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We give some results concerning the existence of tripled fixed points for a class of condensing operators in Banach spaces. Further,
as an application, we study the existence of solutions for a general system of nonlinear integral equations.

1. Introduction and Preliminaries

Measures of noncompactness are very useful tools in func-
tional analysis, for instance, in metric fixed point theory and
in the theory of operator equations in Banach spaces. The
first measure of noncompactness, denoted by y, was defined
and studied by Kuratowski [1] in 1930. In 1955, Bana$ and
Goebel [2] used the function y to prove his fixed point
theorem. Darbo’s fixed point theorem [2] is a very important
generalization of Schauder’s fixed point theorem [3] and
several authors had used this concept for the resolution of
nonlinear equations, some of whom are Aghajani et al. [4, 5],
Banas [6], Bana$ and Rzepka [7], Mursaleen and Mohiuddine
[8], and many others. Recently in [9], Aghajani et al. give a
generalization of Darbo’s fixed point theorem. Moreover, they
present some results on the existence of coupled fixed points
for class of condensing operators. In this paper, we generalize
these results to obtain the existence of tripled fixed points for
the same class of operators.

Throughout this paper, X is assumed to be a Banach
space and BC (R") is the space of all real functions defined,
bounded and continuous on R". The family of bounded
subset, closure, and closed convex hull of X are denoted by

By, X, and ConvX, respectively.

Definition I (see [10]). Let X be a Banach space and %y the
family of bounded subset of X. A map

p: By — [0,00) @

is called measure of noncompactness defined on X if it
satisfies the following.

(1) u(A) = 0 & Aisaprecompact set.
(2) AcB= u(A) < u(B).

(3) u(A) = u(A), VA € By.

(4) p(ConvA) = p(A).

(5) pWAA+(1-A)B) < Au(A) + (1-A) u(B), for A €
[0,1].

(6) Let (A,,) be a sequence of closed sets from %y such
that A,,, € A,, (n>1), and lim,_, ,u(A,) = 0.
Then, the intersection set A, = [, A,, is nonempty
and A, is precompact.

Theorem 2 (see [2]). Let C be a nonempty closed, bounded,
and convex subset of X. If T : C — C is a continuous mapping

u(TA) < ku(A), kel0,1), )
then T has a fixed point.

Theorem 3 (see [9]). Let C be a nonempty closed, bounded,
and convex subset of X and T : C — C a continuous mapping
such that for any subset A of C

u(TA) < B(u(A)u(A), 3)


https://core.ac.uk/display/208294646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where f: R, — [0,1); thatis, B(t,) — 1impliest, — 0.
Then, T has at least one fixed point.

The following result is a corollary of the previous theorem.

Corollary 4 (see [9]). Let C be a nonempty closed, bounded,
and convex subset of X and T : C — C a continuous mapping
such that for any subset A of C

u(TA) < ¢ (u(4)), (4)

where ¢ : R, — R, is a nondecreasing and upper semicon-
tinuous functions; that is, for every t > 0, ¢ (t) < t. Then, T
has at least one fixed point.

Definition 5 (see [11]). A coupled fixed point of a mapping
G: XxX — Xisan element (x,y) € X x X such that
G(x,y)=xand G(y,x) = y.

Theorem 6 (see [12]). Let py, Uy, ..., U, be measures of non-
compactness in Banach spaces E,, E,, ..., E,, (respectively).
Then, the function

EX)=F(p (X)), (XZ)""’AMH (Xn))’ (5)

defines a measure of noncompactness in E; xE, x- - -xE,,, where

X; is the natural projection of X on E,, fori = 1,2,...,n, and
F is a convex function defined by
F:[0,00)" — [0,00), (6)
such that
F(x),%...,%,) =0 x; =0,
(7)

fori=1,2,...,n

Remark 7. Aghajani and Sabzali [13] illustrated the previous
theorem by the following example. Let the mapping F be as
follows:

F(x,y) =max{x,y}, or F(x,y)=x+y,
(8)
for any (x,y) € [0,00)°.
They showed that
f(X) = max (g, (X,), 4, (X)), )
or
AX) = (X)) + 1y (X5) (10)
defines a measure of noncompactness in the space E; x E,,
where, for i = 1,2, y; are measure of noncompactness in

E; and X, i = 1,2 are the natural projections of X on E;.

