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This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants.
The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability
of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant
computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve
the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result.
Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based
algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA.

1. Introduction

In the area of combinatorial optimization research [1], the
traveling salesman problem (TSP) [2] has been widely used
as a yardstick by which the performance of a new algorithm
is evaluated, for TSP is NP-complete [3]. As such, any
efficient solution to the TSP can be applied to solve many
real world problems, such as transportation control [4],
network management [5], and scheduling [6]. Assuming that
𝑑(𝑐
𝑖
, 𝑐
𝑗
) represents the distance between each pair of cities 𝑐

𝑖

and 𝑐
𝑗
, the TSP asks for a solution—that is, a permutation

⟨𝑐
𝜋(1)
, 𝑐
𝜋(2)
, . . . , 𝑐

𝜋(𝑛)
⟩ of the given 𝑛 cities—that minimizes

𝐷 = (

𝑛−1

∑

𝑖=1

𝑑 (𝑐
𝜋(𝑖)
, 𝑐
𝜋(𝑖+1)

)) + 𝑑 (𝑐
𝜋(𝑛)
, 𝑐
𝜋(1)
) . (1)

In short, (1) gives the distance 𝐷 of the tour that starts
at city 𝑐

𝜋(1)
, visits each city in sequence, and then returns

directly to 𝑐
𝜋(1)

from the last city 𝑐
𝜋(𝑛)

. Since the brute force
method is impractical for the TSP except when the number

of cities is small, the research direction for the TSP has been
using heuristic search methods [7–9] to find a near-optimal
solution.

Since the 1950s, heuristic algorithms have been devel-
oped for finding an approximate solution to the TSP and
other complex optimization problems in a reasonable time
[10]. Among the most widely used heuristic algorithms
are evolutionary algorithms, swarm intelligence, and many
others [11–16]. These algorithms eventually have a strong
impact on modern computer science research because they
help researchers solve problems in a variety of domains for
which solutions in their full generality cannot be found in
a reasonable time, even with the world’s fastest computers.
For reasons such as being an inherently parallel algorithm,
being global search heuristics, and being easy to imple-
ment, GA [17, 18] has nowadays become one of the most
popular heuristic algorithms. Moreover, Holland’s schema
theorem [17], which says that “short, low-order, above-
average schemata receive exponentially increasing trials in
subsequent generations of a GA” and Goldberg’s building
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block hypothesis [18], which says that “a GA seeks near-
optimal performance through the juxtaposition of short,
low-order, high-performance schemata, called the building
blocks” tell us that good subsolutions (or partial solutions)
of a GA have a high probability of surviving the evolution
and ending up being part of the final solution. This is further
confirmed by Glover’s proximate optimality principle (POP)
[19], which says that “good solutions at one level are likely
to be found close to good solutions at an adjacent level,” or
good solutions have similar structures. A crucial observation
above is that good subsolutions of a GA (or simply GA)
(since no confusion is possible, we will use GA to represent
simple or traditional GA throughout this paper) will become
more and more similar to each other during its evolution
process. This, in turn, implies that many of the computations
of good subsolutions at the later generations of a GA are
essentially redundant. The question is how do we eliminate
these redundant computations at the early generations of a
GA so that the computation time can be significantly reduced
while at the same time retaining or enhancing the quality of
the end result.

Tomake the ideamore concrete, a simple example is given
in Figure 1 to demonstrate how it works. As Figure 1 shows,
let us suppose that there are two chromosomes, 𝐶

1
and 𝐶

2
,

each of which is composed of ℓ genes. Let us further suppose
that ℓ = 4, and each gene can take only two possible values,
namely, 0 and 1. Now let us assume, at a certain point in the
evolution process, that the value of 𝐶

1
is 0-0-1-0, and the

value of 𝐶
2
is 1-1-1-0 where the hyphen is used to separate

the genes. Then what would be the values of 𝐶
1
and 𝐶

2
in

the later generations?There are two answers to this question,
depending on how the mutation operator is treated. The first
answer is that if we use one point crossover and disregard the
mutation operator altogether, then we are guaranteed that the
values of the third and fourth genes of 𝐶

1
and 𝐶

2
will remain

intact in the evolution process of a GA and will thus show up
as part of the final solution. In other words, if the third and
fourth genes of 𝐶

1
and 𝐶

2
(i.e., genes common to 𝐶

1
and 𝐶

2
)

are saved away, the number of genes will be cut into half and
the computation time required by the crossover andmutation
operators and the evaluation of the fitness function will be
reduced. The second answer is that if we take into account
the mutation operator, then the values of the third and fourth
genes of 𝐶

1
and 𝐶

2
would have a small chance of not being 1-

0.The probability for the values of the third and fourth genes
of 𝐶
1
and 𝐶

2
being changed is, however, very small because

only the mutation operator is allowed to change their values,
and for GA, the mutation rate has almost always been set to a
very small value, say, 1 or 2 percent.

The remainder of the paper is organized as follows.
Section 2 gives a brief introduction to the genetic algo-
rithm and the approaches taken to enhance its performance.
Section 3 provides a detailed description of the proposed
algorithm and a simple example to demonstrate how the
proposed algorithm works. Performance evaluation of the
proposed algorithm is presented in Section 4. Analysis of
the proposed algorithm is given in Section 5. Conclusion is
drawn in Section 6.
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Figure 1: A simple example illustrating the difference between GA
and PREGA. Note that genes common to chromosomes 𝐶

1
and 𝐶

2

are saved away by PREGA at generation 𝑡 = 1 but not by TGA.

2. Related Work

As a particular class of evolutionary algorithms, it is well
known that GA is a search technique aimed at finding
true or approximate solutions to optimization problems.
The operations used to emulate the evolution process of
a GA are selection, crossover, and mutation. The simple or
traditional GA [18] can be outlined as given in Algorithm 1.
The selection operator takes the responsibility of guiding
the search of GA toward the high quality or even optimal
solution. The crossover operator plays the role of exchanging
the information between the individuals in the population
while the mutation operator is used to avoid GA from falling
into local optima.

