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The interpolating moving least-squares (IMLS) method is discussed in detail, and a simpler formula of the shape function of the
IMLS method is obtained. Then, based on the IMLS method and the Galerkin weak form, an interpolating element-free Galerkin
(IEFG) method for two-point boundary value problems is presented. The IEFG method has high computing speed and precision.
Then error analysis of the IEFGmethod for two-point boundary value problems is presented.The convergence rates of the numerical
solution and its derivatives of the IEFGmethod are presented.The theories show that, if the original solution is sufficiently smooth
and the order of the basis functions is big enough, the solution of the IEFG method and its derivatives are convergent to the exact
solutions in terms of the maximum radius of the domains of influence of nodes. For the purpose of demonstration, two selected
numerical examples are given to confirm the theories.

1. Introduction

Conventional computational methods, such as the finite
element method (FEM) and the boundary element method
(BEM), cannot be applied well to some engineering prob-
lems. For the extremely large deformation and crack growth
problems, the remeshing technique must be used. Meshless
methods have been developed in recent years. The most
important common feature of meshless methods is that
the trial function is constructed from a set of nodes with
no meshing at all. Then some complex problems, such as
the large deformation and crack growth problems, can be
simulatedwith themethodwithout the remeshing techniques
[1, 2].

Many kinds of meshless methods have been proposed,
such as element-free Galerkin (EFG) method [3–5], com-
plex variable meshless method [6–11], mesh-free reproduc-
ing kernel particle Ritz method [12], radial basis function
(RBF) method [13], finite point method (FPM) [14–16],
meshless local Petrov-Galerkin (MLPG) method [17], repro-
ducing kernel particle method (RKPM) [18–22], meshless

manifold method [23–29], boundary element-free method
(BEFM) [30–40], and local boundary integral equation
(LBIE) method [41, 42].

The element-free Galerkin (EFG) method is one of the
most powerful meshless methods [3]. The EFG method can
obtain a solution with high precision. Various problems have
been successfully analyzed by the EFG method. By using the
orthogonal function system with a weight function as the
basis function, Zhang et al. presented the improved element-
freeGalerkinmethod [43–48], which has high computational
efficiency. By combining the complex variable moving least-
squares (CVMLS) approximation and the EFGmethod, Peng
et al. presented the complex variable element-free Galerkin
(CVEFG) method [49–56]. Compared with the conventional
EFGmethods, theCVEFGmethodhas greater computational
precision and efficiency.

The EFG method is constructed based on the moving
least-squares (MLS) approximation. The shape function that
is formedwithMLS approximation can obtain a solutionwith
high precision. However, a disadvantage of the MLS approxi-
mation is that its shape function does not satisfy the property
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of Kronecker 𝛿 function. Then the EFG method based on
the MLS approximation cannot apply the essential boundary
conditions directly and easily. The essential boundary condi-
tions need to be introduced by additional approaches, such as
Lagrange multipliers [3] and penalty methods [57]. However,
for Lagrange multipliers, the corresponding discrete system
will introduce additional unknowns which are not directly
associated with the solution themselves. Furthermore, the
banded structure of the matrix equation system is seriously
worsened, as well as the conditioning properties. And, for
penaltymethods, the optimal value of penalty factor is hard to
be set, which always affects the accuracy of the final solution.

To overcome this problem, Most and Bucher designed a
regularized weight function with a regularization parameter
𝜀, by which the MLS approximation can almost fulfill the
interpolation with high accuracy [58]. Most and Bucher
enhanced the regularized weighting function to obtain a
true interpolationMLS approximation [59]. Another possible
solution for this problem is the interpolating moving least-
squares (IMLS) method presented by Lancaster and Salka-
uskas [60]. The IMLS method is established based on the
MLS approximation by using singular weight functions. The
shape function of the IMLS method satisfies the property of
Kronecker 𝛿 function. Thus the meshless methods based on
the IMLSmethod can apply the essential boundary condition
directly without any additional numerical effort. Based on
the IMLS method, Kaljević and Saigal [61] presented an
improved EFG method, in which the boundary condition is
applied directly. Ren improved the expression of the shape
function of the IMLS method and then presented the inter-
polating element-free Galerkin (IEFG)method and the inter-
polating boundary element-free (IBEFG) method for two-
dimensional potential and elasticity problems [62–65]. To
overcome the singularity of the weight function in the IMLS
method, Wang et al. presented the improved interpolating
moving least-squares (IIMLS) method, in which nonsingular
weight function is used [66–68]. In the IEFG method, the
essential boundary conditions are applied directly and easily,
and the number of unknown coefficients in the trial function
of the IMLS method is less than that in the trial function of
the MLS approximation. Therefore, the IEFG method based
on the IMLS method has high computational efficiency and
precision.

Error estimation for meshless method is certainly impor-
tant to increase the reliability and reduce the cost of numeri-
cal computations in many engineering problems. Some error
analyses have been done for the MLS approximation and the
meshless method based on it [69–74]. Krysl and Belytschko
studied the convergence of the continuous and discontinuous
shape functions of the second-order elliptic partial differ-
ential equations [75]. Chung and Belytschko proposed the
local and global error estimates using the difference between
the values of the projected stress and these given directly by
the EFG solution [76]. Dolbow and Belytschko studied the
integration error [77]. Gavete et al. presented a procedure to
estimate the error in elliptic equations and then proposed
a posteriori error approximation [78, 79]. R. J. Cheng and
Y. M. Cheng studied the error estimate of the finite point
method based on the MLS approximation [80] and the error

estimates of element-free Galerkin method for potential and
elasticity problems [81, 82]. For the IEFG method, since the
essential boundary condition is applied directly, then the
error estimate of the IEFGmethod is no doubt different from
that of the EFGmethod.However, until now the error analysis
of the IEFGmethod has not been seen in the recent literature.