Theorem 8 (see [9]). Let Q) be a nonempty, bounded, closed,
and convex subset of a Banach space E and let ¢ : R* — R”.
Assume that ¢ is a nondecreasing and upper semicontinuous
function. Let G : Q x Q — Q be a continuous operator

satisfying

|

2 (1)

X, X, €Q,
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for any measure of noncompactness . Then, G has at least a
coupled fixed point.

2. Main Results

Definition 9 (see [14]). A tripled (x, y,z) of a mapping G :
X x X xX — Xiscalled a tripled fixed point if

G(x,y.2) =x,
G(yx2) =y, (12)
G(z y,x) =z

Remark 10. We can notice that by taking

F(x,y,z) = max{x, y,z},
(13)
for any (x, y,2) € [0,00)°,

or
F(x,y,2) =x+y+z, forany (x ¥2)€[0,00)° (14)

F satisfies the conditions of Theorem 6. Thus, for a measure
of noncompactness y; (i = 1,2, 3), we have that

i (X) = max (#1 (Xl) > (Xz) > U3 (Xa)) > (15)

or

(X)) =y (X)) + iy (X5) + 15 (X5) (16)

defines a measure of noncompactness in the space E x E X E
where X, i = 1,2, 3 are the natural projections of X on E;.

So, we obtain the following theorem.

Theorem 11. Let QO be a nonempty, bounded, closed, and
convex subset of a Banach space E and let ¢ : R* — R" be
a nondecreasing and upper semicontinuous function such that
@ (t) < tforallt > 0. Then, for any measure of noncompactness
U, the continuous operator G : QA x Q x Q — Q satifying

(Xl)w(Xz)w(Xs))
3 ,

y(G(Xszxxg))w(”

X, X,, X, €0Q
(17)

has at least a tripled fixed point.

Proof. To prove this theorem, let us define the measure of
noncompactness ji by

AX) =y (X)) + iy (X5) + 3 (X5) (18)
and the mappingG: Qx QA x Q — Q

G(x9.2) = (G(x1.2),G(1,%2),G(z y,x)). (19)
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Since
7(G(X)) < (G (X, x X, x X3) x G (X, x X, x X3)
x G(X;x X, x X;))
= u(G(X; x X, x X3)) +u(G(X, x X; x X3))
+u(G(X; x X, x X))

<¢<”(X1)+V(Xz)+M(X3))

3

+(P(#(X1)+M(Xz)+#(xs))

3

+¢<H(X1)+V(X2)+P‘(X3))

3

u (X)) +p(X;) +u(X;5)
= 3g0( 3 ) o

and ji' = (1/3) ji is a measure of noncompactness, we get

7(GX) <o (i (). (2)
By Corollary 4, we obtain that G has at least a tripled fixed
point. O
3. Applications

We can see an application of Theorem 11 in the study of exis-
tence of solutions for systems of integral equations defined on
the Banach space BC (R*) endowed with the norm

llxll = sup {|x (£)] : £ > 0} (22)

The measure of noncompactness on BC (R") for a positive
fixed £ on By g+) is defined as follows:

U(X) = wy (X) +lim sup diam X (), (23)

t— 0o
such that

diam X (t) = sup {|x (t) = y (t)| : x, y € X},
24
where X () = {x(t) : x € X}. -

Before defining w, (X), we need first to introduce the modu-
lus of continuity.
Letx € X and e > 0;

wT(x,e) =sup{lx(t) —x(s)|:t,s € [0,T],|t —s| <€},

for T > 0,
(25)

3
is the modulus of continuity of x on [0, T'] and let
w’ (X,€) = sup {wT (x,€):x € X} ,
wp (X) = lim o' (X,€), (26)

wy (X) = Tlgqlmwg (X).