Researches on genetic algorithms focus not only on
improving the quality of the end result but also on reducing
the computation time ofGA.Among themare parallel genetic
algorithm, hybrid genetic algorithm, and radical modifica-
tion of the evolutionary procedure or the design of GA.

(1) Parallel genetic algorithm (PGA) [20, 21] is a very
important technique for reducing the computation
time of large problems, such as TSP [22]. The three
distribution models [23] that have been proposed
are master-slave model, fine-grained model (cellular
model), and coarse-grained model (island model).
However, in [24, 25], the authors indicate that the
migration rate and strategy of the island model may
affect its performance.

(2) Hybrid genetic algorithm (HGA) [26] refers to
the process of combining GA with other effective
approaches for finding a better solution in terms
of either the quality or the computation time. In
general, the design of HGAmay either integrate other
heuristic algorithms [27] or combine local search
methods [28] with GA. For instance, for an HGA that
is a combination of GA and a local search method,
GA is responsible for finding the global minima or
pointing out the particular direction that may lead
to a better solution while the local search method
is used to find the local minima. For this reason,
HGA will enhance the quality of the end result.
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GA1. Randomly generate an initial population of chromosomes.
GA2. Use the fitness function to select the fitter chromosomes.
GA3. Apply the crossover and mutation operators in order.
GA4. If a stopping criterion is satisfied, then stop and output the best

chromosome.
GA5. Go to step 2.

Algorithm 1: Outline of traditional genetic algorithm (GA).

In the research [29] on fastHGA (FHGA),Misevicius
[29] points out that the design of FHGA should satisfy
the following principles: (1) FHGA should arrive at
the solutions quickly; (2) the populations should be
compact to save the computation time; and (3) the
diversity of the populations has to be maintained
to avoid falling into the local minimum at early
generations in the evolution process.

(3) Another way to reduce the computation time is
to radically change the evolutionary procedure or
the design of GA. Michalski [30] presents a non-
Darwinian-type evolution called learnable evolution
model (LEM) that divides the whole population into
two groups: high-performance group (H-group) and
low-performance group (L-group). LEM first finds
descriptions about why the H-group can obtain a
better result and why the L-group may degrade the
quality of the end result.Then, it uses the descriptions
to generate chromosomes to replace those in L-group.
Michalski also points out that LEM can speed up
the number of evolutionary steps by a factor of two
or more. Yet, when this kind of fast convergence
methods [30, 31] of GA is used, it should be very
careful about the convergence speed, or it may face
the premature convergence problem. One possible
solution to this problem is to use the fitness sharing
[32] to avoid the diversity of the population being cut
down too early.

The improvements that the abovementioned methods
can achieve are limited intrinsically by the operators of GA.
For example, the crossover and other genetic operators may
disrupt the high quality subsolutions (building blocks, or BBs
for short) that are found in the previous generations [33].
As a result, the convergence time of GA may increase [34].
Over the past two decades or so, various competent genetic
algorithms (competentGAs) [33, 35–37] have been developed
to tackle the linkage and scalability problem of GA.They can
be broadly divided into two classes [36]. Also referred to as
the perturbation technology, the first class is based on evolv-
ing the representation of solutions or adapting recombination
operators among individual solutions. Among this class are
the messy genetic algorithm, fast messy genetic algorithm
(fmGA) [33, 38], and ordering messy GA (OmeGA) [36].
The fmGA differs from simple GA in several aspects. (1)
Each gene of the fmGA is represented by its value and
locus. (2) The fmGA uses variable-length chromosomes to
represent the population. (3) The fmGA attempts to find

the building blocks by repeatedly performing selection of
solutions and random deletion of genes [36]. (4) A so-called
competitive template is required to fill up the missing genes of
underspecified messy chromosomes so that the fitness values
can be evaluated.

3. The Proposed Algorithm

In this section, we present a simple but efficient technique
for eliminating the redundant computations of GA and GA-
based algorithms based on the notion of pattern reduction.
Algorithm 2 gives an outline of the pattern reduction
enhanced genetic algorithm (PREGA). As Algorithm 2
shows, PREGA is built on the framework of GA; thus, it can
be considered as an enhancement ofGAwith two operators—
the common genes detection (CGD) and common genes
compression (CGC) operators. If we disregard steps 3 and
4, PREGA given in Algorithm 2 will fall back into GA, as
shown in Algorithm 1. The underlying idea of PREGA is to
detect and compress genes common to all the chromosomes
at the early generations of a GA to eliminate the redundant
computations at the later iterations in the evolution process.
In what follows, we will give a detailed description of the
proposed algorithm.

3.1. Common Genes Detection (CGD). The common genes
detection operator of PREGA is responsible for detecting
genes that are common to all the individuals in the population
and thus are unlikely to be changed at later generations of the
GA. Nevertheless, for different problems, the representation
of chromosomesmay have to bemodified or even redesigned.
From a different point of view, the example given in Figure 1
can be considered as a special case in terms of the fact that all
the genes encode only two possible values 0 and 1 and all the
genes are uncorrelated. In some other situations, such as trav-
eling salesman problem, however, the solution of each gene
will certainly affect the other genes, and genes on the same
position of all the chromosomes do not necessarily represent
identical subsolutions. For the TSP, each chromosome can be
used to encode a different tour, that is, a different permutation
⟨𝑐
𝜋(1)
, 𝑐
𝜋(2)
, . . . , 𝑐

𝜋(𝑛)
⟩ of the given cities. In other words, for

all the chromosomes, 𝑖 ̸= 𝑗—for all 𝑖 and 𝑗, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑚—
implies 𝐶

𝑖
̸= 𝐶
𝑗
. Alternatively, each chromosome can be used

to encode edges (corresponding to roads connecting pairs of
cities) connecting pairs of cities of a tour.