Two-point boundary value problems occur in applied
mathematics, theoretical physics, engineering, and optimiza-
tion theory. Since it is usually impossible to obtain analytical
solutions to two-point boundary value problems met in
practice, these problems must be attacked by numerical
methods. Many numerical methods have been proposed for
the solutions of these problems, such as the Galerkin and
collocation methods, boundary value method, variational
iteration method, and meshless method based radial basis
functions.

In this paper, the IMLSmethod is discussed in detail.The
computation of the shape function of this paper is simpler
than the corresponding expression presented by Lancaster
and Salkauskas. Then based on the IMLS method of this
paper and the Galerkin weak form, an IEFG method for
two-point boundary value problems is presented. Since the
shape function of the IMLS method satisfies the property of
Kronecker 𝛿 function, then the IEFG method can apply the
essential boundary condition directly. And as the number of
the coefficients in the trial function of the IMLS method is
less than that in the MLS approximation, then fewer nodes
are selected in the entire domain in the IEFGmethod than in
the conventional EFG method. Hence, the IEFG method has
high computing speed and precision.

Then the error analysis of the IEFGmethod for two-point
boundary value problems is presented.The convergence rates
of the numerical solution and its derivatives of the IEFG
method are presented. The theoretical results show that if
the exact solution is smooth enough and the order of the
polynomial basis functions is big enough, then the solution
of the IEFG method and its derivatives are convergent to
the exact solutions in terms of the maximum radius of
the domains of influence of nodes. For the purpose of
demonstration, some selected numerical examples are given
to confirm the theory.

2. Interpolating Moving Least-Squares Method

Let X = {x
1
, x
2
, . . . , x

𝑀
} be a set of all nodes in the bounded

domain Ω ⊂ 𝑅
𝑛, where 𝑀 is the number of nodes. The

parameter 𝜌
𝐼
denotes the radius of the domain of influence

of node x
𝐼
, and ‖ ⋅ ‖ denotes the Euclidean norm.The domain

of influence of x
𝐼
is defined by

Ω
𝐼
= {x |

󵄩󵄩󵄩󵄩x − x
𝐼

󵄩󵄩󵄩󵄩 ≤ 𝜌
𝐼
, x ∈ Ω} . (1)

Let 𝑢(x) be the function of the field variable defined inΩ.
The approximation function of 𝑢(x) is denoted by 𝑢

ℎ
(x). In

this paper, the following weight function is used:

𝑤 (x, x
𝐼
) = 𝑚

𝐼
(x)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

x − x
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−𝛼
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where 𝑚
𝐼
(x) = 𝑚(x − x

𝐼
) ∈ 𝐶

𝑙
(Ω) satisfying 𝑚

𝐼
(x) > 0 for

‖x − x
𝐼
‖ < 𝜌

𝐼
and 𝑚

𝐼
(x) = 0 for ‖x − x

𝐼
‖ ≥ 𝜌

𝐼
. In general,

𝑚
𝐼
(x) can be chosen to be any weight function of the MLS

approximation.
For a given point x, the inner product is defined as

(𝑓, 𝑔)x =

𝑛

∑

𝐼=1

𝑤 (x, x
𝐼
) 𝑓 (x
𝐼
) 𝑔 (x
𝐼
) , ∀𝑓, 𝑔 ∈ 𝐶

0
(Ω) ,

(3)

where 𝑛 is the number of nodes whose compact support
domains cover x.

Let 𝑝
0
(x) ≡ 1 and let 𝑝

1
(x), . . . , 𝑝

𝑚
(x) be given basis

functions.Then a new set of basis functions will be generated
from these given basis. Let

𝑝
0
(x; x̄) =

1

[∑
𝑛

𝐼=1
𝑤 (x, x

𝐼
)]
1/2

, (4)

𝑝
𝑖
(x; x̄) = 𝑝

𝑖
(x̄) − S𝑝

𝑖
(x) , 𝑖 = 1, 2, . . . , 𝑚, (5)

where S is a linear operator defined as

S𝑝
𝑖
(x) =

𝑛

∑

𝐼=1

V (x, x
𝐼
) 𝑝
𝑖
(x
𝐼
) , (6)

V (x, x
𝐼
) =

𝑤 (x, x
𝐼
)

∑
𝑛

𝐽=1
𝑤 (x, x

𝐽
)
. (7)

Define a local approximation as

𝑢
ℎ
(x, x̄) = 𝑝

0
(x; x̄) 𝑎

0
(x) +

𝑚

∑

𝑖=1

𝑝
𝑖
(x; x̄) 𝑎

𝑖
(x) , (8)

where x̄ is the point in the domain of influence of x , and
𝑎
𝑖
(x) (𝑖 = 0, 1, . . . , 𝑚) are the unknown coefficients of basis

functions.
Then define a functional as

𝜅 =

𝑛

∑

𝐼=1

𝑤 (x, x
𝐼
) [𝑢
ℎ
(x, x
𝐼
) − 𝑢
𝐼
]
2

, (9)

where𝑤(x, x
𝐼
) shown in (2) is aweight functionwith compact

support, x
𝐼
are the nodeswith domains of influence that cover

the point x, and 𝑢
𝐼
= 𝑢(x
𝐼
).

