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In container terminal, tugboat plays vital role in safety of ship docking. Tugboat assignment problem under a hybrid scheduling rule
(TAP-HSR) is to determine the assignment between multiple tugboats and ships and the scheduling sequence of ships to minimize
the turnaround time of ships. A mixed-integer programming model and the scheduling method are described for TAP-HSR
problem.Then an improved discrete PSO (IDPSO) algorithm for TAP-HSR problem is proposed to minimize the turnaround time
of ships. In particular, some new redefined PSO operators and the discrete updating rules of position and velocity are developed.
The experimental results show that the proposed IDPSO can get better solutions than GA and basic discrete PSO.

1. Introduction

Nowadays, more and more people have recognized the
importance of world trade via container terminals. Ship
docking is one important operation having an influence
on the productivity of container terminal which includes
two types of operations. One is the berth allocation often
described as the problem in which the berthing time and the
berthing position are specified to each ship [1]. The other is
the tugboat assignment described as a decision problem to
find the best assignment of tugboats and scheduling sequence
of ships which minimizes the turnaround time of ships
subject to the assignment rules. Tugboat is one kind of small
ships with large engine used tomove ships in and out of berth
[2]. With the steadily growing size and rapidly increasing
number of entry ships, safe and efficient docking operation
of ships is one of the most important issues in container
terminals [3]. Because container terminal has finite tugboats
with different service abilities, it is very important to develop
effective tugboat assignment method to reduce turnaround
time of ships and maintain high productivity of container
terminal.

When a ship arrives at the container terminal, the ship
should be assigned an available berth for unloading and

loading containers. However ships cannot dock by them-
selves to the berths because the port lane is narrow and
the port water is shallow. The specified equipment called
tugboat is used to help ships dock safely. Due to the strong
structure and large power, tugboat can pull large-sized ships.
If a ship is so large that one tugboat cannot tug, two or more
tugboats can be used together to tow the ship. It is considered
that, only with an available berth and proper tugboats, a
ship can dock safely and prepare for unloading or loading
operation. Otherwise, it has to wait at the anchorage outside
the container terminal.

Several studies have been conducted for equipment
assignment or scheduling problem in container terminals,
such as berth assignment [4, 5], quay crane scheduling
[6–8], yard crane scheduling [9, 10], truck scheduling [11],
and storage space assignment [12]. However, little research
work on tugboat assignment problem can be found. Mori
[3] outlined tugboat development situation and tugboat
business in Asian countries, especially in Japan. Liu and
Wang introduced tugboat allocation simulation [13] and then
Liu studied the tugboat scheduling problem and employed
a hybrid evolutionary algorithm to solve this problem [14].
However, it only focused on the tugboat scheduling rules
without mathematical model. Furthermore, the study did
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not cover the optimization of the assignment plan between
tugboats and ships.

Tugboat assignment is a typical kind of assignment
optimization problem. The existing approaches for solving
the assignment problems can be divided into two categories.
The traditional methods are mathematical programming
approaches using Branch and Bound [15] and Lagrangian
Relaxation [16] to get the best solution efficiently, but only
for small-sized problem. Besides, metaheuristic algorithms
involving genetic algorithms (GA) [17–19], ant colony opti-
mization [20, 21], simulated annealing (SA) [22], Tabu search
(TS) [23, 24], and variable neighborhood search (VNS) [25]
are fast and efficient algorithms to get approximate solutions
with reasonable computational time for solving large scale
and more difficult combination optimization problem.

Recently, particle swarm optimization (PSO) is a novel
evolutionary algorithm presented by Kennedy and Eberhart
[26]. Due to easy implementation and fast convergence, PSO
has proved to be an effective and competitive algorithm for
a wide variety of optimization problems. However, most of
the published studies have concentrated on the continuous
optimization problems. Recently, some work has been done
to the discrete optimization problem. In order to extend the
application to discrete space, Kennedy and Eberhart [27]
proposed a discrete binary version of PSO where a particle
moved in a state space restricted to zero and one on each
dimension. Yin et al. [28] embedded a hill-climbing heuristic
in PSO to assign application tasks to processors such that
the resource demand of each task was satisfied and the
system throughput was increased. Lin et al. [29] implemented
a hybrid PSO (HPSO) to solve the biobjective personnel
assignment problem. The HPSO algorithm was combined
with the random-key (RK) encoding scheme and individual
enhancement (IE) scheme. Similar hybrid PSO algorithms
are proposed by introducing operations of GAs into PSO
systems by Robinson et al. [30]. Lian et al. [31] proposed
some new valid PSO operators for permutation job-shop
scheduling to minimize makespan. Prescilla and Immanuel
Selvakumar [32] applied the modified binary particle swarm
optimization algorithm to solve the real-time task assignment
in heterogeneous multiprocessor.