Assume that

(i) &1,9 : R, — R, are continuous and & (f) — oo as
I — 00;

(ii) the functiony : R — Ris continuous and there exist
positive 8, a such that

lw (1)) —w (t,)] <8t - 1,]%, (27)

foranyt,,t, € R;

(iii) f: R, xRxR xR xR xR — Ris continuous and
there exists a nondecareasing continuous function @ :
R — R with ®@ (0) = 0, so that

|f (t,xl,xz,x3,x4) _f(t>)’1’J’2’J’3’J’4)|
1
< 5(‘P(|x1 = |+ %0 = ya| + |5 = 35]) (28)

+0 (|x4 - ;V4|);

(iv) the function defined by | f (,0,0,0,0)| is bounded on
R,; that is,

M, =sup{f (t,0,0,0,0): t € R,} < o0; (29)

(VM h:R, xR, xRxR — R isa continuous function
and there exists a positive solution r;, of the inequality

%(p 3r)+ M, +® (D) <, (30)
where D is positive constant defined by the equality

(t)
D = sup {U: (t.s,x (1)), 5 (1(5)),2 (1 (s)))ds

LseR,,x,y,z€ BC(RJ},

q(t)
tim, [ [ (5% (1), (19,2 (1 (9)

€—

—h(tsu(n(9),v(16)),w(n(s)))]ds =0,
(31)

uniformly with respect to x, y, z,u, v,w € BC(R,).



Theorem 12. Suppose that (i)-(v) hold; then the system of
integral equations

x (t)

= f(Rx(E(t)),y(E(t))>Z(E(t)),

o[ nesr o)y @) 2@ ).
()

= f(t,y(f(t)),x(f(t)),Z(E(t)),

o[ s r00)x@o) 206 ).

z (t)

= f(t,Z(f(t))»)/(f(t)),x(cf(t)),

o[ hesz @)y o) x o) as)

(32)

has at least one solution in the space BC (R,) x BC(R,) x
BC (R,).

Proof. Let G : BC(R,)xBC(R,)xBC(R,) — BC(R,)be
an operator defined by

G(x,y,2) (1)

= f(LX(E(t)),y(E(t)),Z(E(t)),

o[ hesx o)y o) 2onas) )

(33)

For (x, y,z) € BC(R,) x BC(R,) x BC(R,), let

(€7 Z)”BC(RJxBC(&)xBC(RJ (34)

= xlloo + [¥]loo + 12llco-

We can easily prove that the solution of (32) in BC(R,) x
BC(R,) x BC(R,) is equivalent to the tripled fixed point of
G.
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Obviously, G (x, y,z) (t) is continuous for any (x, y,z) €
BC(R,)x BC(R,) x BC(R,). Hence, we have

|G (x, y, 2) (¢)]

<

f<t,x(f(t)),y(f(t)),z(f(t)),
q(t)
o[ he s @)y 00).copas)

- (0,0, 0)|
+|f(£,0,0,0,0)|
< To(REO) + [y €O + |y €N

ro(fo(J1 nesx @) s o).z o) i)

+]|f(£,0,0,0,0)|

)

<30 (xE@]+ Y EO) + [y €O
q(*) «
ro (ol [ htsxtr) o) ztromas)| )

+|f(t,0,0,0,0)|.

(35)
Then, by (29) and (30), we get
IG (. 3.2
. (36)
< 30 (I¥llo + [l + N2lleo) + My + @ (D) < 7.
So, we obtain
G(B, xB, xB, ) CB,. (37)

Now, we prove that G : Ero X ETO X Ero - Ero is continuous.
Let (x, ¥, 2), (u,v,w) € ETO X E,O X E,o such that, for € > 0,

I(x y.2) - v w5 5, 5, <e (38)
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Then,
|G (x,3.2) () = G (w,v,w) (8)]

= If(t)x(f 1), yE@®),zE®),
q(t)
W(JO h(t,S»X(n(s)),y(ﬂ(s)),Z(n(s)))dS))

—f<t,x(f(t)),y(f(f)),Z(f(f)),

q(t)
v <L h(t,s,u(n(s)),v(n(s)),

wlro)as) )

<%¢Ox@6%ﬂME®DLWyGUD—VK&D
FEW) -wE®))

ro(y([nes ).y 10 2 r0)as)
([ s ) @) as))

< %‘P (Ix €& —u@®N[+ |y € ®) - vE®))
+ zE®) -wE®))
q(t)
ro (o[ hes 9.y (19 2 o)