By minimizing the functional 𝜅, we have

(𝑢 (⋅) − 𝑢
ℎ
(x, ⋅) , 𝑝

0
)x = 0, (10)

(𝑢 (⋅) − 𝑢
ℎ
(x, ⋅) , 𝑝

𝑖
)x = 0, 𝑖 = 1, 2, . . . , 𝑚. (11)

From (4) and (10), we have

𝑝
0
(x; x̄) 𝑎

0
(x) =

𝑛

∑

𝐼=1

V (x, x
𝐼
) 𝑢 = S𝑢. (12)

Then (11) reduces to
𝑚

∑

𝑖=1

𝑎
𝑖
(x) (𝑝

𝑖
, 𝑝
𝑗
)x = (𝑢 − S𝑢, 𝑝

𝑗
)x, 𝑗 = 1, 2, . . . , 𝑚.

(13)

In [60], the unknown parameters 𝑎
𝑖
(x) (𝑖 = 1, 2, . . . , 𝑚)

are solved from (13). In fact, (13) can be simplified.

If the weight function of (2) is used, ∀x ∈ Ω, it can be
proved that there exists

(S𝑢, 𝑝
𝑖
)x = 0, 𝑖 = 1, 2, . . . , 𝑚. (14)

Then (13) can be simplified as
𝑚

∑

𝑖=1

𝑎
𝑖
(x) (𝑝

𝑖
, 𝑝
𝑗
)x = (𝑢, 𝑝

𝑗
)x, 𝑗 = 1, 2, . . . , 𝑚. (15)

Equation (15) is simpler than the expression (13) pre-
sented in [60] and can be rewritten as

A (x) a (x) = FW (x)u, (16)

where
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1
(x) , 𝑎
2
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𝑚
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1
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2
, . . . , 𝑢

𝑛
) , (18)
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and FW(x) = (𝜛
𝑘𝐽
(x))
𝑚×𝑛

is a 𝑚 × 𝑛 matrix, and

𝜛
𝑘𝐽

(x) =

{{

{{

{

𝑤(x, x
𝐽
) 𝑝
𝑘
(x; x
𝐽
) , x ̸= x

𝐽
;

𝑛

∑

𝐼=1,𝐼 ̸= 𝐽

𝑤 (x
𝐽
, x
𝐼
) [𝑝
𝑘
(x
𝐽
) − 𝑝
𝑘
(x
𝐼
)] , x = x

𝐽
.

(21)

From (16), we have

a (x) = A−1 (x) FW (x)u. (22)

Then the local approximation function is obtained as

𝑢
ℎ
(x, x̄) = S𝑢 +

𝑚

∑

𝑖=1

𝑎
𝑖
(x) 𝑝
𝑖
(x; x̄) . (23)

Thus the global interpolating approximation function of
𝑢(x) can be obtained as

𝑢
ℎ
(x) = S𝑢 +

𝑚

∑

𝑖=1

𝑎
𝑖
(x) 𝑔
𝑖
(x) ≡ Φ

𝑇
(x) u, (24)

whereΦ𝑇(x) is the shape function vector as

Φ
𝑇
(x) = k𝑇 + p𝑇 (x)A−1 (x) FW (x) , (25)

k𝑇 = (V (x, x
1
) , V (x, x

2
) , . . . , V (x, x

𝑛
)) , (26)

p𝑇 (x) = (𝑔
1
(x) , 𝑔

2
(x) , . . . , 𝑔

𝑚
(x)) , (27)

𝑔
𝑖
(x) = 𝑝

𝑖
(x) − S𝑝

𝑖
(x) . (28)

Equation (25) is the shape function of the IMLS method,
and then the IMLS method is presented.
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Equations (13) and (15) show that the computation of
the shape function of this paper is simpler than the corre-
sponding expression in [60].The reduction of computational
amount is related to the order of the operations. And, in any
case, the calculation amount of the shape functions of this
paper is at least 𝑛2 multiplication operations less than that of
the IMLS method in [60].

3. Interpolating Element-Free
Galerkin Method for Two-Point Boundary
Value Problems

Consider the following two-point boundary value problem:

−
d
d𝑥

(𝑝
d𝑢
d𝑥

) + 𝑞
d𝑢
d𝑥

+ 𝑔𝑢 = 𝑓, 𝑥 ∈ Γ = (𝑎, 𝑏) ,

𝑢 (𝑎) = 𝑢 (𝑏) = 0,

(29)

where 𝑝, 𝑞, 𝑔, and 𝑓 are known sufficiently smooth functions
and 𝑝(𝑥) ≥ 𝑝min > 0. ∀𝑓 ∈ 𝐶(Γ), suppose that problem (29)
has a unique solution.

The Galerkin weak form of (29) is

∫
Γ

𝛿𝑢
,𝑥
𝑝𝑢
,𝑥
d𝑥 + ∫

Γ

𝛿𝑢𝑞𝑢
,𝑥
d𝑥 + ∫

Γ

𝛿𝑢𝑔𝑢 d𝑥 = ∫
Γ

𝛿𝑢𝑓d𝑥,

(30)

where 𝑢
,𝑥

= d𝑢/d𝑥.
From the IMLS method, the unknown solution 𝑢(𝑥) at

arbitrary field point 𝑥 in the interval Γ can be expressed as

𝑢 (𝑥) ≈ Φ
𝑇
(𝑥) u =

𝑛

∑

𝐼=1

Φ
𝐼
(𝑥) 𝑢
𝐼
, (31)

where 𝑛 is the number of nodes whose compact support
domains cover the point 𝑥.