To the best of our knowledge, there is no published
work for dealing with tugboat assignment using PSO. In this
paper, we introduce the tugboat assignment problem under a
hybrid scheduling rule (TAP-HSR) and give the mathemat-
ical model. Then, an improved discrete PSO algorithm for
TAP-HSR problem is proposed to minimize the turnaround
time of ships. In particular, a newmethod for redefining PSO
operators is developed. The experimental results show that
the proposed method is effective and efficient compared to
GA.

The rest of this paper is organized as follows. In the
next section, tugboat assignment problem under a hybrid
scheduling rule (TAP-HSR) and the mathematical model
are described. Section 3 proposes the improved discrete
PSO (IDPSO) for TAP-HSR problem. Section 4 discusses
the experimental results. Finally, Section 5 provides some
conclusions and the future work.

2. Problem Formulation and Scheduling Rules

2.1. Problem Description. The tugboat assignment problem
under a hybrid scheduling rule is an essential decision-
making problem in container terminal. The tugboat assign-
ment operation has two procedures. One is to find the
assignment plan under the assignment rules. The other is
to generate the scheduling sequence of ships based on the
assignment plan and some scheduling rules.

Container terminal assigns tugboats to ships based on
some assignment rules. Firstly, each tugboat can serve atmost
one ship and each ship can be assigned one or more ships
at any time. Secondly, the assigned number of tugboats is
determined by ship length. The ship with length equal to or
less than 100 meters needs one tugboat at least. Otherwise,
the ship with the length more than 100 meters needs two
tugboats at least. Finally, it is required to assign tugboat with
proper horsepower (ps). Horsepower is a common unit to
measure tugboat power.The tugboat with higher horsepower
has more service capacity to tug longer ship. The assignment
rules between ships and tugboats are shown in Table 1.

Assignment plan only describes the matching relation-
ship of multiple tugboats and multiple ships. It is required
to use some scheduling rules to determine a scheduling
sequence of ships according to the assignment plan. This
paper applies a hybrid scheduling rule combined with first-
come-first-served (FCFS) rule and first-fit rule. Based on the
hybrid scheduling rule, the ship with earlier arriving time
and the available assigned tugboats has the higher priority of
docking.

The goal of TAP-HSR is to minimize the turnaround
time of ships under the premise that all ships finish docking.
With more and more ships arriving, it is impossible to
make sure that ships can have available tugboats for docking
immediately at arrival. Some ships will wait outside the
terminal at the anchorage until available tugboats can work
for them. Good assignment can decrease the waiting time of
ships so that the container terminal can serve more ships and
get more profits.

2.2. Model Formulation. In this paper, TAP-HSR is based on
the following assumptions.

(1) The expected arriving time and the length of all ships
are known.

(2) The docking operation time of ship depends on the
length of ship and is independent of tugboat.

(3) Each ship has an available berth for unloading and
loading containers.

(4) Tugboat can work for only one ship at the same time.
(5) The preparation time of tugboat is zero which means

one tugboat can start to serve the next ship immedi-
ately after it finishes the previous ship.

(6) All tugboats are available when the first ship starts to
berth.

(7) The operation of tugboat requires an uninterrupted
period of time.
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Table 1: Assignment rules between ships and tugboats.

Length of ship (m) Required horsepower (ps) of tugboats Required number of tugboats Docking operation time (min)
0–100 ⩾2600 ⩾1 40
100–200 ⩾5200 ⩾2 48
200–250 ⩾6400 ⩾2 60
250–300 ⩾6800 ⩾2 75
⩾300 ⩾8000 ⩾2 85

This paper describes TAP-HSR problem with the follow-
ing notations.

𝑚: the number of tugboats
𝑛: the number of ships
𝐽𝑗: the ship 𝑗, 𝑗 ∈ {1, 2, 3, . . . , 𝑛}

ℎ𝑖: the horsepower of tugboat 𝑖
𝑝𝑗: the state of tugboat 𝑖 (𝑝𝑗 = 0 denotes tugboat 𝑖 is
available. Otherwise, 𝑝𝑗 = 1)
𝑞𝑗: the state of ship 𝑗 (𝑞𝑗 = 1 denotes ship 𝑗 finished
docking. Otherwise, 𝑞𝑗 = 0)
𝑜𝑗: the scheduling order of ship 𝑗

𝑙𝑗: the length of ship 𝑗

ℎ𝑖: the horsepower of tugboat 𝑖. 𝑖 ∈ {1, 2, 3, . . . , 𝑚}

𝑡𝑗: the operation time of ship 𝑗

𝐼𝑗: the arriving time of ship 𝑗

𝑆𝑗: the start docking time of ship 𝑗

𝑇𝑗: the completion of docking time of ship 𝑗

𝐻𝑗: the least required horsepower of ship 𝑗

𝑅𝑗: the least required tugboat number of ship 𝑗

𝑥𝑖𝑗: decision variable denotes tugboat 𝑖 assigned to
ship 𝑗.