)

(39)

q(t)
‘L h(ts,u (7(9),v (1(5)) (1 (5))) ds

Using condition (iii) and (29), there exists T' > 0 such that if
t > T, then

q(t)
® (6“0 h(t,s,x(7(s),y((s),z(5(s)))ds)

(40)
1
< —6,
3
for any x,y,z € BC (R, ). We notice two cases.
Case 1. If t > T, then from (39) and (40)

|G (x,9,2) (t) = G (u, v, w) (t)| < %go (€) + %e. (41)

Case 2. Similarly, for t € [0, T], we have
|G (x, ,2) () = G (u, v, w) ()]

< %sv (Ix €O —uEO)]+]y E®) - vE®))
+ 2§ ®) - wE®))])

q(t)
j h(ts.x (7)., y (1), (1())) ds

0

+®(6

q(t)
- [ resu 0190 (1) wln () ds

)

< %q) () +D (5(6]Tﬁ (6))a)

< %e + 0 (8(qrf(©)"),

(42)
where g = sup {q (t) : t € [0,T]}, and
B(e) = sup{|h(t,s,x,y,z) —h(t,s,u,v,w)|:
t€[0,T],s € [0,g7],
(43)

X, Y, 2, U, V,W € [T, 7],

ICx, y.2) = (W v w)|| < €} .

Since B is continuous on [0, T] x [0, g7 ] X [~7o, 7] X [-70> 70>
we have () — 0ande — 0. Thus, using (iii), we get

) (S(qTﬁ (e))“) — 0, ase—0. (44)

Finally, from (42) and (41), we conclude that G is a continuous
function from B, x B, x B, into B, .

Now, we show that the map G satisfies all the conditions
of Theorem 11. To do this, for an arbitrary fixed T > O and € >
0, assume that X, X,, and X; are nonempty chosen subsets

ofE,O and t,,t, € [0,T], with |t, - ;| < e. Without loss of
generality, let

q(t;) <q(t,). (45)

For an arbitrary (x, y,2) € X; x X, x X3,
|G (x,3,2) (t:) = G (x, 3, 2) (1))

<

£ (€0 (€02 € 1),
14 <J:(tl) h(ty,sx(1(s)),y (1()),2(n()) dS))
[t ) €D 2 € ).
w(f@%ﬂmaxM@D,

yn <s>>,z<n<s>>>ds))|



U-)Ir—l

; f(w(& (L)), y ()2 (E (1)),

w(fﬁhﬂa&xWSDd%ﬂﬂhdnw»dg)
- f (€ @) € ) 26 w),
w(f“%ﬂmaqu»,
) < (1) ) |

; f(w(& (L)), y (1)) (E (1)),

o[ ns )00 o))
() €02 €0,
w(f“”wm&xm@»,
) < () ) |

; f(tz,x(s (L)), y ()2 (E (1)),

a(tr)
o[ Honsx 0@ 0120 i) )
() €02 € ).

‘I(tz)
w(j Bt (n(9),
0

Y (1)1 <s>>>ds))]
o (|x(E(t) —x E @) +]y () -y E@®))
+ ]z (€ (1) -2 (E ()] + “’3;,D1 (f; “3))

q(t2)
[ 1 sx(r9) 7 (019).2 (1)

0

+d><8

—h(t,sx(n),y (),

{)

z(n(s)))]d
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+<D<5 (1()),2z(n(s))ds >

(0] (U)T ()C, CUT (5) 6)) + wT (y’ wT (E) 6))
+ ' (Z, w’ &, 5)) + erO,DI (f> 6))

0] (S(qurTo (h, e))“) +® (S(Uz;wT (g 6))a) ,

Q(tz)
J( ) h(ty,sx(n(s),y

alt

<

[SSH=

(46)
where

@' (& €) = sup {l(f (tz) -¢ (tl))

|:t,t, <elt, -t <€},
o (x,0” €€)) = sup {|(x (t,) - x (1)) tuotr € 0,71,

|t, — t,] Sa)T(E,e)},
D, = qrsup {|h(t,s,x,y,2)|,£ € [0,T],s € [0,q7],
X, ¥,z € [-15, 10}
@, (fr€) = sup{|f (2% 3 2.d) - f (1,5 y 2.d)
t,,t, €[0,T],
|t, -t <€&x 3,z € [-rp1y],
d € [-Dy, D]},
o (1,6) = supll (i 302) = £ (tr55302)]
thty € [0,T], |t - ty] <6,
s€[0,qr],x .2z € [-r, 1]},
UTT0 = sup {|h(t;,s, %, y,2)| : t; € [0, T],

s € [O,qT] » X, Y2 € [—"O)fo]}’