In this paper, we use binary encoding for finding edges
common to all the chromosomes. First, let us suppose that
𝐸(𝑖, 𝑗) (here, we are assuming that node 𝑖, for all 𝑖, 1 ≤ 𝑖 ≤ 𝑚,
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PREGA1. Randomly generate an initial population of chromosomes.
PREGA2. Use the fitness function to select the fitter chromosomes.
PREGA3. Apply common genes detection (CGD) algorithm to find the common genes.
PREGA4. Apply common genes compression (CGC) algorithm to reserve the common genes.
PREGA5. Apply the crossover and mutation operators in order.
PREGA6. If a stopping criterion is satisfied, then stop and output the best chromosome.
PREGA7. Go to step 2.

Algorithm 2: Outline of pattern reduction enhanced genetic algorithm (PREGA).

in the graph𝐺 representing the TSP, is labeled by city 𝑐
𝑖
.Thus,

wewill use 𝑖 and 𝑐
𝑖
interchangeably) is the edge connecting the

pair of cities 𝑐
𝑖
and 𝑐
𝑗
. Without loss of generality, let us further

suppose that 𝑖 < 𝑗. Otherwise, we can swap 𝑐
𝑖
and 𝑐
𝑗
or 𝑖 and 𝑗,

since insofar as this paper is concerned, only the symmetric
TSP is considered. Then, all the𝑁 = 𝑛(𝑛 − 1)/2 edges 𝐸(𝑖, 𝑗),
1 ≤ 𝑖 < 𝑗 ≤ 𝑛, can be assigned unique numbers in the range of
0 to𝑁−1, which can be computed as (2𝑛−𝑖)(𝑖−1)/2+(𝑗−𝑖−1)
(it follows from (∑

𝑛−1

𝑘=𝑛−𝑖+1
𝑘) + (𝑗 − 𝑖 − 1) by simple algebraic

manipulation).
To make the idea more concrete, (2) gives an example to

show how all the 7(7 − 1)/2 = 21 edges 𝐸(𝑖, 𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 7,
are assigned unique numbers in the range of 0 to 20;

𝑗

1 2 3 4 5 6 7

𝑖

1

2

3

4

5

6

7

(
(
(

(

−

−

−

−

−

−

−

0

−

−

−

−

−

−

1

6

−

−

−

−

−

2

7

11

−

−

−

−

3

8

12

15

−

−

−

4

9

13

16

18

−

−

5

10

14

17

19

20

−

)
)
)

)

. (2)

As the example shows, 𝐸(1, 2) is assigned the number 0,
𝐸(1, 3) the number 1, 𝐸(1, 4) the number 2, and so on all
the way up until 𝐸(6, 7) is assigned the number 20. In other
words, all the 𝑛(𝑛 − 1)/2 edges can be mapped to a one-
dimensional array with exactly 𝑛(𝑛 − 1)/2 elements. This
would save a little bit more than half of the space or more
precisely 𝑛(𝑛 + 1)/2 entries. Now, to find edges common to
all the chromosomes, we apply the common genes detection
algorithm given in Algorithm 3.

Obviously, as Algorithm 3 shows, steps 1 and 3 take𝑂(𝑛2)
time, and step 2 takes𝑂(𝑚𝑛) = 𝑂(𝑛) time assuming that𝑚 is
a constant. Thus, both the time and space complexities of the
CGD algorithm are𝑂(𝑛2), as claimed. It is worth mentioning
that the CGD algorithm described in Algorithm 3 can be
made even more efficient if we keep track of in a stack or
an array (of size no more than 𝑛) the edges common to all
the chromosomes in step 2 when the last chromosome is
being scanned; then step 3 can be eliminated altogether. If
we go one step further, eventually, the CGD algorithm can
be made much more efficient and scalable than as outlined
in Algorithm 3 by using a more complicated data structure
such as balanced trees (the basic operations of which—such
as member, insert, and delete—take 𝑂(log 𝑛) time where

𝑛 is the number of nodes in the tree). Again, assuming that
𝑚 is a constant and that a balanced tree is used, the time
complexity of the CGD algorithm can be cut from 𝑂(𝑛

2
)

down to𝑂(𝑚𝑛 log𝑚𝑛) = 𝑂(𝑛 log 𝑛) and the space complexity
from 𝑂(𝑛

2
) down to 𝑂(𝑚𝑛) = 𝑂(𝑛), as claimed. As the

number of generations increases, the number of cities 𝑛 will
be quickly decreased. This implies that the CGD operator is
in general much faster than specified by the above bounds,
which will in turn enhance the performance of the CGC
operator to be discussed next.

3.2. CommonGenes Compression (CGC). Thecommon genes
compression operator of PREGA is responsible for compress-
ing and removing the common genes detected by CGD. As
outlined in Algorithm 4, the CGC algorithm will first com-
press the common genes detected by CGD—by choosing a
representative for and saving away the information associated
with all or each segment of the common genes depending
on the applications—and then remove the common genes
compressed so that later generations of the GA will only see
the chosen representatives. A less number of genes are used
to represent the common genes each of which represents a
segment of the common genes. For instance, using TSP as an
example and assuming that the common genes detected 𝑐

3
,

𝑐
4
, and 𝑐

5
form a segment of the path, then these genes—and

the information associated with them such as the segment
of the path they form as well as the length and direction of
the segment—can be compressed, that is, represented by a
single composite gene, say, 𝑐

3
. Once this is done, GA will see

only the gene 𝑐
3
at later generations during its convergence

process. In other words, each detected segment of the path
can be represented by a single composite gene, which is
independent of the number of cities of which each segment of
the path is composed. Moreover, all the composite genes can
be compressed again as the other “noncomposite” genes. It is
worthmentioning that we have to take into consideration the
relationships between subsolutions to see if they are depen-
dent or independent before they are compressed. If they are
independent, all the common genes can be compressed into
a single gene. Otherwise, how they are compressed depends
on the problem in question and the way the solutions are
encoded.

3.3. An Example. In this section, we present a simple example
to illustrate exactly how PREGA works for the TSP. As
Figure 2 shows, the very first step of PREGA is exactly the
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CGD1. Initialize the values of all the array elements to 0.
CGD2. For each chromosome, we scan from left to right all the edges

encoded within it, calculate the index for each edge scanned, and
increment the value of the corresponding array element by one.

