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This paper studies the problem of scheduling a set of jobs on a single machine subject to stochastic breakdowns, where jobs have
to be restarted if preemptions occur because of breakdowns. The breakdown process of the machine is independent of the jobs
processed on the machine. The processing times required to complete the jobs are constants if no breakdown occurs. The machine
uptimes are independently and identically distributed (i.i.d.) and are subject to a uniform distribution. It is proved that the Longest
Processing Time first (LPT) rule minimizes the expected makespan. For the large-scale problem, it is also showed that the Shortest
Processing Time first (SPT) rule is optimal to minimize the expected total completion times of all jobs.

1. Introduction

Machine scheduling problems belong to the classic combina-
tional optimization problems. These problems deal with the
model where decisionmaker needs to arrange jobs to process
on a limited number of machines or processors. Machine
scheduling problems play an important role in manufac-
turing, parallel computing, or compiler optimization. These
problems have been studied since the 1950s and a lot of
results have been achieved until now.We refer to the books by
Brucker [1] and Pinedo [2] for a general overview of literature
in scheduling problems.

In the environment of classical scheduling problems,
the machine is assumed to be workable continuously until
the completion of all jobs. Nevertheless, some unexpected
events during production (e.g., equipment damaged, error
operation, and instrument breakdown) often occur in man-
ufacturing environment. Therefore, it is very common that
a machine breakdown happens during the processing of a
job.Moreover, the information about the breakdownsmay be
uncertain. In the realistic situation, the decision maker has
to consider how to utilize the available information to give

a more effective scheduling plan in order to increase the
output and reduce the cost. In this way, it is necessary and
valuable to research the stochastic scheduling problems with
random machine breakdowns.

According to the impact a machine breakdown exerts
to the job being processed, the machine breakdowns could
be categorized into two models: preemptive-resume model
and preemptive-repeat. In the preemptive-resumemodel, if a
breakdown happens during the processing of a job, the work
done prior to the breakdown is not lost, and the job could be
resumed when the machine becomes available again. In the
preemptive-repeat model, the job has to be reprocessed in its
entirety if the machine breakdown occurs before the job is
completed.

The main purpose of this paper is to study the prob-
lem with machine breakdowns of preemptive-repeat model.
There aremany results on preemptive-resumemodel. Such as
Glazebrook [3], Birge et al. [4], Mittenthal and Raghavachari
[5], Cai and Zhou [6, 7], and Qi et al. [8]. Regarding the
preemptive-repeat model, many authors have contributed
remarkable achievements. Adiri et al. [9, 10] studied the
problems with single breakdown; Cai et al. [11–13] studied
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the problems in which the realizations of processing times
for a job between breakdowns are the same. They referred
to this model as the case of without resampling. Frostig [14]
considered the resampling mechanism in which the repeated
processing times of a job are i.i.d. between breakdowns. Khalil
and Dimitrov [15] studied the flow time of a job under the
preemptive-repeat and preemptive-resume models. Lee and
Lin [16] considered the problem where the decision maker
can decide whether to activate a maintenance or to leave the
machine to run at a slower speed. Kasap et al. [17] studied the
uptime distributions to ensure that the LPT rule minimizes
the expected makespan. Tang and Zhao [18] designed an
optimal algorithm for the problem with early and tardy
penalties. Lee andYu [19] gave algorithms to the problemwith
the objective to minimize the expected weighted completion
times and expected maximum tardiness.

However, all the papers reviewed above (except Kasap
et al. [17]) carry the implicit assumption that the breakdown
process of the machine is dependent on the job it is pro-
cessing. With this assumption, the problem with machine
breakdowns could be converted to the traditional scheduling
problem without breakdowns; see papers [11, 12, 18].

In this paper, the machine breakdowns are subject to
preemptive-repeat model and are independent of job it
is processing. The objective is to minimize the expected
makespan or expected total completion times of all jobs. For
this problem, Adiri et al. [9] firstly studied a special case of
a single machine scheduling with only one breakdown, and
the machine is assumed to be continuous workable after the
breakdown. Subject to this restriction, Adiri et al. concluded
that the LPT (SPT) rule minimizes the expected makespan
when the distribution function of the uptime is convex
(concave). This paper considers the general problem where
the downtimes (repairing time) are i.i.d., and the uptimes
are independently subject to a commonuniformdistribution.
Under the assumptions above, it is proved that LPT rule is
optimal to achieve the minimal expected makespan, and SPT
rule minimizes the expected total completion times for large-
scale problem, where the number of jobs is large enough.

The remainder of the paper is organized as follows.
In Section 2, the model with stochastic preemptive-repeat
breakdowns is formulated.Then, for a given processing order,
we present a formulation of the expected completion time
of a job. In Section 3, we show that the LPT rule minimizes
the expectedmakespan. Section 4 demonstrates that SPT rule
minimizes the expected total completion times for large-
scale problems. Finally, some concluding remarks are made
in Section 5.

2. Formulation of Problem

Suppose there are 𝑛 jobs 𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
available at time 0

and these jobs are to be processed on a single machine.
Denote by a constant 𝑝

𝑗
the time needed to process job

𝐽
𝑗
if no breakdown occurs during its processing. Due to

the breakdowns, the actual time needed to process job 𝐽
𝑗

may be more than 𝑝
𝑗
, and the time may vary in different

processing orders. It is assumed that the machine could

process one and only one job at a time, and once a job begins
to be processed on the machine, it could not be preempted
by other jobs (except by machine breakdowns) until its
completion.