This paper gives the following definitions.

Definition 1 (assignment matrix). 𝑋𝑚𝑛 is the decision matrix
which describes the assignment between ships and tugboats.
The decision variable 𝑥𝑖𝑗 ∈ {0, 1} denotes whether or not
tugboat 𝑖 is assigned to ship 𝑗:

𝑋𝑚𝑛 = (

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑛

𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑛
.
.
.

.

.

. ⋅ ⋅ ⋅
.
.
.

𝑥𝑚1 𝑥𝑚2 ⋅ ⋅ ⋅ 𝑥𝑚𝑛

),

𝑥𝑖𝑗 = {
1 Tugboat 𝑖 is assigned to ship 𝑗

0 Otherwise.

(1)

Definition 2 (conflict ship). If tugboat 𝑖 is assigned to both
ship 𝑗 and ship 𝑘 and ship 𝑗 is scheduled for docking before
ship 𝑘, ship 𝑗 is called the conflict ship of ship 𝑘. Let𝐶𝑘 denote
the conflict ship set of ship 𝑘:

𝐶𝑘 = {𝐽𝑗 | 𝑥𝑖𝑗 ⋅ 𝑥𝑖𝑘 = 1, 𝑜𝑗 < 𝑜𝑘} . (2)

𝐶𝑘 = ⌀ represents that all of the assigned tugboats to
ship 𝑘 are available when ship 𝑘 arrives. In that condition, the
ship can dock immediately at arriving time. Otherwise, if the
assigned tugboats are working for the conflict ships of ship 𝑘,
ship 𝑘 has to wait until all the conflict ships finish docking.

Let 𝑇𝑆 denote the start docking time of the first ship and
let 𝑇𝐹 denote the completion docking time of the last ship.
The objective function of TAP-HSR problem is to minimize
the turnaround time of ships described as

min (𝑇𝐹 − 𝑇𝑆) , (3)

where 𝑇𝑆 = 0 according to assumption (6) and 𝑇𝐹 is the
maximum completion docking time of ships defined as

𝑇𝐹 =
𝑛max
𝑗=1

𝑇𝑗. (4)

The objective function is min𝑇𝐹 represented by the
following formula:

min 𝑛max
𝑗=1

𝑇𝑗. (5)

To find the maximum completion docking time of ships,
it is required to calculate the completion docking time of each
ship 𝑇𝑗 (𝑗 = 1, 2, 3, . . . , 𝑛) represented as the start docking
time of ship 𝑆𝑗 plus the operation time of ship 𝑡𝑗:

𝑇𝑗 = 𝑆𝑗 + 𝑡𝑗. (6)

In TAP-HSR problem, let 𝐽𝑗 denote ship 𝑗. According to
Definition 2, the maximum completion time of the conflict
ships of 𝐽𝑗 is max𝐽𝑘∈𝐶𝑗𝑇𝑘. The start docking time 𝑆𝑗 is
calculated by

𝑆𝑗 = max{𝐼𝑗,max
𝐽𝑘∈𝐶𝑗

𝑇𝑘} . (7)

Equation (7) states that if ship arrives after the time
when all the conflict ships have done the docking operation,
the start docking time is the arriving time. Otherwise, the
start docking time of this ship is the maximum completion
docking time of the conflict ships.

The constraints in TAP-HSR problem are as follows:
𝑚

∑

𝑖=1

𝑥𝑖𝑗 ≥ 𝑅𝑗,

𝑚

∑

𝑖=1

𝑥𝑖𝑗ℎ𝑖 ≥ 𝐻𝑗.

(8)
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While (𝑘 < 𝑛)
Set the state of each tugboat 𝑝𝑖 = 0
For 𝑗 = 1 to 𝑛

If (𝑞𝑗 = 0 and the state of each assigned tugboat 𝑝𝑖 = 0)
𝑜𝑗 = 𝑜 flag
Set the state of each assigned tugboat 𝑝𝑖 = 1
Calculate the conflict ship set 𝑐𝑗
Calculate the start docking time 𝑠𝑗 according to (7)
Calculate the completion docking time 𝑇𝑗 according to (6)
Set the state of ship 𝑗 𝑞𝑗 = 1

𝑘 = 𝑘 + 1
End if

Next 𝑗
𝑜 flag = 𝑜 flag + 1

End
Calculate the turnaround time of ships according to (4).