CGD3. The result array is scanned from left to right looking for all the
elements whose values are equal to𝑚. Edges corresponding to
indices to these array elements are common to all the chromosomes.

Algorithm 3: Outline of common genes detection algorithm.

CGC1. Compress the common genes detected by CGD—by choosing a
representative for, and saving away the information associated with,
each segment of the common genes.

CGC2. Remove the common genes compressed in step 1 so that the later
generations of the GA will only see the representatives chosen in step 1.

Algorithm 4: Outline of common genes compression algorithm.
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Figure 2: A simple example illustrating how PREGA works. See the text for more detailed explanation.
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same as that of GA and is to randomly generate a population
of chromosomes. For the purpose of illustration, a population
of two chromosomes is generated in this case, and each gene is
randomly assigned a distinct city number.Then, the selection
operator is applied to select the “good” chromosomes in terms
of the fitness value 𝑓

𝑖
of each chromosome. Then, the CGD

and CGC operators, as described in Section 3, are applied for
the detection and compression of the genes.

As Figure 2 shows, PREGA differs from GA by adding
the CGD and CGC operators as described in Section 3 to
eliminate the redundant computations encountered by GA.
By doing this, the performance of GA can be significantly
enhanced. The example given in Figure 2 shows that the
common genes indicated by 𝑝

1
, 𝑝
2
, and 𝑝

3
are first detected

by the CGD operator of PREGA and then compressed by
the CGC operator of PREGA, which is denoted by 𝑝. In
other words, after compression, we can choose either one of
the three common genes 3, 4, and 5 as the representative to
indicate the segment compressed. In this case, we choose 3. To
avoid confusion, we use 3 instead of 3 in Figure 2. After that,
the crossover andmutation operators as well as the evaluation
of the fitness function will treat each compressed segment as
a single pattern until the terminal condition is met. Note that
if the genes detected are consecutive, they will be compressed
into a single gene. Otherwise, they will be compressed into as
few genes as needed; that is, they will be compressed segment
by segment.

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
algorithm by using it to solve the traveling salesman problem.
The empirical analysis was conducted on an IBM X3400
machine with 2.0GHz Xeon CPU and 8GB of memory
using CentOS 5.0 running Linux 2.6.18. All the programs
are written in C++ and compiled using g++ (GNU C++
compiler). The benchmarks for the TSP are shown in Table 1.
Unless stated otherwise, all the simulations are carried out for
30 runs, with the population size fixed at 80, the crossover
probability at 0.5, the per-gene mutation probability at 0.01,
the number of generations at 100, and the tournament size at
3 (i.e., 1 out of 3). For all the simulations, PR is started at the
second generation.

To improve the quality of the end results of GA, PR, and
other evolutionary algorithms, we use several useful tech-
nologies to solve the TSP. The nearest-neighbor method [39]
is used in creating the initial solution for all the algorithms
involved in the simulation.The 2-opt mutation operator [40]
is employed as the local search method for fine-tuning the
quality of the end results. Unless stated otherwise, all the
simulations use HX as the crossover operator by default.

To simplify the discussion of the simulation results of TSP
in Tables 2, 3, and 4, we will use the following conventions.
Let TGA (traditional GA) [41], HeSEA (heterogeneous selec-
tion evolutionary algorithm) [42], SA (simulated annealing)
[10], UMDA (univariate marginal distribution algorithm)
[43], EHBSA (edge histogram based sampling) [44], ACS
(ant colony system) [45], DPSO (discrete particle swarm

Table 1: Data sets for TSP.

Data set Number of cities Optimum
ch130 130 6,110
ch150 150 6,528
d198 198 15,780
a280 280 2,579
pcb442 442 50,778
d493 493 35,002
u574 574 36,905
u724 724 41,910
pr1002 1,002 259,045
u1060 1,060 224,094
d1291 1,291 50,801
u1432 1,432 152,970
d1655 1,655 62,128
u2152 2,152 64,253
pr2392 2,392 378,032
pcb3038 3,038 137,694
fnl4461 4,461 182,566
usa13509 13,509 19,982,889

optimization) [46], and PREGA denote algorithms involved
in the simulation. Let 𝛽 ∈ {𝐷, 𝑇} denote either the traveling
distance (𝛽 = 𝐷) or the computation time (𝛽 = 𝑇). Let
Δ
𝛽
denote the enhancement of 𝛽

𝜙
with respect to 𝛽

𝜓
in

percentage. Δ
𝛽
is defined as follows:

Δ
𝛽
=
𝛽
𝜙
− 𝛽
𝜓

𝛽
𝜓

× 100%, (3)

where 𝛽 is either𝐷 or 𝑇 for the TSP, and the subscripts 𝜙 and
𝜓 are defined as follows.

(i) For Table 2, 𝜙 = PREGA(𝑥) implies 𝜓 = TGA(𝑥),
where 𝑥 denotes the crossover operators [47–49] in
use and is either partially matched crossover (PMX),
order crossover (OX), heuristic crossover (HX), or
edge-recombination crossover (ERX).

(ii) For Tables 3 and 4, 𝜓 = TGA, HeSEA, SA, UMDA,
EHBSA, ACS, or DPSO, and 𝜙 = PRE𝜓. Note that in
Table 3, to simplify the description, we use PRETGA
to indicate PREGA.

Note that for 𝛽 ∈ {𝐷, 𝑇}, the more negative the value of Δ
𝛽
,

the greater the enhancement.

4.1. Impact of Different Removal Strategies. To better under-
stand the impact of the removal bound on the performance
of PREGA, we tested several removal bounds—from 0% to
100% with an increment of 10%. 100% means that PREGA
may reduce all the genes of chromosomes in the convergence
process, whereas 0% means that no genes will be removed;
and thus PREGA falls back to GA.More precisely, to simplify
the implementation, what we have done is that, after step
2 but before step 3 as shown in Algorithm 2, we check to
see if the removal bound is exceeded. If it is exceeded, then
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Table 2: Simulation results of using different crossover operators.