The machine is subject to stochastic breakdowns, and,
after each maintenance, the machine will start anew. The
breakdown process is characterized by a sequence of positive
random vectors {𝑈

𝑘
, 𝐷
𝑘
}
∞

𝑘=1
, where 𝑈

𝑘
, 𝐷
𝑘
are, respectively,

the durations of the 𝑘th uptime and downtime of the
machine.The uptimes and downtimes are defined to be inde-
pendent of the jobs. If the machine breaks down during the
processing of job 𝐽

𝑗
, the work done on the job will be lost and

the job has to be restarted. 𝑈
𝑘
(𝑘 = 1, 2, . . .) are defined to be

i.i.d. and follow the uniformdistributionwith the distribution
function 𝐹(𝑥) with the support in [0, 𝐶] (0 ≤ 𝐶 ≥ ∑

𝑛

𝑖=1
𝑝
𝑗
).

Hence, 𝐹(𝑥) = 𝑥/𝐶, (𝑥 ≤ 𝐶). 𝐷
𝑘
(𝑘 = 1, 2, . . .) are also i.i.d.

with an arbitrary distribution with E[𝐷
𝑘
] = 𝑑
0
. The objective

functions in this paper are the expected makespan and the
expected total completion times. Our work focuses on the
scheduling order of all jobs so as to minimize the objective
functions.

Define a jobs processing order 𝜆 = (𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
), and

𝑠
𝑗

= ∑
𝑗

𝑘=1
𝑝
𝑘
, (𝑠
0

= 0). Given a processing order 𝜆, assume
the machine begins to process only the 𝑗th, (𝑗 + 1)th, . . . , 𝑘th
jobs at time zero; then define that 𝐶

𝜆(𝑗,𝑘)
(𝑘 ≥ 𝑗) denotes the

time to complete the 𝑘 − 𝑗 + 1 jobs. So the makespan 𝐶
𝜆

max =

𝐶
𝜆(1,𝑛)

, and the completion time of 𝑗th job is 𝐶
𝜆(1,𝑗)

. Let 𝐼
𝐴

be an indicator variable such that 𝐼
𝐴

= 1 if event A occurs;
otherwise 𝐼

𝐴
= 0. Based on the notations defined above,

the expected completion time of job 𝐽
𝑗
could be expressed

as

E [𝐶
𝜆(1,𝑗)

] = E[

𝑗

∑

𝑘=1

𝐶
𝜆(1,𝑗)

𝐼
{𝑠𝑘−1≤𝑈1<𝑠𝑘}

+ 𝐶
𝜆(1,𝑗)

𝐼
{𝑈1≥𝑠𝑗}

]

=

𝑗

∑

𝑘=1

E [𝐶
𝜆(1,𝑗)

𝐼
{𝑠𝑘−1≤𝑈1<𝑠𝑘}

] + E [𝐶
𝜆(1,𝑗)

𝐼
{𝑈1≥𝑠𝑗}

]

=

𝑗

∑

𝑘=1

Pr (𝑠
𝑘−1

≤ 𝑈
1
< 𝑠
𝑘
)

× E [𝐶
𝜆(1,𝑗)

| 𝑠
𝑘−1

≤ 𝑈
1
< 𝑠
𝑘
]

+ Pr (𝑈
1
≥ 𝑠
𝑗
)E [𝐶

𝜆(1,𝑗)
| 𝑈
1
≥ 𝑠
𝑗
]

=

𝑗

∑

𝑘=1

Pr (𝑠
𝑘−1

≤ 𝑈
1
< 𝑠
𝑘
)

× {E [𝑈
1
| 𝑠
𝑘−1

≤ 𝑈
1
< 𝑠
𝑘
]

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑗)
]}

+ Pr (𝑈
1
≥ 𝑠
𝑗
) 𝑠
𝑗
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=

𝑗

∑

𝑘=1

𝑝
𝑘

𝐶

[(𝑠
𝑘−1

+

𝑝
𝑘

2

) + 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑗)
]]

+

𝐶 − 𝑠
𝑗

𝐶

𝑠
𝑗
,

(1)

which implies

E [𝐶
𝜆(1,𝑗)

] =

1

𝐶 − 𝑝
1

{

𝑗

∑

𝑘=2

𝑝
𝑘
[𝑠
𝑘−1

+

𝑝
𝑘

2

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑗)
]]

+ (𝐶 − 𝑠
𝑗
) 𝑠
𝑗
+

𝑝
2

1

2

+ 𝑑
0
𝑝
1
} .

(2)

Therefore, we obtain the expected makespan

E [𝐶
𝜆

max] = E [𝐶
𝜆(1,𝑛)

]

=

1

𝐶 − 𝑝
1

{

𝑛

∑

𝑘=2

𝑝
𝑘
[𝑠
𝑘−1

+

𝑝
𝑘

2

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑛)
]]

+ (𝐶 − 𝑠
𝑛
) 𝑠
𝑛
+

𝑝
2

1

2

+ 𝑑
0
𝑝
1
} .

(3)

3. LPT Minimizes Expected Makespan

In this section, we will prove the optimality of LPT to mini-
mize the expected value of makespan. Define the processing
order 𝜆

𝑘
= (𝐽
1
, . . . 𝐽
𝑘−1

, 𝐽
𝑘+1

, 𝐽
𝑘
, 𝐽
𝑘+2

. . . , 𝐽
𝑛
) (1 ≤ 𝑘 ≤ 𝑛 − 1),

which is obtained by interchanging the processing order of
the two jobs 𝐽

𝑘
, 𝐽
𝑘+1

in 𝜆. The following lemma shows that
the processing of first two jobs is subject to LPT rule.

Lemma 1. Consider the processing order 𝜆 = (𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
). If

the uptimes are i.i.d and uniformly distributed and 𝑝
1

< 𝑝
2
,

then the expected makespan can be reduced by interchanging
the first two jobs 𝐽

1
, 𝐽
2
; that is,

E [𝐶
𝜆1(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

] < 0. (4)

Proof. According to the definition of 𝐶
𝜆(𝑗,𝑘)

and by (3), it is
obtained that

E [𝐶
𝜆(2,𝑛)

]

=

1

𝐶 − 𝑝
2

{

𝑛

∑

𝑘=3

𝑝
𝑘
[(𝑠
𝑘−1

− 𝑝
1
) +

𝑝
𝑘

2

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑛)
]]

+ [𝐶 − (𝑠
𝑛
− 𝑝
1
)] (𝑠
𝑛
− 𝑝
1
) +

𝑝
2

2

2

+ 𝑑
0
𝑝
2
} .

