizan et al. purposed SITR (self-imposed
temporal redundancy) for pipelined functional units (FUs);
in this form of temporal redundancy there is consecutive exe-
cution of redundant tasks with reexecution and comparison
being done in the same cycle. The results show that area and
power overhead of SITR are less than conventional temporal
redundancy [30].

In [17], two different self-checking mechanisms were
utilized in MPSoC.They employed DMR in some processors
and ECC coding with rollback in others to obtain results in
terms of area and error coverage.

It has been observed that not much work has been
done when it comes to determining a redundant scheme
which provides low hardware overhead and performance
at the same time. Considering this observation, this paper
is intended to identify a self-checking mechanism which
addresses these constraints simultaneously.

3. Methodology

The methodology adopted to practice the defined approach
is as follows. We are comparing three different redundancy
schemes on the basis of the results acquired by inducing
these schemes in a NoC based homogeneous MPSoC. The
first scheme is DMR, a hardware redundant technique in
which two processes are executed concurrently and outputs
are compared using comparator to check if fault has occurred
or not. This technique requires additional hardware and it
is meant to perform critical tasks. The second technique
employed is temporal redundancy (TR) in which two similar
processes are executed consecutively and then compared for
fault detection. This technique has least hardware overhead
but it cannot be employed in critical scenarios because of
time overhead. Parity code (ECC) is the third technique, it
compares the input and the generated output to detect fault.
It appears to have intermediate hardware as compared to
previously mentioned schemes.

The basic working and timing diagrams of DMR, TR, and
ECC are illustrated in Figure 1.

All of the above techniques would be utilizing roll back
mechanism to perform correction, that is, reexecution of task
in case of fault.



International Journal of Reconfigurable Computing 3

P.E. 0

P.E. 1

P.E. 2

P.E. 3

F

F

C

Output

Error signal

Clk
T1 T4

T4
T9 T9

T9T9
T12
T12T1

T2

T3
T3 T6

T6

T5
T5 T8

T8 T13
T13 T13

T13

T6
T6 T11

T11

T2 T7
T7

T10
T10

T14
T14T2T2

Basic working Timing diagram

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6t T

Input

(a) DMR

Input

Output

Error signal

F

P C

P.E. 0
P.E. 1
P.E. 2
P.E. 3

Clk
T1 T4 T9 T9 T12

T2 T7 T10 T14T2
T3 T 6

T8
T6 T11

T31 T13 T13

Parity

t + 1 t + 2 t + 3 t + 4 t + 5t T

(b) T-R

Input
Output

Error signal

F

CB

P.E. 0
P.E. 1
P.E. 2
P.E. 3

Clk

C
F
P
B

Comparator
Function
Parity
Buffer

T1
T2 T2 T2

T3
T5 T5 T8 T8 T13 T13 T13 T13

T3 T6 T6 T6 T6 T11 T11
T2 T7 T7 T10 T10 T14 T14

T1 T4 T4 T9 T9 T9 T9

Task
Rollback
Comparator

t

t + 𝛿t

t + 1 t + 2 t + 3 t + 4 t + 5 t + 6t Tt + 7 t + 8 t + 9

(c) Parity code

Figure 1: Basic working and timing diagram of (a) DMR, (b) TR, and (c) ECC.

4. Hypothesis

To reduce problem size in proposed application we have
assumed that only transient faults can occur during com-
putation while communication channels are fault free. The
bandwidth of each channel is “1.”Moreover, computations are
performed through static scheduling and static mapping.

We are considering faults due to single event upset (SEU)
andmultiple bit upset (MBU), which are injected through bit
flip.

5. Experimental Setup

Experimental setup is developed in VHDL at register transfer
level (RTL) and implemented on FPGA. There is NoC based
MPSoC in which we have incorporated communication
intensive task graph consisting of 1200 small tasks and
a computation intensive task graph which consists of 700
larger tasks. To identify working of the system “application
model” is required. In application model as described earlier
we considered static mapping and static scheduling. System
level design is shown in Figure 2.