Substituting (31) into (30) yields

∫
Γ

𝛿u𝑇Φ
,𝑥
Φ
𝑇

,𝑥
u𝑝 d𝑥 + ∫

Γ

𝛿u𝑇ΦΦ𝑇
,𝑥
u𝑞 d𝑥

+ ∫
Γ

𝛿u𝑇ΦΦ𝑇u𝑔 d𝑥 = ∫
Γ

𝛿u𝑇Φ𝑓 d𝑥.

(32)

Because the nodal test function 𝛿u is arbitrary, the final
discretized equation of (29) is obtained as

Ku = F, (33)

where

K = ∫
Γ

𝑝Φ
,𝑥
Φ
𝑇

,𝑥
d𝑥 + ∫

Γ

𝑞ΦΦ
𝑇

,𝑥
d𝑥 + ∫

Γ

𝑔ΦΦ
𝑇d𝑥,

F = ∫
Γ

Φ𝑓 d𝑥.

(34)

Since the shape function of the IMLS method satisfies
the property of Kronecker 𝛿 function, then the essential
boundary conditions can be applied directly. Substituting the

boundary conditions into (33) directly, we can obtain the
unknowns at nodes by solving the linear equations (33).

To evaluate the integrals in (34), it is necessary to generate
integration cells over thewhole domain of the problem.These
cells can be defined arbitrarily, but a sufficient number of
quadrature points must be used to obtain a well-conditioned
and nonsingular system of (33). In one dimension, one
example of a cell structure is to set the quadrature cells
equal to the intervals between the nodes. Once the cells and
corresponding quadrature points are defined, the discrete
equations are assembled by looping over each quadrature
point.

The numerical procedure of IEFG method for two-point
boundary value problems is listed as follows.

(1) Looping over background cells to determine all Gauss
points to find out its location and weight.

(2) Looping over Gauss points for integration of (34) to

(a) determine the support domain for specified
Gauss point and select neighboring nodes based
on a defined criterion;

(b) compute shape function and its derivatives for
each Gauss point;

(c) assemble the contribution of each Gauss point
to form system equation.

(3) Enforcing essential (displacement) boundary condi-
tions.

(4) Solving the system equation to obtain nodal displace-
ments.

Thus the IEFGmethod is presented for two-point bound-
ary value problems.

4. Error Estimates

In this section, the error analysis of the IEFG method for
two-point boundary value problems is presented. The con-
vergence rates of the numerical solution and its derivatives of
the IEFG method are presented.

Let z = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑀
} be a set of all nodes in the

interval [𝑎, 𝑏], where 𝑀 is the number of nodes. Let 𝜀 =

min
𝑥𝐼,𝑥𝐽∈z,𝐼 ̸= 𝐽{‖𝑥𝐼 −𝑥

𝐽
‖} and 𝜌 = max

𝑥𝐼∈z{𝜌𝐼}, where 𝜌
𝐼
is the

radius of the domain of influence of node 𝑥
𝐼
. For a given 𝑥,

𝜌
𝑥
denotes the maximum radius of the influence domains of

nodeswhose compact support domains cover𝑥. And suppose
that there exist constants 𝑐

𝜀
and 𝑐
𝐼
such that 𝜌 ≤ 𝑐

𝜀
𝜀 and

𝜌 ≤ 𝑐
𝐼
𝜌
𝐼
, respectively.

Define the 𝐿
𝑝 Lebesgue space as

𝐿
𝑝
(Γ) := {𝑓 (𝑥) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(Γ) < ∞} , 1 ≤ 𝑝 < ∞, (35)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(Γ) := (∫

Γ

𝑓
𝑝
(𝑥) d𝑥)

1/𝑝

. (36)

The Sobolev space 𝐻
𝑘
(Γ) is defined as

𝐻
𝑘
(Γ) := {𝑓 ∈ 𝐿

1

loc (Γ) :
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑘(Γ) < ∞} , (37)
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where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑘(Γ) := (∑

𝑠≤𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

d𝑠𝑓 (𝑥)

d𝑥𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

)

1/2

. (38)

Define

𝐻
1

0
(Γ) = {V | V ∈ 𝐻

1
(Γ) , V (𝑎) = V (𝑏) = 0} ,

Γ = [𝑎, 𝑏] .

(39)

Then the variational problem in accordance with (29) is
to find 𝑢 ∈ 𝐻

1

0
(Γ) such that

𝑎 (𝑢, V) = (𝑓, V) , ∀V ∈ 𝐻
1

0
(Γ) , (40)

where

𝑎 (𝑢, V) = ∫
Γ

𝑝𝑢
,𝑥
V
,𝑥
d𝑥 + ∫

Γ

𝑞𝑢
,𝑥
V d𝑥 + ∫

Γ

𝑔𝑢V d𝑥,

(𝑓, V) = ∫
Γ

𝑓V d𝑥.