(47)
we obtain
o' (G(X, x X, X X;),€)
< %(p (o (Xpo' (E6) +0 (Xpo! Ee)
o (X GE)) +lp () (9

+@ (S(qurTo (h, e))a) + @ (S(UZ;wT (g e))“) :

Further, by the uniform continuity of f and / on the compact
sets [0, T] x [~7g, 7] X [~70» 7o) X [~70» 7o) X [-D;, D;] and
[0,T] % [0,q7] X [-79 7o) X [-70-70] X [0 75|, respectively,
we get ero,Dl (f.€) — 0and erO (h,e) > Oase — 0.
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Moreover, @ is a nondecreasing continuous function with
@ (0) = 0 and (iii), and we obtain

D (S(qu,TO (h, e))“) + @ (S(UrTowT (g e))“) — 0,

(49)
€ — 0.
By (48), we get
@, (G (X % X, x X3))
L T T (50)
< 59" (“’o (X)) + @y (X5) + w, (X3))-
Taking the limit T — oo in (50), we obtain
w, (G (X x X, x X3))
(51)

< 39 (@ (%) +0, () + @y (X,)).

Then, for arbitrary (x, ,2), (u,v,w) € X; x X, x X3, and
t € R,, we have

|G (x,3.2) () = G (u, v, w) (8)]
S %‘P(lx(f ) ~uEO)] +]yE @) -vEW)
+ 2 @€ M) -wEm)])

o (a ‘ j:“) [ (65 x (1), (19) 2 (19)))

)

< %go (diam X, (£ (¢)) + diam X, (£ (t)) + diam X; (£ ()))

—h(t,su(n(s),

v(n(s)),w(n(s)))]ds

o (a U:“) (652 07) 3 (1(9)) 2 (7))

|

—h(t,s,u(n(s),

v(n(s)),w(n(s)))] ds

(52)

Since (x, ¥, z), (u, v, w), and t are arbitrary in (52),

diam G (X, x X, x X3) (t)

< %go (diam X, (£ (t)) + diam X, (& (t)) + diam X; (£ (£)))

o (a U:(” (6,5 (7). y (1(9)) 2 (7))

—h(tsu(n(s),v(n(s),
w(n(s))) (&5x (1)),

y(1n(5),2(n(s)))] ds “> .

(53)

Taking again T — oo in (53), we obtain

limsup sup diam G (X, x X, x X3) () + w,

t — 0o

< %go <lim sup diam X, (¢ (t)) + lim tsup diam X, (£ (¢))

t— 00

+ lim sup diam X; (¢ (t))).
t— 00
(54)
We conclude from (51) and (54) that

lim sup w, (G (X; x X, x X3)) (t) + wy (G (X; x X, x X3))

t— 00

< %(p <lim sup diam X, (¢ (t)) + lim tsup diam X, (£ (¢))

t—o00

+ lim sup diam X; (& (t)))

t— 00
1
+ g‘P (w (X7) + @ (X,) + wy (X3)) -
(55)
Since ¢ is a concave function, (55) implies

lim sup diam G (X, x X, x X3) (t)

t— 00

+wy (G (X, x X, x X3))

< sv(l [“m sup diam X, (£ (0) + @y (XI)D (56)

3 t— 0o

+ g;(l [lim sup diam X, (£ (1)) + w, (X, )

3 t— 00

()]
ot a3,

Finally, since p is defined by

U(X) = wy (X) +lim sup diam X (¢), (57)

t— 00



we get

#(G (X, x X, x X3))
<¢(V(X1)+["(X2)+["(X3)). (58)

3

Hence, by Theorem 11, T' has at least a tripled fixed point in
BC(R,)xBC(R,)xBC(R,). O