Time considered for each task is its worst case execution
time (WCET). The failure of task is considered if it violates
the overall deadline including slack time.

Since all processors are FT we considered that the errors
are detected usingmaximum of 2 execution clocks; thereafter
data available at output is fault-free. Otherwise, it will be
updated as a nondetected fault in the log file.

Our interest is also to analyse impact of workload and
provide fast method for execution of tasks.

An experimental setup is shown in Figure 3 in which fault
generation circuitry injects fault randomly during execution
of task in any P.E. If fault is detected, then rollback is
called and task will be reexecuted. Reexecution has to be
done within slack time. As described in previous section
we are supposed to compare three FT techniques. These
techniques are introduced to the P.Es and application is run
to generate output results. We will implement three different
error detecting methodologies:

(i) parity based ECC coding (ECC);
(ii) temporal redundancy (TR);
(iii) dual modular redundancy (DMR).



4 International Journal of Reconfigurable Computing

Hardware architecture
specification

Application model

System level design tool

Mapping

Scheduling

Implementation
Verification on Xilinx

(using VHDL)

Design constraints
Hardware
Performance
Reliability
Cost
Power

Lower level of system design

Figure 2: System level design.

Task
scheduled

Update log

Fault
generator

Log file
Total fault injected

Total clocks executed

Task execution

Fault

MPSoC

Fault generator Final report

file

Figure 3: Experimental setup.

6. Benchmark and Application

We have designed NoC based homogenous MPSoC for real
time applications to be run on the system. Automobile
electronic control unit (ECU) is the considered application.
ECU is divided into two basic parts: (1) engine management
and control system and (2) transmission control system.

Two different types of benchmarks are designed which
consist of set of general tasks in target application. The first
benchmark has communication intensive tasks and second
has computation intensive tasks.

(i) Benchmarks 1: in communication intensive bench-
mark, transmission control of ECU is considered that
requires more communication and less computation.

(ii) Benchmarks 2: computation intensive benchmark
considers engine management and control of ECU
which is meant to perform more calculations as
compared to communication.

7. Results

Overall results are divided into three categories: area over-
head, error coverage, and performance and power consump-
tion.

7.1. Hardware Analysis. All three FT mechanisms are mod-
elled in VHDL, implemented on XILINX, and RTL file
is generated to determine the hardware overhead of each
mechanism.

Table 1 depicts that among all the mechanisms DMR has
the highest overhead, T-MR has moderate and parity check
has least hardware overhead.

7.2. Error Coverage. The error detection is monitored at
different error injection rates to determine the error coverage
of each scheme. The injected errors are detected by the voter
while generating the output.

For instance, Figure 4 demonstrates the fault detection
and correction in DMR; marker “A” depicts that values are



International Journal of Reconfigurable Computing 5

Table 1: Results shown by RTL file.

Selected device: Xilinx Spartan-3S200 (ft256-4)

Device Total Normal Used (% age)
T-R D-MR ECC

Slices 1920 169 (8%) 354 (18%) 435 (22%) 272 (14%)
Slice flip flops 3824 122 (3%) 292 (7%) 337 (8%) 213 (5%)
4-input LUTs 3840 311 (8%) 643 (16%) 799 (20%) 483 (12%)
IOs 13 13 13 13
Bonded IOBs 173 12 (6%) 12 (6%) 12 (6%) 12 (6%)
IOB flip flops 8 8 8 8
GCLKs 8 2 2 (25%) 2 (25%) 2 (25%)

A

B

C

Figure 4: Fault detection and correction in DMR.

assigned to specified processor and after processing the data
outputs (d out1, d out2) are compared; marker B suggests
that mismatch has occurred at outputs and roll back is called.
Thereafter similar task is reexecuted and marker C indicates
reexecution, hence, making the system fault tolerant.