(41)

Suppose that the bilinear form 𝑎(⋅, ⋅) on the Sobolev space
𝐻
1

0
(Γ) is bounded and coercive; that is, there exist constants

𝛼̄ > 0 and 𝑀̄ < ∞ such that

|𝑎 (𝑢, V)| ≤ 𝑀̄‖𝑢‖
𝐻
1
(Γ)‖V‖𝐻1(Γ), ∀𝑢, V ∈ 𝐻

1

0
(Γ) ,

𝑎 (V, V) ≥ 𝛼̄‖V‖2
𝐻
1
(Γ)

, ∀V ∈ 𝐻
1

0
(Γ) .

(42)

Since the shape function of the IMLS method satisfies
the property of Kronecker 𝛿 function, then the finite-
dimensional solution space of the IEFGmethod for two-point
boundary value problems is defined as

𝑉
𝜌
(Γ)={V | V∈ span {Φ

𝐼
(𝑥) , 1 ≤ 𝐼 ≤ 𝑀} , V (𝑎)=V (𝑏)=0} .

(43)

Then the IEFG method according to (29) is to find 𝑢
ℎ

∈

𝑉
𝜌
(Γ) such that

𝑎 (𝑢
ℎ
, V) = (𝑓, V) , ∀V ∈ 𝑉

𝜌
(Γ) . (44)

Obviously, there exists 𝑉
𝜌
(Γ) ⊂ 𝐻

1

0
(Γ). Hence, the IEFG

method for two-point boundary value problems has a unique
solution. And the following theorem can be obtained.

Theorem 1. Suppose that 𝑢 is the solution of the variational
problem (40) and 𝑢

ℎ
is the solution of the IEFG method (44).

Then there exist

(a) 𝑎(𝑢 − 𝑢
ℎ
, V) = 0, ∀V ∈ 𝑉

𝜌
(Γ);

(b) 𝑎(𝑢 − 𝑢
ℎ
, 𝑢 − 𝑢

ℎ
) = infV∈𝑉𝜌(Γ)𝑎(𝑢 − V, 𝑢 − V);

(c) ‖𝑢 − 𝑢
ℎ
‖
𝐻
1
(Γ)

≤ 𝐶 infV∈𝑉𝜌(Γ)‖𝑢 − V‖
𝐻
1
(Γ)
.

In fact, the approximation function of the IMLS method
provides a linear operatorA defined as

A𝑢 ≡ S𝑢 +

𝑚

∑

𝑖=1

𝑎
𝑖
(𝑥) 𝑔
𝑖
(𝑥) = Φ

𝑇
(𝑥) u. (45)

If 𝑢 ∈ 𝐻
𝑚+1

(Γ), then we have proved that there exist
bounded function 𝐶

󸀠

𝑘
(𝑥) and constant 𝐶

𝑘
such that

d𝑘

d𝑥𝑘
Φ
𝐼
(𝑥) = 𝐶

󸀠

𝑘
(𝑥) 𝜌
−𝑘

𝑥
, (46)

‖A𝑢 − 𝑢‖
𝐻
𝑘
(Γ)

≤ 𝐶
𝑘
𝜌
𝑚+1−𝑘

‖𝑢‖𝐻𝑚+1(Γ),

0 ≤ 𝑘 ≤ 𝑚.

(47)

Let ‖𝑢 − 𝑢
ℎ
‖
2

𝐿
= 𝑎(𝑢 − 𝑢

ℎ
, 𝑢 − 𝑢

ℎ
). Then the following

error estimates of the energy norm and the 𝐻
1 norm can be

obtained.

Theorem 2. Suppose that 𝑢 ∈ 𝐻
𝑚+1

(Γ). Let 𝑢 and 𝑢
ℎ

be, respectively, the solutions of the problems (40) and (44).
Then there exist 𝐶

1
and 𝐶

2
, which are independent with the

parameter 𝜌, such that
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩𝐿 ≤ 𝐶
1
𝜌
𝑚
‖𝑢‖𝐻𝑚+1(Γ),

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩𝐻1(Γ) ≤ 𝐶
2
𝜌
𝑚
‖𝑢‖𝐻𝑚+1(Γ).

(48)

Proof. FromTheorem 1 and (47) we have
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩
2

𝐿
= 𝑎 (𝑢 − 𝑢

ℎ
, 𝑢 − 𝑢

ℎ
)

= inf
V∈𝑉𝜌(Γ)

𝑎 (𝑢 − V, 𝑢 − V)

≤ 𝑎 (𝑢 − A𝑢, 𝑢 − A𝑢)

≤ 𝑀‖𝑢 − A𝑢‖
2

𝐻
1
(Γ)

≤ 𝐶
1
𝜌
2𝑚

‖𝑢‖
2

𝐻
𝑚+1
(Γ)

,

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩𝐻1(Γ) ≤ 𝐶 inf
V∈𝑉𝜌(Γ)

‖𝑢 − V‖𝐻1(Γ)

≤ 𝐶‖A𝑢 − 𝑢‖𝐻1(Γ) ≤ 𝐶
2
𝜌
𝑚
‖𝑢‖𝐻𝑚+1(Γ).

(49)

Then this theorem holds.
By using the Aubin-Nitsche method, the following error

estimates in the 𝐿
2 norm can be obtained.