Pseudocode 1

Constraints in (8) ensure that the total number and
horsepower of tugboats assigned to each ship shouldmeet the
assignment rules to make sure that the tugboats have enough
horsepower to tug the ship.

2.3. The Scheduling Method. The assignment matrix only
describes the assignment plan between ships and tugboats.
It is required to generate the scheduling sequence of ships
based on the assignment matrix and scheduling rules. The
scheduling sequence is generated as in the following steps.

Step 1. Order the ships by the arriving time. Initialize 𝑝𝑖 = 0,
𝑞𝑗 = 0, the number of finished ships 𝑘 = 0, and the initial
scheduling order 𝑜 flag = 1.

Step 2. Check the assignment matrix whether it is a feasible
solution which satisfies constraints in (8). If it is a feasible
solution, go to Step 3.

Step 3. Find the conflict ships of each ship and generate
the scheduling sequence based on first-fit rule. The pseu-
docode of generating scheduling sequence is described in
Pseudocode 1.

Step 4. Output the scheduling sequence, the start docking
time and completion docking time of each ship, and the
turnaround time of ships.

We give one example of scheduling ships based on assign-
ment plan. Table 2 shows the tugboat allocation. Table 3
shows the arriving ships.

One assignment matrix between tugboats and ships is as
follows:

𝑋𝑖 =
(

0

1

0

0

0

1

1

0

0

0

1

1

1

0

0

0

1

0

0

1

)

𝐽1 𝐽2 𝐽3 𝐽4 𝐽5

. (9)

Table 2: One example of tugboat allocation.

Tugboat number Horsepower (ps) Number
1 2600 1
2 3200 1
3 3400 1
4 4000 1

Table 3: One example of arriving ships.

Ship number Length (m) Arriving time
(min)

Operation time
(min)

1 87 0 40
2 245 5 60
3 286 10 75
4 93 15 40
5 202 20 60

𝑋𝑖 satisfies constraints in (8) so that it is a feasible assign-
ment. According to the scheduling method, the scheduling
sequence 𝑂 = (𝐽1, 𝐽3, 𝐽4, 𝐽2, 𝐽5) and turnaround time of ships
is 135 minutes. The scheduling Gant graph is as in Figure 1.

3. Discrete PSO Algorithm for
TAP-HSR Problem

TAP-HSR is in one kind of NP-hard problem and difficult for
human schedulers. The goal of our research is to achieve as
good as possible results in reasonable computational time.

3.1. Standard PSO Algorithm. Swarm optimization algorithm
is a swarm intelligence algorithm proposed by Kennedy and
Eberhart [26] as a simulation of the social behavior of bird
flocking. PSO is composed of a number of individuals called
particles. Particles are initialized with random locations and
velocities. Each particle tries to improve the location by
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Figure 1: The scheduling Gant graph.

following the best location of itself and the best particle of
the whole swarm. The position of 𝑖th particle is represented
by 𝑀-dimensional vector denoted by 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑀)

(𝑖 = 1, 2, . . . , 𝑘). The velocity for the 𝑖th particle can be
described as 𝑉𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝑀) (𝑖 = 1, 2, . . . , 𝑘).

A particle’s movement is based on (10):

V𝑡+1𝑖 = 𝜔 × V𝑡𝑖 + 𝑐1 × rand1 ( )

× (𝑝
𝑡
𝑖 − 𝑥
𝑡
𝑖) + 𝑐2 × rand2 ( ) × (𝑝

𝑡
𝑔 − 𝑥
𝑡
𝑖) ,

(10)

𝑥
𝑡+1
𝑖 = 𝑥

𝑡
𝑖 + V𝑡+1𝑖 , (11)

where𝜔 is called inertia weight [33], 𝑐1 and 𝑐2 are two constant
numbers which are often called social or cognitive confidence
coefficients, the functions rand1( ) and rand2( ) can generate
a random number in [0, 1], 𝑥𝑡𝑖 is the position of 𝑖th particle at
the iteration 𝑡, V𝑡𝑖 is the velocity of 𝑖th particle at the iteration
𝑡, 𝑝𝑡𝑖 is the local best position that 𝑖th particle has reached at
the iteration 𝑡, and 𝑝

𝑡
𝑔 is the global best position that all the

particles have reached at the iteration 𝑡.