Four different simulated fault injection (based on bit flip)
techniques are conducted. In which, campaigns from 1-to-
4-bit flips are employed. The results in Figures 5, 6, 7, and
8 depict error coverage of proposed FT techniques. Error
coverage is 100% when odd numbers of bits were flipped.
When even numbers of bits were flipped, DMR and TR have
100% error coverage but it reduces to 52% for parity check.

7.3. Performance Analysis. Program is initiated with no fault
condition to get theminimum execution time for performing
specified task. Afterwards the number of faults per clock is
increased and time for each execution is noted.

Performance is affected as more faults hit processor. As
fault injection rate increases more rollbacks are called. Hence
more time is taken by the processor to generate fault tolerant
output.

As application has two types of tasks, communication
intensive and computation intensive, implementation results
comply with our design constraints.

Application is time-critical, we can assume a reasonable
slack time; excess time to this will be considered as time-
failure of application. In Figures 9 and 10, horizontal continu-
ous line shows normal execution time and horizontal dotted
line shows maximum acceptable execution time. If 0.35 of
slack time is allowed, then DMR has highest performance.
Parity code shows a great difference in performance as
compared to TR.

0

20

40

60

80

100

120

140

160

10 40 70 90 123 140

N
um

be
r o

f f
au

lts
 d

et
ec

te
d

Number of faults injected

Error coverage

ECC
TR
DMR

Figure 5: 1-bit injection and detection.

Figures 9 and 10 depict that for performance ECC and TR
can be regarded as suitable techniques for our application.

Table demonstrate finding of our experimental setupwith
performance being evaluated on the basis of number of clocks
and hardware on the basis of LUT. And it is close to the
predicted values.

7.4. Power Consumption. Now-a-days power utilization is
very important parameter, especially for modern multicore



6 International Journal of Reconfigurable Computing
N

um
be

r o
f f

au
lts

 d
et

ec
te

d

Number of faults injected

ECC
TR
DMR

0

20

40

60

80

100

120

140

160

10 40 70 90 123 140

Error coverage

Figure 6: 2-bit injection and detection.

0

20

40

60

80

100

120

140

160

10 40 70 90 123 140

Error coverage

N
um

be
r o

f f
au

lts
 d

et
ec

te
d

Number of faults injected

ECC
TR
DMR

Figure 7: 3-bit injection and detection.

battery driven applications. Designing the on-chip inter-
connects with battery considerations and reduced power
consumption is crucial. The ever increasing demand of the
battery operated devices has driven the research in the field
of low power system design. Saved power can be used to
increase battery life cycle and reduce cooling necessities.
The focus of the previous researches was on the high level
analysis of NoC but they did not touch the issues on a
circuit level. However, little research has been done on the
circuit level issues as they were focusing on implementing
a limited set of topologies. For achieving the cost efficiency,
high performance, and computational speed, it is necessary
to achieve energy optimization.

0

20

40

60

80

100

120

140

160

10 40 70 90 123 140

Error coverage

N
um

be
r o

f f
au

lts
 d

et
ec

te
d

Number of faults injected

ECC
TR
DMR

Figure 8: 4-bit injection and detection.

ECC
TR

DMR
Normal

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Communication

Ex
ec

ut
io

n 
tim

e (
clo

ck
s)

Performance (communication)

Figure 9: Communication intensive.

To estimate power consumption of specified redundant
techniques, power report is generated using Xilinx ISE,
XPower Analyzer (XPA) tool along withModelsim simulator.

XPA calculates static and dynamic power using (1) and
break the power into logic, signal, and output components
[31]:

𝑃 = 𝐶𝑉
2
𝑓 × 𝐸, (1)

where frequency is kept constant; that is, 𝑓 = 500MHz.
Results in Table 2 are extracted from XPower Analyser.

The table enlists the power utilized by the corresponding
components of each scheme. The total power stated is
comprised of both static and dynamic power.

From the results in table it can be observed that power
consumption has a direct relation with the hardware. As
perceived from the results, DMR has highest and TR has
moderate while ECC has least power consumption



International Journal of Reconfigurable Computing 7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ex
ec

ut
io

n 
tim

e (
clo

ck
s)

Performance (computation)

ECC
TR

DMR
Normal

FT schemes

Figure 10: Computation intensive.