(5)

By replacing (5) in (3),

E [𝐶
𝜆(1,𝑛)

]

=

1

𝐶 − 𝑝
1

𝑛

∑

𝑘=3

𝑝
𝑘
(𝑠
𝑘−1

+

𝑝
𝑘

2

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑛)
])

+

1

𝐶 − 𝑝
1

[(𝐶 − 𝑠
𝑛
) 𝑠
𝑛
+

𝑝
2

1

2

+ 𝑑
0
𝑝
1
]

+

𝑝
2

𝐶 − 𝑝
1

(𝑠
1
+

𝑝
2

2

+ 𝑑
0
)

+

𝑝
2

(𝐶 − 𝑝
2
) (𝐶 − 𝑝

1
)

× [

𝑛

∑

𝑘=3

𝑝
𝑘
((𝑠
𝑘−1

− 𝑝
1
) +

𝑝
𝑘

2

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑛)
])

+ (𝐶 − (𝑠
𝑛
− 𝑝
1
)) (𝑠
𝑛
− 𝑝
1
) +

𝑝
2

2

2

+ 𝑑
0
𝑝
2
] .

(6)

That is,

E [𝐶
𝜆(1,𝑛)

] =

𝐶

(𝐶 − 𝑝
1
) (𝐶 − 𝑝

2
)

×

𝑛

∑

𝑘=3

𝑝
𝑘
(𝑠
𝑘−1

+

𝑝
𝑘

2

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑛)
])

−

𝑝
1
𝑝
2

(𝐶 − 𝑝
1
) (𝐶 − 𝑝

2
)

𝑛

∑

𝑘=3

𝑝
𝑘

+

1

(𝐶 − 𝑝
1
) (𝐶 − 𝑝

2
)

× (

+2𝑝
1
𝑝
2
𝑠
𝑛
+ 𝐶
2
𝑠
𝑛
− 𝐶𝑠
2

𝑛

+

𝐶𝑝
2

1

2

+

𝐶𝑝
2

2

2

+ 𝐶𝑑
0
𝑝
1
+ 𝐶𝑑
0
𝑝
2

−𝑑
0
𝑝
1
𝑝
2
− 𝑝
1
𝑝
2

2
−

3𝑝
2

1
𝑝
2

2

).

(7)

By the same method, we could get the expression of
E[𝐶
𝜆1(1,𝑛)

]. Since

E [𝐶
𝜆1(𝑘,𝑛)

] = E [𝐶
𝜆(𝑘,𝑛)

] , for 𝑘 = 3, 4, . . . , 𝑛, (8)

we obtain

E [𝐶
𝜆1(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

]

=

1

(𝐶 − 𝑝
1
) (𝐶 − 𝑝

2
)

× [(−𝑝
2
𝑝
2

1
−

3𝑝
2

2
𝑝
1

2

) − (−𝑝
1
𝑝
2

2
−

3𝑝
2

1
𝑝
2

2

)]

=

𝑝
1
𝑝
2

2 (𝐶 − 𝑝
1
) (𝐶 − 𝑝

2
)

(𝑝
1
− 𝑝
2
) .

(9)

The conclusion follows by 𝑝
1
< 𝑝
2
.
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Corollary 2. Assume the uptimes are i.i.d and uniformly
distributed. If 𝑝

𝑘
< 𝑝
𝑘+1

, then

E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘,𝑛)

] < 0, 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑛 − 1. (10)

Proof. The proof is the same as that in Lemma 1.

Next we will give another expression for E[𝐶
𝜆𝑘(𝑘,𝑛)

] −

E[𝐶
𝜆(𝑘,𝑛)

]. Assume the machine begins to process jobs
𝐽
𝑘
, 𝐽
𝑘+1

, . . . , 𝐽
𝑛
at time zero and 𝑝

𝑘
< 𝑝
𝑘+1

. Let 𝑘
1

= min{𝑖 |

𝑈
𝑖
≥ 𝑝
𝑘
}; then we consider the following three cases.

Case 1 (𝑝
𝑘

≤ 𝑈
𝑘1

< 𝑝
𝑘+1

). With the possibility (𝐹(𝑝
𝑘+1

) −

𝐹(𝑝
𝑘
))/(1 − 𝐹(𝑝

𝑘
)), in this case, we have

E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘,𝑛)

] = E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘+1,𝑛)

]

≐ Δ
1
> 0.

(11)

Case 2 (𝑝
𝑘+1

≤ 𝑈
𝑘1

< 𝑝
𝑘
+𝑝
𝑘+1

).With the possibility (𝐹(𝑝
𝑘+1

+

𝑝
𝑘
) − 𝐹(𝑝

𝑘+1
))/(1 − 𝐹(𝑝

𝑘
)), we have

E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘,𝑛)

] = E [𝐶
𝜆𝑘(𝑘+1,𝑛)

] − E [𝐶
𝜆(𝑘+1,𝑛)

]

≐ Δ
2
< 0.

(12)

Case 3 (𝑈
𝑘1

≥ 𝑝
𝑘
+ 𝑝
𝑘+1

). We have

E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘,𝑛)

] = 0. (13)

From the three cases above, we get

E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘,𝑛)

] =

𝐹 (𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘
)

1 − 𝐹 (𝑝
𝑘
)

Δ
1

+

𝐹 (𝑝
𝑘
+ 𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘+1

)

1 − 𝐹 (𝑝
𝑘
)

Δ
2
.

(14)

Known from Corollary 2, we know E[𝐶
𝜆𝑘(𝑘,𝑛)

] − E[𝐶
𝜆(𝑘,𝑛)

] <

0. Hence

𝐹 (𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘
)

1 − 𝐹 (𝑝
𝑘
)

Δ
1
+

𝐹 (𝑝
𝑘
+ 𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘+1

)

1 − 𝐹 (𝑝
𝑘
)

Δ
2
< 0.