3.2. The Improved Discrete PSO. Because of the continuous
position space of particles, standard encoding method of
PSO cannot be directly adopted for discrete optimization
problems. It is a challenge to employ the algorithm in com-
binatorial optimization problems, especially for assignment
problem. In this paper, we exploit a new redefining PSO
operator method and discrete updating rules of position and
velocity to get the solutions for TAP-HSR problem.

3.2.1. Discrete Particle Representation. The most important
problem in applying PSO to TAP-HSR problem is to find a
suitable particle representation method. In assignment prob-
lem, each particle represents a candidate assignment matrix
with𝑚 × 𝑛 elements [34]. Each element is an integer value in
{0, 1}. For example, in (12) 𝑋𝑖 denotes one assignment that
assigns four tugboats to five ships. Tugboat 1 is assigned to
ship 1. Tugboats 2 and 3 are assigned to ship 2. Tugboats 1
and 2 are assigned to ship 3. Tugboat 4 is assigned to ship 4.
Tugboats 3 and 4 are assigned to ship 5.

One example of particle represented by assignment
matrix is as follows:

𝑋𝑖 = (

1 0 1 0 0

0 1 1 0 0

0 1 0 0 1

0 0 0 1 1

) . (12)

3.2.2. Operators Redefinition

Definition 3. The position subtraction operator 𝑋𝑖 ⊟ 𝑋𝑗: the
subtraction of two positions can be defined as XOR (exclusive
OR) operation of binary matrix:

𝑋𝑖 ⊟ 𝑋𝑗 = (¬𝑋𝑖 ∧ 𝑋𝑗) ∨ (𝑋𝑖 ∧ ¬𝑋𝑗) . (13)

Equation (14) gives one example of the subtraction of
positions 𝑋𝑡𝑖 and 𝑋

𝑡+1
𝑖 .

𝑋
𝑡
𝑖 = (

1 0 1 0 0

0 1 1 0 0

0 1 0 0 1

0 0 0 1 1

) ,

𝑋
𝑡+1
𝑖 = (

1 0 1 0 0

0 1 0 0 0

0 0 1 0 1

0 1 0 1 1

) ,

𝑋
𝑡+1
𝑖 ⊟ 𝑋

𝑡
𝑖 = (

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

0 1 0 0 0

) .

(14)

It can be seen that the subtraction of positions is to find
the different elements between two positions [34]. According
to (11), the velocity is the subtraction of positions that can be
represented by a set of the numerical pairs. (V𝑗)length denotes
the element number of V𝑗:

V𝑗 = {(𝑥, 𝑦) | 𝑥 ∈ {1, 2, . . . ,𝑀} , 𝑦 ∈ {1, 2, . . . , 𝑁}} . (15)

In (12), V𝑡+1𝑖 = 𝑋
𝑡+1
𝑖 ⊟ 𝑋

𝑡
𝑖 = {(2, 3), (3, 2), (3, 3), (4, 2)}.

(V𝑡+1𝑖 )length = 4.

Definition 4. The velocity addition operator V𝑖 ⊞ V𝑗: the
addition of velocities is considered as a union of the elements
in V𝑖 or in V𝑗:

V𝑖 ⊞ V𝑗 = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ V𝑖 or (𝑥, 𝑦) ∈ V𝑗} . (16)

Definition 5. Thevelocity subtraction operator V𝑖⊟V𝑗: the sub-
traction of velocities is considered as the relative complement
elements of V𝑗 with respect to V𝑖. V𝑖 ⊟ V𝑗 is denoted by the set
of elements in V𝑖 but not in V𝑗:

V𝑖 ⊟ V𝑗 = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ V𝑖, (𝑥, 𝑦) ∉ V𝑗} . (17)
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Table 4: Examples of 𝑐 ⊠ V2 and V1 ⊞ (𝑐 ⊠ V2).

𝑐 𝑎 𝑏 𝑐 ⊠ V2 V1 ⊞ (𝑐 ⊠ V2)

𝑐 ∈ (0, 0.5]

1 3 󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

3

1
= {(2, 3) , (3, 2) , (3, 3)} V1 ⊞

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

3

1
= {(1, 5) , (2, 3) , (3, 2) , (3, 3)}

2 3 󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

3

2
= {(3, 2) , (3, 3)} V1 ⊞

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

3

2
= {(1, 5) , (2, 3) , (3, 2) , (3, 3)}

4 4 󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

4

4
= {(4, 2)} V1 ⊞

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

4

4
= {(1, 5) , (3, 2) , (2, 3) , (4, 2)}

𝑐 ∈ (0.5, 1)