Example 1. 'We consider the following system of integral
equations

x(t) =

S RlGRPIORELD

+ LT (x(s)s[sin y ()] |cos z (¢)]
+e (1+x7(s)) (1 +sin’y (s))
- (1+cos’z(s)))
(e (1+x°(9) (1 +sin’y (s))

. (1 + cos’z (s)))_lds,

YO = 5y O+ x O +20)

T
+ J (y (s) ssinx (¢)| |cos z (2)]
0

+é (1 +y° (s)) (1 + sin’x (s)) (59)
. (1 +cos’z (s)))
. (et (1 + y2 (s)) (1 +sin’x (s))

. (1 + cos’z (s)))ilds,

z(t) = z({t)+y(t) +x(t)

3+1¢2
T
+ J. (z (s) s|sin y ()| [cos x ()]
0
+é (1 +z° (s)) (1 +sin’y (s))
. (1 + cos”x (s)))
) (et (1 + 7 (s)) (1 +sin’y (s))

. (1 + cos’x (s)))_lds.
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We notice that by taking

1 1 1
f(t,x,y,z,p) = mxi' §y+ §Z+p,
h(t,s,x,y,z)

xs|sin y||cos z| + €° (1 + x2) (1 + sinzy) (1 + coszz)

>

et (1 +x2) (1 +sin?y) (1 + cos’z)
nt) =& =q) =Y 1) =0 () =t

pt)=t-3,
(60)

we get the system integral equations (32).
To solve this system, we need to verify conditions (i)-(v).
Obviously, &,77,q : R, — R, are continuous and & —

00 as t — oo. Further, the functiony : R — R is
continuous for § = « = 1, and we have
lw (6,) —w (t,)] < 8|t —t,]%, (61)

forany t,,t, € R,. Conditions (i) and (ii) hold.
Now, let

[f (65,32 p) - f (t.w, v, p)|
| 1
3+¢2

1 1
+ v+ §w+p>|

11
X+=y+-2+p- u
3/ T3ETP <3+t2 3

N

1
g[|x—u|+|y—v|+|z—w|]+|p—p|

1
9k —ul+ ]y —v|+1z-wl) + @ (|p-p|).

(62)

Then, (iii) also holds.
Moreover,

M, =sup |{f (£,0,0,0,0) : t € R, }| = 0; (63)

then, (iv) is valid.
Let us verify the last condition (v). First,

|h(t,s,x, y,2) = h(t,s,u,v,w)|

xs|sin y||cos z| + €° (1 + xz) (1 + sinzy) (1 + coszz)

et (1+x2)(1+sin’y) (1 + cos’z)

us |sinv| [cosw| + €° (1 + uz) (1 + sinzv) (1 + coszw)

et (1+u?)(1+sin*v) (1 + cos’w)

Xs |sin y| |cos z|

et (1+x2)(1+sin?y) (1 + cos?z)

B us |sin v| |cos w|
et (1+u?) (1 +sin®v) (1 + cos?w)

1ls 1ls s
<

<| X s u s +
< X T —; X .
28t 2e et

1+x%e 1+u?et

(64)
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Hence,
tim [ Jhsx (79). (7(69) 2 (1)
—h(t,su(n(s)),v(n(s),w(n(s))|ds (65)
(s,
< tlingo _L st =0.

Furthermore, for any x, y,z € BC (R,)xBC (R, )xBC(R,),

J, 1 (esx (19,5 (169).2 (19 s
< [ MCsx ).y 0620 ds
<Jt<i+e_s>dszi+1_l
Sl \2et et 4et et

44 -4
o 4et

(66)

Thus,

t
sup {Uo h(t,s,x(n(s)),y (1)), z(n(s)))ds|,

fseR,,x 7,2 € BC(R,) x BC(R,) x BC(IR+)}

2 t
t"+4e -4
= sup{4—:t,t € R+} =1.
(67)

It is easy to see that, for any r > 0, we have that
1
5(;)(31’) +M,+® (D) <r (68)

holds and condition (v) is valid.
Consequently, the system has at least one solution in
BC(R,)xBC(R,) xBC(R,).
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