Theorem 3. Suppose that 𝑢 ∈ 𝐻
𝑚+1

(Γ). Let 𝑢 and 𝑢
ℎ

be, respectively, the solutions of the problems (40) and (44).
Then there exists a constant 𝐶, which is independent with the
parameter 𝜌, such that

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩𝐿2(Γ) ≤ 𝐶𝜌
𝑚+1

‖𝑢‖𝐻𝑚+1(Γ). (50)

Proof. For ∀𝑔 ∈ 𝐿
2
(Γ), let 𝜑 ∈ 𝐻

1

0
∩𝐻
2 be the solution to the

adjoint problems

𝑎 (𝜑, V) = (𝑔, V) , ∀V ∈ 𝐻
1

0
(Γ) . (51)

If the coefficients of the bilinear form 𝑎(⋅, ⋅) are sufficiently
smooth, then there exists the following estimate:

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻2(Γ) ≤

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿2(Γ). (52)

Let V = 𝑢 − 𝑢
ℎ
. Then we have

𝑎 (𝜑, 𝑢 − 𝑢
ℎ
) = (𝑔, 𝑢 − 𝑢

ℎ
) . (53)
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For arbitrary V
ℎ
∈ 𝑉
𝜌
, fromTheorem 1, we have

𝑎 (V
ℎ
, 𝑢 − 𝑢

ℎ
) = 0. (54)

It follows from (53) and (54) that

𝑎 (𝜑 − V
ℎ
, 𝑢 − 𝑢

ℎ
) = (𝑔, 𝑢 − 𝑢

ℎ
) . (55)

In (55), if we let Vk = A𝜑 and 𝑔 = 𝑢 − 𝑢
ℎ
, then there

exists
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩
2

𝐿
2
(Γ)

= (𝑢 − 𝑢
ℎ
, 𝑢 − 𝑢

ℎ
)

= 𝑎 (𝜑 − A𝜑, 𝑢 − 𝑢
ℎ
)

≤ 𝑀
󵄩󵄩󵄩󵄩𝜑 − A𝜑

󵄩󵄩󵄩󵄩𝐻1(Γ)
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩𝐻1(Γ)

≤ 𝑀𝐶
1
𝜌
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻2(Γ)𝐶2𝜌
𝑚
‖𝑢‖𝐻𝑚+1(Γ).

(56)

From (52) and (56), we have
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩𝐿2(Γ) ≤ 𝐶𝜌
𝑚+1

‖𝑢‖𝐻𝑚+1(Γ). (57)

Then this theorem is proved.

To study the error estimates of the high derivatives of the
numerical solution of the IEFG method, we need to firstly
prove the following inverse estimates of the function in the
shape function space.

Theorem 4. Suppose that Φ
𝐼
(𝑥) is defined by (25). Then

∀V
ℎ
(𝑥) ∈ span{Φ

𝐼
(𝑥), 1 ≤ 𝐼 ≤ 𝑀}; there exists a constant

𝐶, which is independent with the parameter 𝜌, such that
󵄩󵄩󵄩󵄩Vℎ (𝑥)

󵄩󵄩󵄩󵄩𝐻𝑘 ≤ 𝐶𝜌
𝑛−𝑘󵄩󵄩󵄩󵄩Vℎ (𝑥)

󵄩󵄩󵄩󵄩𝐻𝑛 , 0 ≤ 𝑘 ≤ 𝑚, −𝑚 ≤ 𝑛 ≤ 𝑚.

(58)

Proof. From (46), there exists a bounded function 𝐶
𝑘
(𝑥)

independent with 𝜌 such that

𝜕
𝑘V
ℎ
(𝑥) = 𝐶

𝑘
(𝑥) 𝜌
−𝑘

𝑥
, (59)

where 𝜕
𝑘V
ℎ
(𝑥) = (d𝑘/d𝑥𝑘)V

ℎ
(𝑥).

It is obvious that there exist bounded functions𝐶
1
(𝑥) and

𝐶
2
(𝑥) independent with 𝜌 such that

𝐶
1
(𝑥) 𝜌 ≤ 𝜌x ≤ 𝐶

2
(𝑥) 𝜌. (60)

Then we have
󵄨󵄨󵄨󵄨Vℎ (𝑥)

󵄨󵄨󵄨󵄨
2

𝐻
𝑘 = ∫
Γ

[𝜕
𝑘V
ℎ
(𝑥)]
2

d𝑥 ≤ ∫
Γ

[𝐶
𝑘
(𝑥) 𝐶
2
(𝑥) 𝜌
−𝑘

]
2

d𝑥,

0 ≤ 𝑘 ≤ 𝑚,

󵄨󵄨󵄨󵄨Vℎ (𝑥)
󵄨󵄨󵄨󵄨
2

𝐻
𝑛 = ∫
Γ

[𝜕
𝑛V
ℎ
(𝑥)]
2d𝑥 ≥ ∫

Γ

[𝐶
𝑘
(𝑥) 𝐶
2
(𝑥) 𝜌
−𝑛

]
2d𝑥.

0 ≤ 𝑛 ≤ 𝑚.

(61)

Then it follows from (61) that
󵄩󵄩󵄩󵄩Vℎ(𝑥)

󵄩󵄩󵄩󵄩𝐻𝑘 ≤ 𝐶𝜌
𝑛−𝑘󵄩󵄩󵄩󵄩Vℎ(𝑥)

󵄩󵄩󵄩󵄩𝐻𝑛 , 0 ≤ 𝑘, 𝑛 ≤ 𝑚, (62)

where 𝐶 is independent with 𝜌.