(15)

That is,

Δ
1

Δ
2

>

𝑝
𝑘

𝑝
𝑘
− 𝑝
𝑘+1

. (16)

The following lemma shows that the processing of any two
consecutive jobs is subject to LPT rule.

Lemma 3. Assume the uptimes are i.i.d and uniformly dis-
tributed. If 𝑝

𝑘
< 𝑝
𝑘+1

, then

E [𝐶
𝜆𝑘(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

] < 0, 𝑓𝑜𝑟 1 < 𝑘 ≤ 𝑛 − 1. (17)

Proof. Let 𝑈∗ be the uptime where the job 𝐽
𝑘−1

is completed,
and assume the machine has been continuously processing
jobs for 𝑡

∗ time units when 𝐽
𝑘−1

is finished at time 𝑡
0
; that

is, we have 𝑈
∗

> 𝑡
∗. Let 𝑋 = 𝑈

∗
− 𝑡
∗, and let 𝐺(𝑥) be the

distribution function of 𝑋. We have

𝐺 (𝑥) = Pr (𝑋 ≤ 𝑥) = Pr (𝑈∗ − 𝑡
∗

≤ 𝑥 | 𝑈
∗

> 𝑡
∗
)

=

𝑥

𝐶 − 𝑡
∗
, 𝑥 ∈ (0, 𝐶 − 𝑡

∗
] ,

(18)

which implies that𝑋 is uniformly distributed for any given 𝑡
∗.

According to the definition of 𝐶, we know 𝐶 − 𝑡
∗

≥ ∑
𝑛

𝑙=𝑘
𝑝
𝑙
.

We now consider four possibilities depending on the value𝑋

obtains.

Case 1 (𝑋 < 𝑝
𝑘
). We have

E [𝐶
𝜆𝑘(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

] = E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘,𝑛)

] . (19)

Case 2 (𝑝
𝑘
≤ 𝑋 < 𝑝

𝑘+1
). We have

E [𝐶
𝜆𝑘(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

] = E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘+1,𝑛)

] .

(20)

Case 3 (𝑝
𝑘+1

≤ 𝑋 < 𝑝
𝑘
+ 𝑝
𝑘+1

). We have

E [𝐶
𝜆𝑘(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

] = E [𝐶
𝜆𝑘(𝑘+1,𝑛)

] − E [𝐶
𝜆(𝑘+1,𝑛)

] .

(21)

Case 4 (𝑋 ≥ 𝑝
𝑘
+ 𝑝
𝑘+1

). We have

E [𝐶
𝜆𝑘(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

] = 0. (22)

Hence,

E [𝐶
𝜆𝑘(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

]

= 𝐺 (𝑝
𝑘
) [E [𝐶

𝜆𝑘(𝑘,𝑛)
] − E [𝐶

𝜆(𝑘,𝑛)
]]

+ [𝐺 (𝑝
𝑘+1

) − 𝐺 (𝑝
𝑘
)] [E [𝐶

𝜆𝑘(𝑘,𝑛)
] − E [𝐶

𝜆(𝑘+1,𝑛)
]]

+ [𝐺 (𝑝
𝑘
+ 𝑝
𝑘+1

) − 𝐺 (𝑝
𝑘+1

)]

× [E [𝐶
𝜆𝑘(𝑘+1,𝑛)

] − E [𝐶
𝜆(𝑘+1,𝑛)

]] .

(23)

Because

E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘+1,𝑛)

] = Δ
1
> 0,

E [𝐶
𝜆𝑘(𝑘+1,𝑛)

] − E [𝐶
𝜆(𝑘+1,𝑛)

] = Δ
2
< 0,

E [𝐶
𝜆𝑘(𝑘,𝑛)

] − E [𝐶
𝜆(𝑘,𝑛)

] =

𝐹 (𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘
)

1 − 𝐹 (𝑝
𝑘
)

Δ
1

+

𝐹 (𝑝
𝑘
+ 𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘+1

)

1 − 𝐹 (𝑝
𝑘
)

Δ
2
.

(24)
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By replacing (24) in (23), we obtain

E [𝐶
𝜆𝑘(1,𝑛)

] − E [𝐶
𝜆(1,𝑛)

]

=

𝑝
𝑘

𝐶 − 𝑡
∗

[

𝐹 (𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘
)

𝐹 (𝑝
𝑘
)

Δ
1

+

𝐹 (𝑝
𝑘
+ 𝑝
𝑘+1

) − 𝐹 (𝑝
𝑘+1

)

𝐹 (𝑝
𝑘
)

Δ
2
]

+

𝑝
𝑘+1

− 𝑝
𝑘

𝐶 − 𝑡
∗

Δ
1
+

𝑝
𝑘

𝐶 − 𝑡
∗
Δ
2

=

𝐶 (𝑝
𝑘+1

− 𝑝
𝑘
) Δ
2

(𝐶 − 𝑡
∗
) (𝐶 − 𝑝

𝑘
)

[

Δ
1

Δ
2

−

𝑝
𝑘

𝑝
𝑘
− 𝑝
𝑘+1

] .

(25)

By (16) and Δ
2
< 0, the conclusion in this lemma holds.

Based on Lemmas 1 and 3, the following theorem is
immediate.

Theorem 4. Assume the uptimes are i.i.d and uniformly
distributed with support in [0, 𝐶], where 𝐶 ≥ ∑

𝑛

𝑗=1
𝑝
𝑗
; then

the LPT rule is optimal to minimize the expected makespan.