Data set PREGA(PMX) PREGA(OX) PREGA(HX) PREGA(ERX)
Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

ch130 0.92 (1.49%) −80.00 0.85 (1.25%) −81.82 1.56 (1.51%) −87.50 1.95 (1.50%) −85.71
ch150 1.67 (0.62%) −84.62 1.53 (0.69%) −85.71 1.43 (0.59%) −90.00 1.31 (0.51%) −88.24
d198 0.80 (1.05%) −86.36 0.44 (1.46%) −86.96 0.42 (0.90%) −90.91 0.60 (0.81%) −89.29
a280 0.39 (1.73%) −86.36 0.09 (1.63%) −91.11 −0.71 (1.68%) −91.80 0.50 (1.37%) −90.38
pcb442 1.18 (0.66%) −90.18 0.55 (0.72%) −92.98 −2.59 (0.69%) −93.75 1.96 (0.99%) −91.2
d493 2.74 (4.39%) −81.76 −1.15 (1.04%) −92.62 −2.67 (2.00%) −92.55 1.16 (1.10%) −90.18
u574 −1.05 (0.80%) −91.17 −2.23 (0.59%) −95.10 −5.51 (0.84%) −94.66 0.95 (0.69%) −93.38
u724 −0.78 (0.75%) −87.41 −2.26 (0.64%) −95.02 −5.11 (2.39%) −94.58 1.22 (0.70%) −93.16
pr1002 −1.48 (0.58%) −91.94 −2.38 (0.65%) −95.77 −5.08 (2.79%) −94.84 0.81 (0.79%) −94.79
u1060 −1.14 (0.99%) −89.69 −2.87 (0.63%) −95.52 −3.69 (4.31%) −94.55 1.18 (0.98%) −94.10
d1291 0.17 (0.74%) −93.80 −0.10 (0.95%) −96.43 −3.38 (0.86%) −95.91 0.18 (1.04%) −95.93
u1432 3.53 (4.36%) −80.50 −3.68 (0.50%) −95.19 −2.76 (4.20%) −93.74 1.07 (1.00%) −93.36
d1655 −0.85 (1.75%) −91.79 −2.06 (1.10%) −96.32 −3.39 (2.57%) −95.47 0.98 (0.92%) −95.36
u2152 −0.77 (2.67%) −89.53 −2.05 (0.52%) −96.38 −3.00 (2.41%) −95.71 0.78 (0.52%) −95.69
Average 0.38 −87.51 −1.09 −92.64 −2.46 −93.28 1.05 −92.20

Data set PREGA(SBOX) PREGA(SJOX) PREGA(SB2OX) PREGA(SJ2OX)
Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

ch130 1.03 (1.51%) −92.65 0.93 (1.54%) −91.24 1.02 (1.45%) −91.11 1.37 (1.71%) −90.33
ch150 1.35 (0.58%) −92.60 1.58 (0.56%) −92.33 1.57 (0.55%) −92.66 1.41 (0.56%) −92.48
d198 0.55 (1.00%) −92.36 0.85 (0.92%) −91.81 0.67 (0.85%) −90.78 0.86 (0.82%) −90.17
a280 0.84 (1.25%) −92.10 1.55 (1.58%) −93.13 −0.11 (1.67%) −91.58 0.68 (1.50%) −91.98
pcb442 1.81 (0.94%) −93.48 1.50 (0.80%) −93.02 0.95 (0.89%) −93.02 0.80 (1.03%) −93.21
d493 1.07 (0.97%) −92.63 0.85 (1.07%) −92.98 0.16 (0.75%) −91.61 0.63 (0.82%) −90.77
u574 −0.13 (0.85%) −92.52 0.06 (0.90%) −93.07 −1.17 (0.64%) −92.28 −1.31 (0.80%) −92.45
u724 0.75 (0.79%) −93.78 0.11 (0.57%) −93.42 −0.85 (0.71%) −93.70 −1.00 (0.73%) −93.39
pr1002 −0.17 (0.50%) −94.06 −0.26 (0.64%) −93.64 −1.65 (0.69%) −94.17 −1.76 (0.74%) −93.85
u1060 −0.09 (0.63%) −93.35 0.09 (0.72%) −94.13 −1.39 (0.51%) −93.11 −2.05 (0.93%) −92.00
d1291 0.55 (1.08%) −93.49 0.48 (0.92%) −92.68 −0.22 (0.79%) −92.78 −0.19 (0.82%) −92.69
u1432 −0.20 (0.74%) −93.41 −0.11 (0.73%) −93.13 −2.08 (0.48%) −93.48 −2.18 (0.77%) −93.49
d1655 −0.22 (0.62%) −94.08 −0.55 (0.65%) −94.13 −1.60 (0.86%) −94.29 −1.02 (0.91%) −94.2
u2152 −0.18 (0.55%) −94.78 −0.26 (0.57%) −94.57 −0.38 (0.48%) −94.67 −0.66 (0.52%) −94.54
Average 0.50 −93.23 0.49 −93.09 −0.36 −92.80 −0.32 −92.54
𝑇: time in seconds; 𝑐V: coefficient of variation, which is defined to be 𝑐V = 𝜎/𝜇, where 𝜇 is either𝐷 or Δ𝐷.

steps 3 and 4 will be bypassed. Otherwise, all the common
genes detected at step 3 will be removed at step 4 even if it
will exceed the removal bound. In other words, we may end
up removing a few more genes than the removal bound says.

The experimental results showed that setting the removal
bound to 0% (GA) or 100% is better than the others. Although
setting the removal bound to 10%, 20%, and up to 90%
can also reduce the computation time, setting the removal
bound to 100% seems to give a good balance between the
computation time and the quality of the end results. It shows
that PREGA using 100% removal bound can obtain the best
results compared to the other removal bound settings, that is,
10%, 20%, and up to 90%.