1 3 ⊟
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩

3

1
= {(2, 3) , (3, 2) , (3, 3)} V1 ⊟

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

3

1
= {(1, 5)}

2 3 ⊟
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩

3

2
= {(3, 2) , (3, 3)} V1 ⊟

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

3

2
= {(1, 5) , (2, 3)}

4 4 ⊟
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩

4

4
= {(4, 2)} V1 ⊟

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

4

4
= {(1, 5) , (3, 2) , (2, 3)}

One example of the addition and subtraction of two
velocities is as follows:

V𝑖 = {(2, 3) , (3, 2) , (3, 3) , (4, 2)} ,

V𝑗 = {(1, 5) , (3, 2)} ,

V𝑖 ⊞ V𝑗 = {(2, 3) , (3, 2) , (3, 3) , (4, 2) , (1, 5)} ,

V𝑖 ⊟ V𝑗 = {(2, 3) , (3, 3) , (4, 2)} .

(18)

Definition 6. Themultiply operator of coefficient and velocity
𝑐 ⊠ V: let 𝑐 be coefficient and let V be velocity. 𝑐 is a random
real number in (0, 1):

𝑐 ⊠ V =
𝑐

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

𝑏

𝑎
= {

‖V‖𝑏𝑎 𝑐 ∈ (0, 0.5]

⊟ ‖V‖𝑏𝑎 𝑐 ∈ (0.5, 1) ,
(19)

where 𝑎 and 𝑏 are random integers and 𝑎, 𝑏 ∈ [1, (V)length].
‖V‖𝑏𝑎 represents a subelement string of V2 from the 𝑎th element
to the 𝑏th element in (20). If 𝑎 = 1, 𝑏 = (V)length, ‖V‖

(V)length
1 = V.

Examples of ‖V‖𝑏𝑎 are as follows:

V (2, 3) , (3, 2) , (3, 3) , (4, 2)

‖V‖31 |
1
(2, 3) , (3, 2) , (3, 3) , |

3
(4, 2)

(2, 3) , (3, 2) , (3, 3)

‖V‖32 (2, 3) , |
2
(3, 2) , (3, 3) |

3
(4, 2)

(3, 2) , (3, 3)

‖V‖41 |
1
(2, 3) , (3, 2) , (3, 3) , (4, 2) |

4

(2, 3) , (3, 2) , (3, 3) , (4, 2) .

(20)

Based on (19), V1 ⊞ (𝑐 ⊠ V2) can be represented by

V1 ⊞ (𝑐 ⊠ V2) = {
V1 ⊞

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩

𝑏

𝑎
𝑐 ∈ (0, 0.5]

V1⊟
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩

𝑏

𝑎
𝑐 ∈ (0.5, 1) .

(21)

For illustration, V1 = {(1, 5), (3, 2), (2, 3)} and V2 =

{(2, 3), (3, 2), (3, 3), (4, 2)}. Table 4 shows some examples of
𝑐 ⊠ V2 and V1 ⊞ (𝑐 ⊠ V2).

From Table 4, it is known that if 𝑐 ∈ (0, 0.5], V1 ⊞ (𝑐 ⊠

V2) can be added to some new elements. If 𝑐 ∈ (0.5, 1), some

elements might be deleted from V2.This method can keep the
diversity of the swarm and exploit the global search ability of
PSO thoroughly.

Definition 7. The multiply operator of inertia weight and
velocity 𝜔 ⊠ V: let 𝜔 = 1 and let 𝜔 ⊠ V = V.

Based on Definitions 3–7, the new discrete movements of
particles are followed by the following equations:

V𝑡+1𝑖 = V𝑡𝑖 ⊞ 𝑐1
󵄩󵄩󵄩󵄩󵄩
𝑝
𝑡
𝑖 ⊟ 𝑥
𝑡
𝑖

󵄩󵄩󵄩󵄩󵄩

𝑏1

𝑎1
⊞
𝑐2

󵄩󵄩󵄩󵄩󵄩
𝑝
𝑡
𝑔 ⊟ 𝑥
𝑡
𝑖

󵄩󵄩󵄩󵄩󵄩

𝑏2

𝑎2
(22)

𝑥
𝑡+1
𝑖 = 𝑥

𝑡
𝑖 ⊞ V𝑡+1𝑖 . (23)

3.2.3.The Procedure of IDPSO for TAP-HSR. Thepseudocode
of the improved discrete PSO is listed in Pseudocode 2.