4. SPT Minimizes Expected Total
Completion Times

This section considers the single machine problem to min-
imize the expected value of total completion times, that is,
E[∑
𝑛

𝑗=1
𝐶
𝜆(1,𝑗)

]. Assume there exist two constants 𝑝, 𝑝 such
that𝑝 ≤ 𝑝

𝑗
≤ 𝑝 for 𝑗 = 1, 2, . . . , 𝑛; that is, the processing times

of all jobs are uniformly bounded. For a given processing
order 𝜆, if machine begins to process the 𝑗th, (𝑗+1)th, . . . , 𝑘th
jobs at time zero, define that 𝜋

𝜆(𝑗,𝑘)
denotes the sum of the

completion times of the 𝑘 − 𝑗 + 1 jobs. So we have

E[

[

𝑛

∑

𝑗=1

𝐶
𝜆(1,𝑗)

]

]

= E [𝜋
𝜆(1,𝑛)

] . (26)

In this section, we focus on the large-scale scheduling
problems; that is, the number of jobs 𝑛 is large enough. With
the assumption, the SPT rule will be proved to be optimal.

Lemma 5. Assume the uptimes are i.i.d and uniformly dis-
tributed. If 𝑝

1
> 𝑝
2
, then

E [𝜋
𝜆1(1,𝑛)

] − E [𝜋
𝜆(1,𝑛)

] < 0, (27)

for large number 𝑛.

Proof. Firstly we have

E [𝜋
𝜆1(1,𝑛)

] − E [𝜋
𝜆(1,𝑛)

] =

𝑛

∑

𝑘=1

[E [𝐶
𝜆1(1,𝑘)

] − E [𝐶
𝜆(1,𝑘)

]]

= E [𝐶
𝜆1(1,1)

] − E [𝐶
𝜆(1,1)

]

+

𝑛

∑

𝑘=2

[E [𝐶
𝜆1(1,𝑘)

] − E [𝐶
𝜆(1,𝑘)

]] .

(28)

By (3), we could get the expressions for E[𝐶
𝜆1(1,1)

] and
E[𝐶
𝜆(1,1)

]. Hence we obtain

E [𝐶
𝜆1(1,1)

] − E [𝐶
𝜆(1,1)

]

= [𝑝
2
+

1

𝐶 − 𝑝
2

(

𝑝
2

2

2

+ 𝑑
0
𝑝
2
)]

− [𝑝
1
+

1

𝐶 − 𝑝
1

(

𝑝
2

1

2

+ 𝑑
0
𝑝
1
)]

=

(𝑝
2
− 𝑝
1
)

(𝐶 − 𝑝
1
) (𝐶 − 𝑝

2
)

[𝐶
2
−

𝐶

2

(𝑝
1
+ 𝑝
2
) +

𝑝
1
𝑝
2

2

+ 𝑑
0
𝐶] .

(29)

Known from (9), we have

E [𝐶
𝜆1(1,𝑘)

] − E [𝐶
𝜆(1,𝑘)

]

=

(𝑝
2
− 𝑝
1
) 𝑝
1
𝑝
2

2 (𝐶 − 𝑝
2
) (𝐶 − 𝑝

1
)

, for 𝑘 = 2, 3, . . . , 𝑛.

(30)

Therefore, we have

E [𝜋
𝜆1(1,𝑛)

] − E [𝜋
𝜆(1,𝑛)

]

=

(𝑝
2
− 𝑝
1
)

(𝐶 − 𝑝
1
) (𝐶 − 𝑝

2
)

[𝐶
2
−

𝐶

2

(𝑝
1
+ 𝑝
2
) +

𝑝
1
𝑝
2

2

+ 𝑑
0
𝐶]

+ (𝑛 − 1)

(𝑝
2
− 𝑝
1
) 𝑝
1
𝑝
2

2 (𝐶 − 𝑝
2
) (𝐶 − 𝑝

1
)

=

(𝑝
2
− 𝑝
1
)

2 (𝐶 − 𝑝
2
) (𝐶 − 𝑝

1
)

[2𝐶
2
− 𝐶 (𝑝

1
+ 𝑝
2
− 2𝑑
0
)

− (𝑛 − 2) 𝑝
1
𝑝
2
] .

(31)

Note 𝐶 ≥ ∑
𝑛

𝑗=1
𝑝
𝑗
≥ 𝑝𝑛, so we have 𝐶

2
= Ω(𝑛

2
) and

E [𝜋
𝜆1(1,𝑛)

− 𝜋
𝜆(1,𝑛)

] → 𝑝
2
− 𝑝
1
, (𝑛 → ∞) . (32)

Since 𝑝
1
> 𝑝
2
, we obtain

E [𝜋
𝜆1(1,𝑛)

] − E [𝜋
𝜆(1,𝑛)

] < 0 (33)

as long as 𝑛 is large enough.
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By Lemma 5, the corollary below follows immediately.

Corollary 6. Assume the uptimes are i.i.d and uniformly
distributed. If 𝑝

𝑘
> 𝑝
𝑘+1

, then

E [𝜋
𝜆𝑘(𝑘,𝑛)

] − E [𝜋
𝜆(𝑘,𝑛)

] < 0, 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑛 − 1, (34)

as long as 𝑛 is large enough. Also, we have

E [𝜋
𝜆𝑘(𝑘,𝑛)

] − E [𝜋
𝜆(𝑘,𝑛)

] =

(𝑝
𝑘+1

− 𝑝
𝑘
)

2 (𝐶 − 𝑝
𝑘+1

) (𝐶 − 𝑝
𝑘
)

× [2𝐶
2
− 𝐶 (𝑝

𝑘
+ 𝑝
𝑘+1

− 2𝑑
0
)

− (𝑛 − 𝑘 − 1) 𝑝
𝑘
𝑝
𝑘+1

]

→ 𝑝
𝑘+1

− 𝑝
𝑘
, (𝑛 → ∞) .

(35)

Proof. The proof is the same as that in Lemma 5.

In order to prove the main conclusion in this section,
we will give another expression for E[𝜋

𝜆𝑘(𝑘,𝑛)
] − E[𝜋

𝜆(𝑘,𝑛)
].