Table 2: Results shown by XPower Analyser.

On-chip Power (mW)
DMR TR ECC

Clocks 81.59 75.74 40.73
Logic 1.22 1.21 0.00
Signals 2.35 2.98 0.00
IOs 57.76 53.78 50.82
Quiescent 41.84 41.79 41.53
Total 184.77 175.50 133.08

8. Conclusion

Our long term goal is to design a low-cost fault tolerant
MPSoC and in this paper we analyzed three different FT
methodologies and introduced them in NoC based homo-
geneous MPSoC. Thereafter, we evaluated these schemes by
simulating their corresponding architectures under given set
of benchmarks. For each scheme, results are obtained in
terms of area overhead, error coverage, performance and
power consumption.

According to the defined design objectives and bench-
marks, the result of analysis shows that the parity code
is most suitable technique because it has least hardware
overhead along with reasonably high performance. DMR
can be employed if higher performance and error coverage
is required simultaneously; however it comes at the cost
of increased hardware. Temporal redundancy can only be
used in circumstances where we do not have hard real-time
constraints.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors wish to thank Dr. Abdul Waheed Malik for his
useful suggestions to improve the paper.

References

[1] M. Bohr, “The new era of scaling in an socworld,” in Proceedings
of the IEEE International Solid-State Circuits Conference (ISSCC
’09), pp. 23–28, San Francisco, Calif, USA, February 2009.

[2] R. Vemu, Low-Cost Assertion-Based Fault Tolerance in Hard-
ware and Software, UMI, 2008.

[3] M. Amin, A. Ramazani, F.Monteiro, C. Diou, andA. Dandache,
“A self-checking hardware journal for a fault-tolerant processor
architecture,” International Journal of Reconfigurable Comput-
ing, vol. 2011, Article ID 962062, 15 pages, 2011.

[4] M. Nicolaidis, Ed., Soft Errors in Modern Electronic Systems,
Springer, 2011.

[5] P. Axer, M. Sebastian, and R. Ernst, “Reliability analysis for
MPSoCs with mixed-critical, hard real-time constraints,” in
Proceedings of the 7th IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’11), pp. 149–158, October 2011.

[6] L. Torres, P. Benoit, G. Sassatelli, M. Robert, F. Clermidy,
and D. Puschini, “An introduction to multi-core system on
chip—trends and challenges,” Multiprocessor System-on-Chip:
Hardware Design and Tool Integration, pp. 1–21, 2011.

[7] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration: a quantitative evalua-
tion of point-to-point, bus, and network-on-chip approaches,”
ACM Transactions on Design Automation of Electronic Systems,
vol. 12, no. 3, Article ID 1255460, 2007.

[8] C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh, “Structured
interconnect architecture: a solution for the non-scalability
of bus-based SoCs,” in Proceedings of the ACM Great Lakes
Symposium on VLSI (GLSVLSI ’04), pp. 192–195, April 2004.

[9] L. Benini and G. de Micheli, “Networks on chips: a new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[10] R. U. S. U. Claudia,Multi-Level Fault-Tolerance in Networks-on-
Chip, 2010.

[11] M. Mandelli, L. Ost, E. Carara et al., “Energy-aware dynamic
task mapping for NoC-based MPSoCs,” in Proceedings of the
IEEE International Symposium of Circuits and Systems (ISCAS
’11), pp. 1676–1679, May 2011.

[12] S. Saponara, T. Bacchillone, E. Petri, L. Fanucci, R. Locatelli,
and M. Coppola, “Design of an NoC interface macrocell with
hardware support of advanced networking functionalities,”
IEEE Transactions on Computers, vol. 63, no. 3, pp. 609–621,
2014.

[13] G.Magazzù, G. Borgese, N. Costantino, L. Fanucci, J. Incandela,
and S. Saponara, “Design exploration and verification platform,
based on high-level modeling and FPGA prototyping, for fast
and flexible digital communication in physics experiments,”
Journal of Instrumentation, vol. 8, no. 2, Article ID P02021, 2013.