From (62), we have
󵄩󵄩󵄩󵄩Vℎ(𝑥)

󵄩󵄩󵄩󵄩𝐻𝑘 ≤ 𝐶𝜌
−𝑘󵄩󵄩󵄩󵄩Vℎ (𝑥)

󵄩󵄩󵄩󵄩𝐻0 , 0 ≤ 𝑘 ≤ 𝑚. (63)

And there exists
󵄩󵄩󵄩󵄩Vℎ(𝑥)

󵄩󵄩󵄩󵄩
2

𝐻
0 ≤

󵄩󵄩󵄩󵄩Vℎ (𝑥)
󵄩󵄩󵄩󵄩𝐻𝑛

󵄩󵄩󵄩󵄩Vℎ(𝑥)
󵄩󵄩󵄩󵄩𝐻−𝑛

≤
󵄩󵄩󵄩󵄩Vℎ (𝑥)

󵄩󵄩󵄩󵄩𝐻𝑛 ⋅ 𝐶𝜌
𝑛󵄩󵄩󵄩󵄩Vℎ(𝑥)

󵄩󵄩󵄩󵄩𝐻0 , −𝑚 ≤ 𝑛 ≤ 0.

(64)

From (63) and (64), we have
󵄩󵄩󵄩󵄩Vℎ (𝑥)

󵄩󵄩󵄩󵄩𝐻𝑘 ≤ 𝐶𝜌
𝑛−𝑘󵄩󵄩󵄩󵄩Vℎ (𝑥)

󵄩󵄩󵄩󵄩𝐻𝑛 , 0 ≤ 𝑘 ≤ 𝑚, −𝑚 ≤ 𝑛 ≤ 0.

(65)

Then from (62) and (65), this theorem holds.
By using the inverse estimates, the following error esti-

mates of the high derivatives of the numerical solution can
be obtained.

Theorem 5. Suppose that 𝑢 ∈ 𝐻
𝑚+1

(Γ). Let 𝑢 and 𝑢
ℎ
be,

respectively, the solutions of the problems (40) and (44). Then
there exists a constant 𝐶 independent with 𝜌, such that

󵄩󵄩󵄩󵄩𝑢 − 𝑢
ℎ

󵄩󵄩󵄩󵄩𝐻𝑠(Γ) ≤ 𝐶𝜌
𝑚+1−𝑠

‖𝑢‖𝐻𝑚+1(Γ), 0 ≤ 𝑠 ≤ 𝑚. (66)

Proof. FromTheorem 4 we have
󵄩󵄩󵄩󵄩𝑢ℎ − A𝑢

󵄩󵄩󵄩󵄩𝐻𝑠(Γ) ≤ 𝐶ℎ
1−𝑠󵄩󵄩󵄩󵄩𝑢ℎ − A𝑢

󵄩󵄩󵄩󵄩𝐻1(Γ), 0 ≤ 𝑠 ≤ 𝑚.

(67)

Then it follows fromTheorem 2 and (47) that
󵄩󵄩󵄩󵄩𝑢ℎ − A𝑢

󵄩󵄩󵄩󵄩𝐻𝑠(Γ) ≤ 𝐶ℎ
1−𝑠

[
󵄩󵄩󵄩󵄩𝑢ℎ − 𝑢

󵄩󵄩󵄩󵄩𝐻1(Γ) + ‖𝑢 − A𝑢‖𝐻1(Γ)]

≤ 𝐶ℎ
𝑚+1−𝑠

‖𝑢‖𝐻𝑚+1(Γ).

(68)

There certainly exits
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩𝐻𝑠(Γ) ≤ ‖𝑢 − A𝑢‖𝐻𝑠(Γ) +
󵄩󵄩󵄩󵄩A𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩𝐻𝑠(Γ). (69)

From (68), (69), and (47), we have
󵄩󵄩󵄩󵄩𝑢 − 𝑢

ℎ

󵄩󵄩󵄩󵄩𝐻𝑠(Γ) ≤ 𝐶𝜌
𝑚+1−𝑠

‖𝑢‖𝐻𝑚+1(Γ). (70)

Then this theorem holds.

5. Numerical Examples

In this section, two numerical examples are presented to show
the applicability and the theoretical error estimates of the
IEFG method of this paper. In our numerical computation,
the nodes are arranged regularly, and the radius of the domain
of influence of node 𝑥

𝐼
is determined by 𝜌

𝐼
= 𝑑max ⋅ |𝑥𝐼−𝑥

𝐼−1
|,

where 𝑑max is a positive scalar. The value of 𝑑max must be
chosen so that the solution of (22) exists. In our following
examples, 𝑑max = 2.5 and 𝛼 = 4. Define the error norms as

󵄨󵄨󵄨󵄨𝑒𝑘
󵄨󵄨󵄨󵄨 ≡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

d𝑘

d𝑥𝑘
𝑢
ℎ
(x) −

d𝑘

d𝑥𝑘
𝑢(x)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

= [∫
Γ

(
d𝑘

d𝑥𝑘
𝑢
ℎ
−

d𝑘

d𝑥𝑘
𝑢)

2

dΓ]
1/2

,

(71)
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Figure 1: The analytical and numerical displacement.
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Figure 2: The analytical and numerical strain.

where 𝑢 and 𝑢
ℎ
are, respectively, the analytical and numerical

solutions. The integration in (71) is obtained numerically by
fourth-order Gaussian quadrature.The𝑚

𝐼
(x) in (2) is chosen

to be the cubic spline weight function.
The first example considered is a linear elastostatics

problem. A one-dimensional bar of unit length is subjected
to a body force of magnitude 𝑥. The displacement of the bar
is fixed at the left end, and the right end is traction free. The
bar has a constant cross sectional area of the unit value, and
the elastic modulus is 𝐸. Then the equilibrium equation and
boundary conditions of this problem are

𝐸𝑢
,𝑥𝑥

+ 𝑥 = 0, 0 < 𝑥 < 1,

𝑢 (0) = 0, 𝑢
,𝑥

(1) = 0.