Assume the machine begins to process jobs 𝐽
𝑘
, 𝐽
𝑘+1

, . . . , 𝐽
𝑛
at

time zero and 𝑝
𝑘

> 𝑝
𝑘+1

. Let 𝑘
2

= min{𝑖 | 𝑈
𝑖
≥ 𝑝
𝑘+1

}, and
𝜌 = ∑

𝑘2−1

𝑙=1
(𝑈
𝑙
+ 𝐷
𝑙
) (𝜌 = 0 for 𝑘

2
= 1). We consider the

following three cases.

Case 1 (𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
). In this case, we have

E [𝐶
𝜆𝑘(𝑘,𝑘)

| 𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
] = 𝜌 + 𝑝

𝑘+1
,

E [𝐶
𝜆𝑘(𝑘,𝑙)

| 𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
]

= 𝜌 + E [𝑈
𝑘2

| 𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
]

+ 𝑑
0
+ E [𝐶

𝜆𝑘(𝑘,𝑙)
] , 𝑙 = 𝑘 + 1, . . . , 𝑛,

E [𝐶
𝜆(𝑘,𝑙)

| 𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
]

= 𝜌 + E [𝑈
𝑘2

| 𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
]

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑙)
] , 𝑙 = 𝑘, . . . , 𝑛.

(36)

We obtain

E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

| 𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
]

=

𝑝
𝑘+1

− 𝑝
𝑘

2

− 𝑑
0
+ E [𝜋

𝜆𝑘(𝑘+1,𝑛)
]

− E [𝜋
𝜆(𝑘,𝑛)

] ≐ 𝛿
1
.

(37)

Case 2 (𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

). In this case, we have

E [𝐶
𝜆𝑘(𝑘,𝑘)

| 𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

] = 𝜌 + 𝑝
𝑘+1

,

E [𝐶
𝜆𝑘(𝑘,𝑙)

| 𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

]

= 𝜌 + E [𝑈
𝑘2

| 𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

]

+ 𝑑
0
+ E [𝐶

𝜆𝑘(𝑘,𝑙)
] , 𝑙 = 𝑘 + 1, . . . , 𝑛,

E [𝐶
𝜆(𝑘,𝑘)

| 𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

] = 𝜌 + 𝑝
𝑘
,

E [𝐶
𝜆(𝑘,𝑙)

| 𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

]

= 𝜌 + E [𝑈
𝑘2

| 𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
]

+ 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑙)
] , 𝑙 = 𝑘 + 1, . . . , 𝑛.

(38)

Therefore, we get

E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

| 𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

]

= 𝑝
𝑘+1

− 𝑝
𝑘
+ E [𝜋

𝜆𝑘(𝑘+1,𝑛)
] − E [𝜋

𝜆(𝑘+1,𝑛)
] ≐ 𝛿
2
.

(39)

Case 3 (𝑈
𝑘2

≥ 𝑝
𝑘
+ 𝑝
𝑘+1

). We have

E [𝐶
𝜆𝑘(𝑘,𝑘)

| 𝑈
𝑘2

≥ 𝑝
𝑘
+ 𝑝
𝑘+1

] = 𝜌 + 𝑝
𝑘+1

,

E [𝐶
𝜆(𝑘,𝑘)

| 𝑈
𝑘2

≥ 𝑝
𝑘
+ 𝑝
𝑘+1

] = 𝜌 + 𝑝
𝑘
,

E [𝐶
𝜆𝑘(𝑘,𝑙)

| 𝑈
𝑘2

≥ 𝑝
𝑘
+ 𝑝
𝑘+1

]

= E [𝐶
𝜆(𝑘,𝑙)

| 𝑈
𝑘2

≥ 𝑝
𝑘
+ 𝑝
𝑘+1

] , 𝑙 = 𝑘 + 1, . . . , 𝑛.

(40)

And we obtain

E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

| 𝑈
𝑘2

≥ 𝑝
𝑘
+ 𝑝
𝑘+1

] = 𝑝
𝑘+1

− 𝑝
𝑘
≐ 𝛿
3
< 0.

(41)

Based on the three cases above, we have

E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

]

= Pr (𝑝
𝑘+1

≤ 𝑈
𝑘2

< 𝑝
𝑘
| 𝑈
𝑘2

≥ 𝑝
𝑘+1

) 𝛿
1

+ Pr (𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

| 𝑈
𝑘2

≥ 𝑝
𝑘+1

) 𝛿
2

+ Pr (𝑈
𝑘2

> 𝑝
𝑘
+ 𝑝
𝑘+1

| 𝑈
𝑘2

≥ 𝑝
𝑘+1

) 𝛿
3

=

1

𝐶 − 𝑝
𝑘+1

[(𝑝
𝑘
− 𝑝
𝑘+1

) 𝛿
1
+ 𝑝
𝑘+1

𝛿
2

+ (𝐶 − 𝑝
𝑘
− 𝑝
𝑘+1

) 𝛿
3
] < 0,

(42)

for large number 𝑛. The inequality holds by the conclusion in
Corollary 6.

Lemma 7. Assume the uptimes are i.i.d and uniformly dis-
tributed. If 𝑝

𝑘
> 𝑝
𝑘+1

(1 < 𝑘 < 𝑛), then one has

E [𝜋
𝜆𝑘(1,𝑛)

] − E [𝜋
𝜆(1,𝑛)

] < 0, (43)

for large number 𝑛.
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Proof. We let 𝑈
∗ be the uptime where the job 𝐽

𝑘−1
is

completed and let 𝐷∗ be the downtime after 𝑈
∗. Assume the

machine has been continuously processing for 𝑡
∗ time units

when 𝐽
𝑘−1

is finished at time 𝑡
0
; that is, we have 𝑈

∗
> 𝑡
∗. Let

𝑋 = 𝑈
∗
− 𝑡
∗, and let 𝐺(𝑥) be the distribution function of 𝑋.