A very interesting result to be paid particular attention
is that the end result of PREGA using 100% removal bound
is better than the others. This result shows that the quality of

the PREGA is not linearly proportional to the removal bound.
Themain reason for this phenomenon is that the local search
has to be split into two parts: one is for the common genes
and the other is for the noncommon genes. This is required
because the common genes have been compressed and thus
cannot be mixed up with the noncommon genes. Otherwise,
the common geneswill becomenoncommon genes.This situ-
ation eventually affects the ability of the local searchmethods.
In otherwords, with 100%and 0% removal bounds, the search
ability of the local search methods is maximized because
either all of the genes are either common or noncommon.
In the case of 10%, 20%, and up to 90%, however, all the
chromosomes are composed of two parts, thus limiting the
local search methods to find better subsolutions in a smaller
search space instead of the whole search space. This will
degrade the quality of the end results, causing the quality of
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Table 3: Simulation results of GA, HeSEA, LEM, and SA.

Data set PREGA PREHeSEA PRELEM PRESA
Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

a280 (𝑐V) −0.71 (1.68%) −91.84 0.22 (1.47%) −94.79 1.17 (1.90%) −95.92 −0.07 (1.48%) −57.62
𝑏
30

2,679.44 2,681.44 2,671.60 2,743.77
u574 (𝑐V) −5.51 (0.84%) −94.76 −5.88 (0.65%) −93.14 1.25 (0.83%) −95.92 0.02 (1.17%) −52.54
𝑏
30

38,837.70 39,211.40 39,156.40 39,448.30
u724 (𝑐V) −5.12 (2.39%) −94.61 −3.95 (0.77%) −93.75 1.04 (0.89%) −96.14 −0.27 (0.95%) −52.68
𝑏
30

44,399.10 44,347.70 44,388.70 45,044.90
u1060
(𝑐V)

−3.69 (4.31%) −94.55 −5.52 (2.28%) −93.97 0.85 (0.77%) −96.25 −0.29 (1.01%) −49.33

𝑏
30

241,758.00 238,428.00 237,896.00 238,928.00
u1432
(𝑐V)

−2.76 (4.20%) −93.76 −0.45 (3.80%) −93.78 1.27 (0.80%) −95.97 0.13 (0.75%) −53.26

𝑏
30

164,093.00 165,570.00 162,950.00 162,973.00
pr2392
(𝑐V)

−3.32 (3.34%) −95.06 −5.58 (2.43%) −95.89 0.14 (0.46%) −96.61 −0.25 (0.58%) −53.20

𝑏
30

405,470.00 405,612.00 407,597.00 419,796.00
pcb3038
(𝑐V)

−0.55 (4.64%) −94.72 −0.97 (4.22%) −95.34 0.40 (0.66%) −95.73 −0.05 (0.73%) −59.18

𝑏
30

148,567.00 148,293.00 148,353.00 152,449.00
fnl4461
(𝑐V)

−4.09 (4.52%) −95.32 −1.02 (3.06%) −95.58 0.00 (0.51%) −95.19 0.12 (0.36%) −61.21

𝑏
30

195,074.00 195,938.00 195,907.00 202,525.00
usa13509
(𝑐V)

−0.77 (5.23%) −92.18 6.09 (0.42%) −95.47 −0.17 (0.28%) −94.89 −1.41 (0.46%) −85.03

𝑏
30

21,500,000.00 23,700,000.00 21,900,000.00 22,600,000.00
Average −2.95 −94.09 −1.90 −94.63 0.66 −95.85 −0.23 −58.23
𝑇: time in seconds; 𝑏30: best solution in 30 runs; 𝑐V: coefficient of variation as defined in Table 2.

the end results of PREGA to be not linearly proportional to
the removal bound.

4.2. Impact ofDifferent Kind of CrossoverOperators. There are
several different crossover operators [48, 49] for the TSP, such
as PMX, OX, ERX, and HX. PMX is the most popular and
simplest crossover operator, but it lacks searching direction.
More recently, many researchers have focused their attention
on finding and keeping the building blocks to enhance the
performance of GA by either modifying or replacing the
operators of GA. In [50], Ruiz et al. designed new crossover
operators to identify and maintain the building blocks. In
this paper, we use the PMX, OX, HX, and ERX operators
to examine the search ability of PREGA when different
crossover methods are used. In addition, we have also tested
the crossover operators SBOX, SJOX, SB2OX, and SJ2OX
[50] to better understand the performance of PREGA with
other efficient crossover operators that are designed to avoid
disrupting the building blocks on the convergence process.
Note that, for the TSP in this paper, we use the 2-opt mutation
method for reversing two segments (the size of which must
be the same) of a tour encoded in a chromosome. For each
segment, the edges to the left and right of that segment (if we
consider a chromosome as a ring, then the last gene will be

next to the first gene or vice versa, and thus there is always a
gene to the left or right of a segment) will be replaced by two
new edges.

As Table 2 shows, for the TSP, PREGA can effectively
reduce the computation time from 80% up to 93.8% using
PMX, from 81.82% up to 96.43% using OX, from 87.50% up
to 95.91% using HX, from 85.71% up to 95.93% using ERX,
from 92.10% up to 94.78% using SBOX, from 91.24% up to
94.57% using SJOX, from 90.78% up to 94.67% using SB2OX,
and from 90.17% up to 94.54% using SJ2OX compared to
those of traditional GA and GA-based algorithms alone. The
simulation results further show that not only does PREGA
preserve the accuracy rate of the end results, but also it can
even give solutions that are better than those found by the
traditional GA and GA-based algorithms alone.

The amount of time that can be reduced and the end
results that can be improved depend, to a large extent, on
the size of the problem. Our simulation results indicate that
the larger the problem, the better the performance of the
proposed algorithm. Table 2 also shows that PREGA can even
improve the performance of most of the crossover operators,
including the crossover operator as complex as HX. This can
be easily justified by the following observation. The more
complex the crossover operators, the more the computation
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Table 4: Simulation results of UMDA, EHBSA, ACS, and DPSO.