4. Experimental Results

In this section, we present the computational experiments
to evaluate the performance of the improved discrete PSO
algorithm in this paper. The algorithms are coded in Java
language with the environment of Eclipse and simulated
on a PC with a 2.80GHz Intel CPU and 4G RAM. In the
experiments, three algorithms are implemented for TAP-HSR
problems, including GA, the basic discrete PSO (BDPSO),
and the improved discrete PSO (IDPSO) in Section 3. The
basic discrete PSO is implemented without the multiple
operator of coefficient and velocity 𝑐 ⊠ V. The movements of
particles are followed by the following equations:

V𝑡+1𝑖 = V𝑡𝑖 ⊞ (𝑝
𝑡
𝑖 ⊟ 𝑥
𝑡
𝑖) ⊞ (𝑝

𝑡
𝑔 ⊟ 𝑥
𝑡
𝑖)

𝑥
𝑡+1
𝑖 = 𝑥

𝑡
𝑖 ⊞ V𝑡+1𝑖 .

(24)

In IDPSO, there are two important parameters: the max
iteration𝑁𝐶max and swarm size𝐾.Through the experiments,
it can be seen that when themax iteration is fixed, the optimal
solution is improved with the growth of swarm size because
more particles have stronger space search capabilities. How-
ever, if swarm size is excessive, the optimal solution quality
can be decreased so that it is required to increase the max
iteration to get a better solution. The reason is that too many
particles cause the solution dispersion so that it is difficult
to converge to an optimal solution. On the other hand, the
program running timewill increase with the increasing of the
max iteration and swarm size. Therefore, it is important to
select the proper max iteration and swarm size according to
the problem size shown in Table 5.
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Step 1. (Initializing)
Initialize the parameters: the max iteration 𝑁𝐶max, the no-improvement iteration 𝐺𝐶max, swarm size 𝐾,
each particle’s location and velocity, the local best location 𝑝𝑖 and the global best location 𝑝𝑔.
Step 2. (Updating and Fitness Calculation)
Set the iteration number t = 1
Repeat

For each particle, generate random parameter: 𝑐1, 𝑐2, 𝑎1, 𝑎2, 𝑏1, 𝑏2
Update the velocity of each particle according to (22)
Update the position of each particle according to (23)
Check the new position 𝑋

𝑡+1
𝑖 is a feasible assignment according to (8)

If (𝑋𝑡+1𝑖 is not a feasible assignment) then
Mutation 𝑋

𝑡+1
𝑖 to a feasible assignment

End if
Generate the scheduling sequence
Calculate the turnaround time as fitness of 𝑋𝑡+1𝑖
Update 𝑝𝑖, 𝑝𝑔
Check the improvement of 𝑝𝑔
If 𝑝𝑔 is improved then

𝑐 flag = 0
Else

𝑐 flag = 𝑐 flag + 1
End if
𝑡 = 𝑡 + 1
Untill 𝑡 > 𝑁𝐶max or c flag = 𝐺𝐶max

Step 3. (Final stage)
Output the best tugboat assignment, the ship scheduling sequence, the start docking time and the
completion docking time of eachship, the turnaround time of the best assignment.

Pseudocode 2

Table 5: The max iteration 𝑁𝐶max and swarm size 𝐾.

Problem size 𝑁𝐶max 𝐾

Small-sized problem 1000–2500 50–150
Middle-sized problem 2500–3500 150–250

To compare the performance of IDPSO, BDPSO, and
GA, the experiments consisted of 12 small-sized problems
and 10 middle-sized problems that are conducted. In both
IDPSO andBDPSO,we use a swarmof 100 particles for small-
sized experiments. The max iteration is 2000 and the no-
improvement iteration is 1000. In middle-sized experiment,
we use a swarm of 200 particles. The max iteration is 3000
and the no-improvement iteration is 1500. In GA, population
size is 100.Themax iteration is 3000 and the no-improvement
iteration is 1500. The probability of crossover is 0.8. The
probability of mutation is 0.01. For the three algorithms,
two stopping rules are adopted. One is max-iteration rule
and the other is no-improvement rule [34]. The comparative
experimental results obtained by the IDPSO, BDPSO, and
GA on the different size problems are shown in Tables 6 and
7. Since PSO and GA algorithms are stochastic algorithms,
each separate run of the program could result in a different
result. We run each algorithm 20 times for each problem
case.The values of𝑓𝑏 min represent theminimum turnaround
time of 20 runs. The values of 𝑓avg min are the average

turnaround time of the 20 runs. The values of mean time are
the computational time of average computational time.

Through this comparison it is observed that the qual-
ity of solutions obtained by IDPSO is always better than
that obtained using BDPSO and GA in terms of the best
turnaround time and the average turnaround time. Further-
more, the improvement of solutions actually becomes greater
as the size of the problems increases. The results obtained
by GA are bit better than BDPSO in most of the instances.
The proposed IDPSO can obtain the optimal or near-optimal
solutions in all cases.