Here, we have

𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

=

𝑛

∑

𝑙=𝑘

𝐶
𝜆𝑘(1,𝑙)

−

𝑛

∑

𝑙=𝑘

𝐶
𝜆(1,𝑙)

. (44)

Case 1 (𝑋 < 𝑝
𝑘+1

). In this case, we have

E [𝐶
𝜆𝑘(1,𝑙)

| 𝑋 < 𝑝
𝑘+1

]

= 𝑡
0
+ E [𝑋 | 𝑋 < 𝑝

𝑘+1
] + 𝑑
0
+ E [𝐶

𝜆𝑘(𝑘,𝑙)
] ,

E [𝐶
𝜆(1,𝑙)

| 𝑋 < 𝑝
𝑘+1

]

= 𝑡
0
+ E [𝑋 | 𝑋 < 𝑝

𝑘+1
] + 𝑑
0
+ E [𝐶

𝜆(𝑘,𝑙)
] ,

𝑙 = 𝑘, . . . , 𝑛.

(45)

Therefore, we obtain

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑋 < 𝑝
𝑘+1

] = E [𝜋
𝜆𝑘(𝑘,𝑛)

] − E [𝜋
𝜆(𝑘,𝑛)

] .

(46)

Case 2 (𝑝
𝑘+1

≤ 𝑋 < 𝑝
𝑘
). The case is similar to the case 𝑝

𝑘+1
≤

𝑈
𝑘2

< 𝑝
𝑘
. So we get

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑝
𝑘+1

≤ 𝑋 < 𝑝
𝑘
]

=

𝑝
𝑘+1

− 𝑝
𝑘

2

− 𝑑
0
+ E [𝜋

𝜆𝑘(𝑘+1,𝑛)
] − E [𝜋

𝜆(𝑘,𝑛)
] = 𝛿
1
.

(47)

Case 3 (𝑝
𝑘

≤ 𝑋 < 𝑝
𝑘
+ 𝑝
𝑘+1

). The case is similar to the case
𝑝
𝑘
≤ 𝑈
𝑘2

< 𝑝
𝑘
+ 𝑝
𝑘+1

. We have

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑝
𝑘
≤ 𝑋 < 𝑝

𝑘
+ 𝑝
𝑘+1

]

= 𝑝
𝑘+1

− 𝑝
𝑘
+ E [𝜋

𝜆𝑘(𝑘+1,𝑛)
] − E [𝜋

𝜆(𝑘+1,𝑛)
] = 𝛿
2
.

(48)

Case 4 (𝑋 ≥ 𝑝
𝑘
+ 𝑝
𝑘+1

). The case is similar to the case 𝑈
𝑘2

≥

𝑝
𝑘
+ 𝑝
𝑘+1

. We obtain

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑋 ≥ 𝑝
𝑘
+ 𝑝
𝑘+1

] = 𝑝
𝑘+1

− 𝑝
𝑘
= 𝛿
3
.

(49)

Based on the four cases above, we have

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑡
∗
]

= Pr (𝑋 < 𝑝
𝑘+1

)E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑋 < 𝑝
𝑘+1

, 𝑡
∗
]

+ Pr (𝑝
𝑘+1

≤ 𝑋 < 𝑝
𝑘
)

× E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑝
𝑘+1

≤ 𝑋 < 𝑝
𝑘
, 𝑡
∗
]

+ Pr (𝑝
𝑘
≤ 𝑋 < 𝑝

𝑘
+ 𝑝
𝑘+1

)

× E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑝
𝑘
≤ 𝑋 < 𝑝

𝑘
+ 𝑝
𝑘+1

, 𝑡
∗
]

+ Pr (𝑋 > 𝑝
𝑘
+ 𝑝
𝑘+1

)

× E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑋 > 𝑝
𝑘
+ 𝑝
𝑘+1

, 𝑡
∗
]

=

𝑝
𝑘+1

𝐶 − 𝑡
∗

1

𝐶 − 𝑝
𝑘+1

× [(𝑝
𝑘
− 𝑝
𝑘+1

) 𝛿
1
+ 𝑝
𝑘+1

𝛿
2
+ (𝐶 − 𝑝

𝑘
− 𝑝
𝑘+1

) 𝛿
3
]

+

𝑝
𝑘
− 𝑝
𝑘+1

𝐶 − 𝑡
∗

𝛿
1
+

𝑝
𝑘+1

𝐶 − 𝑡
∗
𝛿
2
+

𝐶 − 𝑡
∗
− 𝑝
𝑘
− 𝑝
𝑘+1

𝐶 − 𝑡
∗

𝛿
3

=

𝐶

𝐶 − 𝑡
∗

1

𝐶 − 𝑝
𝑘+1

× [(𝑝
𝑘
− 𝑝
𝑘+1

) 𝛿
1
+ 𝑝
𝑘+1

𝛿
2
+ (𝐶 − 𝑝

𝑘
− 𝑝
𝑘+1

) 𝛿
3
]

+

−𝑡
∗
𝛿
3

(𝐶 − 𝑡
∗
)

=

𝐶

𝐶 − 𝑡
∗
E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

] +

−𝑡
∗
𝛿
3

(𝐶 − 𝑡
∗
)

=

𝐶

𝐶 − 𝑡
∗

[E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

] − 𝛿
3
] + 𝛿
3
.

(50)

By (35), we have

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑡
∗
]

=

𝐶

𝐶 − 𝑡
∗

[

1

2 (𝐶 − 𝑝
𝑘+1

) (𝐶 − 𝑝
𝑘
)

× (2𝐶
2
− 𝐶 (𝑝

𝑘
+ 𝑝
𝑘+1

− 2𝑑
0
)

− (𝑛 − 𝑘 − 1) 𝑝
𝑘
𝑝
𝑘+1

) − 1] ⋅ 𝛿
3
+ 𝛿
3

=

𝐶

𝐶 − 𝑡
∗

×

𝐶 (𝑝
𝑘
+ 𝑝
𝑘+1

) + 2𝐶𝑑
0
− (𝑛 − 𝑘 + 1) 𝑝

𝑘
𝑝
𝑘+1

2 (𝐶 − 𝑝
𝑘+1

) (𝐶 − 𝑝
𝑘
)

⋅ 𝛿
3
+ 𝛿
3
.