Data set PREUMDA PREEHBSA PREACS PREDPSO
Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

Δ
𝐷

𝑐V Δ
𝑇

a280 (𝑐V) 6.73 (3.14%) −66.00 1.59 (1.85%) −69.82 −3.31 (1.24%) −22.14 −5.13 (2.56%) −75.00
𝑏
30

2,722.10 2,687.78 2,625.38 2,701.27
u574 (𝑐V) −4.52 (0.71%) −58.61 0.52 (0.80%) −67.46 0.64 (0.86%) −69.01 −7.85 (4.25%) −84.39
𝑏
30

39,013.00 39,392.90 38,299.70 39,031.40
u724 (𝑐V) −4.14 (0.67%) −59.47 0.39 (0.78%) −67.95 −0.85 (0.77%) −78.31 −4.20 (4.19%) −84.66
𝑏
30

44,419.90 44,347.50 42,805.40 44,854.00
u1060
(𝑐V)

−4.76 (0.70%) −73.35 −0.09 (0.76%) −74.11 1.46 (0.66%) −80.67 −1.35 (3.24%) −87.93

𝑏
30

239,226.00 238,155.00 234,396.00 242,863.00
u1432 (𝑐V) −2.93 (0.65%) −70.61 0.51 (0.67%) −73.32 0.29 (0.66%) −73.85 −0.11 (0.65%) −76.42
𝑏
30

163,520.00 163,504.00 161,204.00 183,637.00
pr2392
(𝑐V)

−3.51 (0.46%) −81.97 −0.90 (0.52%) −75.59 2.51 (0.79%) −89.26 −0.68 (0.42%) −91.16

𝑏
30

406,302.00 404,867.00 401,594.00 452,346.00
pcb3038
(𝑐V)

−3.36 (0.33%) −69.17 −0.86 (0.32%) −76.67 4.58 (0.57%) −91.07 −0.13 (0.55%) −86.84

𝑏
30

148,258.00 148,374.00 149,715.00 165,307.00
fnl4461
(𝑐V)

−3.60 (0.22%) −73.20 −1.46 (0.29%) −79.02 2.09 (0.63%) −92.30 −0.16 (0.38%) −86.35

𝑏
30

195,063.00 195,747.00 200,487.00 219,180.00
usa13509
(𝑐V)

−4.14 (0.27%) −70.52 −2.39 (0.26%) −73.01 1.16 (0.34%) −93.45 −0.49 (0.31%) −88.24

𝑏
30

21,479,200.00 21,531,300.00 22,584,600.00 24,222,100.00
Average −2.69 −69.21 0.3 −73.00 0.95 −76.67 −2.23 −84.55
𝑇: time in seconds; 𝑏30: best solution in 30 runs; 𝑐V: coefficient of variation as defined in Table 2.

time required per gene. If the chromosome length or the
number of genes can be reduced, it will in turn save the
overall computation time. The results in Table 2 show that
PREGA is robust even when combining with other efficient
crossover operators (e.g., SBOX and SJOX) that use a different
method to perform the crossover. Our experimental results
also showed that if the original GA or GA-based algorithms
do not give a solution that is close to the optimal, PREGA
will help arrive at better solution. For example, for the
benchmark u2152 using the HX crossover operator, the final
result is 73,339.08, which is worse than those using the other
crossover operators. PREGA(HX) can, however, save most of
the computation time and even improve the quality of the end
result by about 2.46%, compared to the others.

4.3. Comparison with Evolutionary-Based Algorithms.
Finally, for completeness, we compare the performance
of traditional GA [41], HeSEA [42], LEM [30], SA [10],
UMDA [43], EHBSA [44], ACS [45], and DPSO [46] by
applying PR to all of them. Tables 3 and 4 show that not
only can PR vastly reduce the computation time of these
algorithms, especially for very large data sets, but it can also
greatly reduce the computation time of evolutionary-based
algorithms that each iteration of which takes a great deal of
computation time. Note that the cunning length of EHBSA

is 1/3. The inertial weight 𝜔 of DPSO is 0.5, and the random
numbers for determining the influence of personal best and
global best 𝑟𝑐

1
and 𝑟𝑐

2
are, respectively, 0.3 and 0.7. For ACS,

the settings are based on those specified in [45]. That is, the
population size is 25; the importance of exploitation versus
exploration 𝑞

0
is 0.9; the importance of pheromone 𝛽 is 2.0;

𝜌 is 0.1; and the number of generations is 320.
The results in Table 3 show that because HeSEA takes

more computation time than GA per generation, the com-
putation time saved for HeSEA is more than for GA. For
instance, the simulation results of the largest benchmark
usa13509 show that using GA, the computation time is
reduced by a factor of 12.77, whereas using HeSEA, the
computation time is reduced by a factor of 22.07. In addi-
tion, the results of SA and PRESA highlight a different
concept of removing redundant patterns. Because SA is
a single-solution-based iterative algorithm, the procedures
CGD and CGC have to be modified accordingly. A very
simple approach is to remove patterns that are not changed
for, say, 1,000 iterations in succession. Furthermore, the
simulations of SA and PRESA are carried out for 30 runs,
with the initial temperature 1.0 and the change probability
𝑃(Δ𝐸) = exp(−Δ𝐸/𝑘

𝑏
𝑇), where𝑇 is the temperature and 𝑘

𝑏
is

Boltzmann’s constant [10].The results of Table 3 show that the
more the number of solutions (i.e., the larger the population
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size of the population-based approach is) is used in an
iteration, the better the end results is and the longer the
computation time is. The results of Table 3 further show
that the pattern reduction method can be applied to not
only the population-based but also the single-solution-based
algorithms where the former finds the common subsolutions
to be removed by spatial distribution while the latter finds the
common subsolutions to be removed by frequency.