(72)
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Figure 3: The absolute error of the EFG and IEFG methods.
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Figure 4: Error norms of |𝑒
0
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|, and |𝑒

2
| with quadratic basis

functions.

The analytical solution to the above problem is

𝑢 (𝑥) =
1

𝐸
(

𝑥

2
−

𝑥
3

6
) . (73)

Let 𝐸 = 1. Under the quadratic basis functions and
21 regular distributed nodes, the analytical and numerical
solutions of the displacement and strains along the bar are
shown, respectively, in Figures 1 and 2, where the numerical
values of the IEFG method are in good agreement with the
exact ones.

The absolute errors of the displacements obtained by the
IEFG and EFG methods are shown in Figure 3. Here, the
essential boundary conditions are enforced by the penalty
method in the EFG method, and the penalty factor is chosen
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Figure 6: Analytical and numerical solutions of 𝑢.

to be 10
8. The CPU times to obtain these results by using

the IEFG and EFG methods are, respectively, 0.0267 s and
0.0253 s. It can be seen that the IEFG method in this paper
has higher precision than the EFG method under the similar
CPU time.

The error norms of |𝑒
0
|, |𝑒
1
|, and |𝑒

2
| under the quadratic

and linear basis functions are, respectively, shown in Figures
4 and 5. The convergence rates of |𝑒

0
|, |𝑒
1
|, and |𝑒

2
| with

quadratic basis are, respectively, about 3, 2, and 1, and the
convergence rates with linear basis are 2, 1, and −0.1. It is also
shown that the second derivatives of the numerical solution
of the IEFG method are not convergent to the exact values
on the radius 𝜌 when the linear basis is used. It can be seen
that these numerical results are in excellent agreement with
the ones of the theories of the paper.
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Figure 8: The absolute error of the EFG and IEFG methods.

The second example considers the following equilibrium
equation:

𝑢
,𝑥𝑥

+ 𝜋
2
𝑢 = 2𝜋

2 sin (𝜋𝑥) , 0 < 𝑥 < 1, (74)

with the boundary conditions

𝑢 (0) = 𝑢 (1) = 0. (75)

The analytical solution of this example is

𝑢 (𝑥) = sin (𝜋𝑥) . (76)

When the quadratic basis functions and 21 regular
distributed nodes are used, the analytical and numerical
solutions of 𝑢 and 𝑢

,𝑥
are shown, respectively, in Figures 6

and 7, where the numerical values of the IEFG method are
also in accordance well with the exact ones.
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| with quadratic basis

functions.

The absolute errors of 𝑢 obtained by the IEFG and EFG
methods are shown in Figure 8. In the EFGmethod, the cubic
spline weight function is used, and the essential boundary
conditions are enforced by the penalty method. The penalty
factor is chosen to be 10

10. The CPU times to obtain these
results by the IEFG and EFG methods are, respectively,
0.0361 s and 0.0325 s. Again, the IEFG method has higher
precision than the EFG method under the similar CPU time.

The convergence rates of |𝑒
0
|, |𝑒
1
|, and |𝑒

2
| are shown in

Figures 9 and 10, respectively, with the quadratic and linear
basis functions. The convergence rates of |𝑒

0
|, |𝑒
1
|, and |𝑒

2
|

with the quadratic basis are, respectively, 3, 2, and 1. And the
corresponding rates with linear basis are, respectively, 2, 1,
and −0.004. Figure 10 also shows that the second derivatives
of the numerical solution of the IEFG method are not
convergent to the exact values on the radius𝜌under the linear
basis. It is also evident that these numerical results agree well
with the ones of the theories of the paper.

6. Conclusions

In this paper, the IMLS method is discussed in detail. The
computation of the shape function of this paper is simpler
than the corresponding expression presented by Lancaster
and Salkauskas. Then, based on the IMLS method of this
paper and the Galerkin weak form, an IEFG method for
two-point boundary value problems is presented. Since the
shape function of the IMLS method satisfies the property of
Kronecker 𝛿 function, then the IEFG method can apply the
essential boundary condition directly. And as the number of
the coefficients in the trial function of the IMLS method is
less than that in the MLS approximation, then fewer nodes
are selected in the entire domain in the IEFGmethod than in
the conventional EFG method. Hence, the IEFG method has
high computing speed and precision.
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Figure 10: Error norms of |𝑒
0
|, |𝑒
1
|, and |𝑒

2
| with linear basis

functions.

The error analysis of the IEFG method for two-point
boundary value problems is presented.The convergence rates
of the numerical solution and its derivatives of the IEFG
method are presented. The theories of this paper show that if
the analytical solution is sufficiently smooth and the order of
the polynomial basis functions is big enough, then the solu-
tion of the IEFG method and its derivatives are convergent
to the analytical solutions in terms of the maximum radius
of the domains of influence of nodes. For the purpose of
demonstration, some selected numerical examples are given
to confirm the theories.
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