(51)

We discuss the following cases.
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Case 1 ((𝑝)
2
− 2(𝑝)

2
≤ 0). Because 𝑘 > 1, we have

𝑘 >

(𝑝)
2

− 2(𝑝)

2

(𝑝)
2

⋅ 𝑛 + 1. (52)

That is,

2(𝑝)

2

𝑛 − (𝑝)
2

𝑛 + 𝑘(𝑝)
2

− (𝑝)
2

> 0. (53)

So we obtain

𝐶 (𝑝
𝑘
+ 𝑝
𝑘+1

) + 2𝐶𝑑
0
− (𝑛 − 𝑘 + 1) 𝑝

𝑘
𝑝
𝑘+1

≥ 2(𝑝)

2

⋅ 𝑛 − (𝑝)
2

⋅ 𝑛 + 𝑘(𝑝)
2

− (𝑝)
2

> 0.

(54)

Therefore, in this case we obtain

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑡
∗
] ≤ 𝛿
3
< 0. (55)

That is,

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

] = E [E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑡
∗
]] ≤ 𝛿

3
< 0.

(56)

Case 2 ((𝑝)
2
− 2(𝑝)

2
> 0). In this case, we define 𝑎 ≐ ((𝑝)

2
−

2(𝑝)
2
)/(𝑝)
2, and 0 < 𝑎 < 1. Next two cases are discussed for

the value 𝑘 obtains.

Case 2.1 (𝑘 > 𝑎 ⋅ 𝑛 + 1). In this case, we have

𝑘(𝑝)
2

> (𝑝)
2

+ [(𝑝)
2

− 2(𝑝)

2

] ⋅ 𝑛. (57)

That is,

2(𝑝)

2

⋅ 𝑛 − (𝑝)
2

⋅ 𝑛 + 𝑘(𝑝)
2

− (𝑝)
2

> 0. (58)

Known from Case 1 above, we obtain

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

] ≤ 𝛿
3
< 0. (59)

Case 2.2 (𝑘 ≤ 𝑎 ⋅ 𝑛 + 1). According to the definition of 𝑡∗, we
have 𝑡

∗
≤ 𝑠
𝑘−1

, so

0 <

𝐶

𝐶 − 𝑡
∗

≤

𝐶

𝐶 − 𝑠
𝑘−1

= 1 +

𝑠
𝑘−1

𝐶 − 𝑠
𝑘−1

< 1 +

𝑘 ⋅ 𝑝

𝑝
𝑘
+ 𝑝
𝑘+1

+ ⋅ ⋅ ⋅ + 𝑝
𝑛

< 1 +

𝑘

𝑛 − 𝑘

⋅

𝑝

𝑝

≤ 1 +

𝑎𝑛 + 1

𝑛 − 𝑎𝑛 − 1

⋅

𝑝

𝑝

= 1 +

𝑎 + 1/𝑛

1 − 𝑎 − 1/𝑛

⋅

𝑝

𝑝

.

(60)

Note that there exists a number 𝑁 such that 1/𝑛 ≤ (1 −

𝑎)/2, ∀𝑛 > 𝑁, so we get

𝐶

𝐶 − 𝑡
∗

< 1 +

1 + 𝑎

1 − 𝑎

⋅

𝑝

𝑝
(61)

for all 𝑛 > 𝑁. Therefore,

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑡
∗
]

=

𝐶

𝐶 − 𝑡
∗

[E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

] − 𝛿
3
] + 𝛿
3

≤ [1 +

1 + 𝑎

1 − 𝑎

⋅

𝑝

𝑝

] [E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

] − 𝛿
3
] + 𝛿
3

(62)

for all 𝑛 > 𝑁. So we obtain

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

]

= E [E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

| 𝑡
∗
]]

≤ [1 +

1 + 𝑎

1 − 𝑎

⋅

𝑝

𝑝

] {E [𝜋
𝜆𝑘(𝑘,𝑛)

− 𝜋
𝜆(𝑘,𝑛)

] − 𝛿
3
} + 𝛿
3

→ 𝛿
3
< 0, (𝑛 → ∞) .

(63)

Either (𝑝)
2
− 2(𝑝)

2
> 0 or not, we always have

E [𝜋
𝜆𝑘(1,𝑛)

− 𝜋
𝜆(1,𝑛)

] < 0 (64)

for large number 𝑛.

Based on Lemmas 5 and 7, the following theorem is
immediate.

Theorem 8. Assume the uptimes are i.i.d. and uniformly
distributed with support [0, 𝐶], where 𝐶 ≥ ∑

𝑛

𝑖=1
𝑝
𝑖
; then the

SPT rule is optimal to minimize the expected value of total
completion times if the number of jobs 𝑛 is large enough.

5. Concluding Remarks

The stochastic scheduling problem on a single machine with
random breakdowns has been investigated in this paper.
We consider the situation where the uptimes are uniformly
distributed and i.i.d; the downtimes are also assumed to
be i.i.d and follow an arbitrary distribution. The machine
breakdowns are defined to be independent of the job it is
processing. Under the assumptions above, we prove that (1)
the LPT rule could achieve the minimal expected makespan;
(2) the SPT rule is optimal to minimize the expected value
of total completion times for large scale problems. For the
scheduling with stochastic breakdowns independent of job
it is processing, the result obtained in this paper is the
foundation in this area.

Someproblemsmay be considered for the future research:
(a) whether optimal rule exists when the uptimes are subject
to other probability distributions; (b) problems with other
objective functions are worth investigation; (c) the multima-
chine version will also be an interesting but difficult problem
in the future.
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