As far as computational efficiency is concerned, it is worth
mentioning that GA requires less time when compared to
BDPSO and IDPSO. On the other hand, IDPSO reports solu-
tions for all problem sizes within reasonable time. Therefore,
IDPSO is recommended for use in TAP-HSR problem, as
it yields satisfactory results with reasonable computational
time. All these experiments showed that the improved dis-
crete PSO in this paper is an effective mechanism for solving
the tugboat assignment in container terminals.

5. Conclusions

Although there is a huge amount of literature on discrete
PSO, the PSO algorithm for tugboat assignment problem
does not have rich literature. In this paper, we present a
mathematic model of tugboat assignment problem under a
hybrid scheduling rule to minimize the turnaround time of
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Table 6: The compared results for small-sized problem.

Problem size Tugboats Algorithm 𝑓𝑏 min 𝑓avg min Mean time
(ship × tugboat) 2600 3200 3400 4000 (min.) (min.) (s)

5 × 4 1 1 1 1
IDPSO 135 135 2
BDPSO 175 183 3
GA 135 159 2

5 × 7 1 2 2 2
IDPSO 80 80 5
BDPSO 120 136.75 7
GA 80 110.75 2

6 × 4 1 1 1 1
IDPSO 175 175 2
BDPSO 183 213.2 4
GA 175 181 3

6 × 7 1 2 2 2
IDPSO 108 110.8 7
BDPSO 123 161.3 9
GA 108 131.3 3

7 × 6 2 2 1 1
IDPSO 168 182.8 7
BDPSO 195 238.7 9
GA 168 194.15 3

7 × 6 1 1 2 2
IDPSO 160 172.35 7
BDPSO 185 229.95 9
GA 160 183.65 3

7 × 8 2 2 2 2
IDPSO 125 140.75 10
BDPSO 200 227.35 14
GA 135 174.9 3

8 × 6 2 2 1 1
IDPSO 173 197.4 8
BDPSO 193 251.5 8
GA 193 217.8 4

8 × 6 1 1 2 2
IDPSO 160 185.6 8
BDPSO 193 236.85 8
GA 185 208.3 4

8 × 8 2 2 2 2
IDPSO 135 156.3 12
BDPSO 248 282.5 25
GA 160 197.45 4

10 × 10 3 3 2 2
IDPSO 208 237.85 26
BDPSO 308 363.9 45
GA 216 279.25 6

10 × 10 2 2 3 3
IDPSO 185 218.65 25
BDPSO 305 362.2 46
GA 245 290.7 6

ships. Moreover, the improved discrete PSO is proposed to
get solutions with good quality in a reasonable computational
time. Some new redefined PSO operators and discrete updat-
ing rules of position and velocity are described in detail. The
proposed IDPSO algorithm in this paper can be considered
as more effective approach for TAP-HSR problem compared
with GA.

The proposed IDPSO in this paper for small-sized and
middle-sized TAP-HSR is very effective but for large-size it

is not approving. It needs to be improved in the future work
such as combining heuristic rule with IDPSO. Furthermore,
applying IDPSO to other discrete combinatorial optimization
problems is also possible in further research.
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Table 7: The compared results for middle-sized problem.

Problem size Tugboats Algorithm 𝑓𝑏 min 𝑓avg min Mean time
(ship × tugboat) 2600 3200 3400 4000 (min.) (min.) (s)

15 × 10 3 3 2 2
IDPSO 375 412.4 47
BDPSO 528 621.55 65
GA 446 509.4 22

15 × 10 2 2 3 3
IDPSO 330 398.35 47
BDPSO 509 596.7 60
GA 428 495.45 22

15 × 12 3 3 3 3
IDPSO 343 409.1 70
BDPSO 523 601 89
GA 393 515.85 28

20 × 10 2 2 3 3
IDPSO 498 547.2 79
BDPSO 701 795.25 120
GA 596 695.4 41

20 × 12 3 3 3 3
IDPSO 475 567.2 119
BDPSO 613 757.2 234
GA 588 767.65 54

30 × 12 3 3 3 3
IDPSO 959 1070.7 321
BDPSO 1257 1427.5 828
GA 1265 1433.4 115

30 × 15 3 4 4 4
IDPSO 858 970 486
BDPSO 1144 1303.1 1095
GA 1026 1243.2 151

50 × 12 3 3 3 3
IDPSO 1832 1957.85 1110
BDPSO 2276 2424 2670
GA 2167 2491.35 326

50 × 15 3 4 4 4
IDPSO 1683 1814.8 1678
BDPSO 2119 2245.65 5408
GA 2089 2252 419

80 × 15 3 4 4 4
IDPSO 3179 3387.6 5870
BDPSO 3862 4045.0 13247
GA 3834 4064.15 973
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