[14] N. Costantino, G. Borgese, S. Saponara, L. Fanucci, J. Incandela,
and G. Magazzu, “Development, design and characterization of
a novel protocol and interfaces for the control and readout of
front-end electronics in high energy physics experiments,” IEEE
Transactions onNuclear Science, vol. 60, no. 1, pp. 352–364, 2013.

[15] G. Scuro, Automotive Industry: Innovation Driven by Electron-
ics, 2013, http://embedded-computing.com/articles/automotive-
industry-innovation-driven-electronics/.



8 International Journal of Reconfigurable Computing

[16] S. Aust and H. Richter, “Real-time Processor Interconnec-
tion Network for FPGA-based Multiprocessor System-on-Chip
(MPSoC),” in Proceedings of the 4th International Conference on
Advanced Engineering Computing and Applications in Sciences,
pp. 47–52, October 2010.

[17] M. Amin, M. Tagel, G. Jervan, and T. Hollstein, “Design meth-
odology for fault-tolerant heterogeneous MPSoC under real-
time constraints,” in Proceedings of the 7th International Work-
shop on Reconfigurable and Communication-Centric Systems-
on-Chip (ReCoSoC ’12), pp. 1–5, July 2012.

[18] Dagan White, “Managing single event effects in FPGAs, ASICs
and processors (Part 2),” 2011.

[19] N. Desai, “The Tricon Turbine Control System,” 2010.
[20] R. Yuan, “TripleModular Redundancy (TMR) in a configurable

fault tolerant processor (CFTP) for space applications,” Decem-
ber 2003.

[21] Y. C. Yeh, “Triple-triple redundant 777 primary flight com-
puter,” in Proceedings of the IEEE Aerospace Applications Con-
ference, vol. 1, pp. 293–307, February 1996.

[22] M. Rebaudengo, M. S. Reorda, and M. Violante, “A new
approach to software-implemented fault tolerance,” Journal of
Electronic Testing, vol. 20, no. 4, pp. 433–437, 2004.

[23] A. Ziv and J. Bruck, “Analysis of checkpointing schemes for
multiprocessor systems,” in Proceedings of the 13th Symposium
on Reliable Distributed Systems, pp. 52–61, October 1994.

[24] S. Mukherjee,Architecture Design for Soft Errors, Elsevier, 2008.
[25] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “A

parity code based fault detection for an implementation of the
advanced encryption standard,” in Proceedings of the 17th IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT ’02), pp. 51–59, 2002.

[26] G. Di Natale, M. Doulcier, M. L. Flottes, and B. Rouzeyre,
“A reliable architecture for parallel implementations of the
advanced encryption standard,” Journal of Electronic Testing:
Theory and Applications (JETTA), vol. 25, no. 4-5, pp. 269–278,
2009.

[27] M. Nicolaidis, “Carry checking/parity prediction adders and
ALUs,” IEEETransactions onVery Large Scale Integration (VLSI)
Systems, vol. 11, no. 1, pp. 121–128, 2003.

[28] A. K. Somani and N. H. Vaidya, “Understanding fault tolerance
and reliability,” Computer, vol. 30, no. 4, pp. 45–50, 1997.

[29] P. Agrawal, “Fault tolerance in multiprocessor systems without
dedicated redundancy,” IEEE Transactions on Computers, vol. 6,
no. 2, pp. 358–362, 1988.

[30] E. Mizan, T. Amimeur, and M. F. Jacome, “Self-imposed
temporal redundancy: an efficient technique to enhance the
reliability of pipelined functional units,” in Proceedings of the
19th International Symposium on Computer Architecture and
High Performance Computing, pp. 45–53, October 2007.

[31] M. Glesner, P. Zipf, and M. Renovell, Field-Programmable Logic
and Applications: Reconfigurable Computing is Going Main-
stream, vol. 2438 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, 2002.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