The results in Table 4 show that not only can the proposed
algorithm reduce a great deal of the computation time of
other efficient evolutionary algorithms such as UMDA and
EHBSA, but it can also reduce the computation time of swarm
intelligence algorithms such as ACS andDPSOwhile limiting
the loss of the quality of the end result. In other words,
the results show that PR can cut down the computation
time of evolutionary algorithms, which are themselves either
faster or able to provide better results than GA. For instance,
even though UMDA, EHBSA, and DPSO are faster than
GA by about 44.45%, 29.94%, and 56.35%, respectively, for
usa13509, PR can further reduce the computation time of
UMDA from 58.61% up to 81.97%, the computation time
of EHBSA from 67.46% up to 79.02%, and the computation
time of DPSO from 75.00% up to 91.16%. The experimental
results show that the proposed algorithm can be used to
speed up the performance of all the abovementioned efficient
algorithms.

5. Analysis of PREGA

5.1. Diversity Analysis. Two of the most important issues
in using the pattern reduction method for enhancing the
performance of GA or GA-based algorithms are how to
ensure the pattern reduction method can effectively reduce
the computation time and how to maintain the diversity of
the population, that is, the quality of the end results. In this
paper, we will discuss the impact of the pattern reduction
method on the performance of GA or GA-based algorithms
based on three different measures: (1) the average number of
genes compressed, (2) the average quality of the end results,
and (3) the average size of the search space. In other words,
thesemeasures provide an indication of the search ability and
the speed of convergence of PREGA.

The search space or diversity of solutions can help
us understand whether or not an algorithm is capable of
avoiding falling into a local minimum at early generations in
the evolution process. In this paper, we use the outdegree of
cities as shown in Figure 3 to indicate the search ability of an
algorithm. In other words, the higher the outdegree of a city,
the higher the search ability. Now, by assuming that the cities
next to each other are represented as an adjacency matrix as
given in Figure 3(b), the average size of the search space at
generation 𝑡, denoted by 𝑆𝑡, is defined as

𝑆
𝑡

=
1

2𝑛

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝑡

𝑖,𝑗
, (4)

where 𝑛 is the number of genes (cities) left in each chromo-
some and 𝑒𝑡

𝑖,𝑗
= 1 if there exists an edge between cities 𝑖 and

𝑗; otherwise, 𝑒𝑡
𝑖,𝑗
= 0. That is, (4) represents the average of the

outgoing paths of all the cities currently encoded in all the
chromosomes (i.e., not removed). For instance, as Figure 3
shows, sixteen edges exist in all the chromosomes encoding
six cities of TSP. The average size of the search space can
be computed as (1/(2 × 6)) × 16 = 1.33. This number can
help us measure the diversity of the search space of a genetic
algorithm at a particular generation.

Figure 4 compares the performance of GA and PREGA
for solving the TSP using the simulation result of the
benchmark pr1002 as an example. Figure 4(a) indicates that
PREGA can find and remove more common edges than GA,
and Figure 4(b) shows that PREGA can find better solutions
than GA before generation 542. Figure 4(c) shows that
PREGA can maintain more diversities than the others in the
early generations during its evolution process. These results
convey a very important message.That is, PREGAwould find
higher quality result with higher diversities (search space)
at the early generations during the convergence process. At
the later generations of PREGA, the diversity will become
small because it is converging to a stable solution or the
global optimum, but our simulation results show that even
in this case, PREGA can still reduce most of the redundant
computations.

For instance, as Figure 4(c) shows that at about gener-
ation 39, the curves of the average diversities of GA and
PREGA cross over. That is, the search diversity of PREGA
becomes smaller than that of GA at about generation 39,
and the gap between these two methods is widened as the
number of generations increases. It seems that the search
ability of PREGA becomes worse than that of GA. But the
result of Figure 4(b) shows that the search ability of PREGA
does not eventually decrease between generations 39 and 542.
More precisely, in terms of the distance, PREGA finds the
solution 277,508.5 at generation 133, even though PREGA is
unable to arrive at a better solution afterwards. GA, however,
requires about 542 generations to arrive at the same solution
277,508.5 as PREGA. In addition, the final result found by
GA is 277,079.43 at generation 914. Then, GA has a very
small probability to find a better solution because the search
diversity tends to be 1 at generation 916. Now, the most
important question is if most of the genes are compressed
by PREGA at generation 133 (Figure 4(a)) or later, then
will it prevent PREGA from finding better solutions at later
generations. According to our simulation results, if either the
population size or the problem size is increased, then not
all the genes will be removed at the early generations, so
the problem will not exist, and PREGA will still outperform
GA. Figure 4(b) also indicates that the quality of the final
results using GA and PREGA differs by no more than 0.15%
(((277, 508.5 − 277, 079.43)/277, 079.43) × 100 = 0.15).

Figure 4(d) gives another measure [42] that can help us
understand the performance of GA. The number of genes
that is optimal gives us a hint in understanding how fast
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Figure 3: (a) Graphs showing tours encoded in two chromosomes and the outdegree of each city. For instance, the outdegree of city 1 is
𝑑
1
= 3. (b) Same information given in (a) represented as an adjacency matrix which makes it easier to understand how the average size of the

search space is computed. The number 2 in the denominator in (4) indicates that the adjacency matrix is symmetric in this case.
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(a) Average number of genes compressed at generation 𝑡
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(c) Average diversity at generation 𝑡
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(d) Average number of optimal edges in the best chromosome at
generation 𝑡

Figure 4: Example illustrating the performance of GA and PREGA for solving the benchmark pr1002.

the optimal solution can be reached by an algorithm. For
instance, let us suppose that the path Ψ = {Ψ

1
, Ψ
2
, . . . , Ψ

𝑛
},

whereΨ
𝑖
is the optimal subsolution of an optimal solution for

TSP. Now, by assuming that each chromosome is represented
as a ring and letting 𝑗 = (𝑖+1) mod 𝑛, the rate of edges that is

optimal in the best chromosome at generation 𝑡, denoted by
𝑂
𝑡, is defined as

𝑂
𝑡
=

𝑛

∑

𝑖=1

𝑜
𝑡

𝑖,𝑗
, (5)



12 The Scientific World Journal

where 𝑛 is the number of genes (cities), and 𝑜𝑡
𝑖,𝑗
= 1 if there

exists an edge that is the optimal subsolution between the
pair of genes 𝑖 and 𝑗; otherwise, 𝑜𝑡

𝑖,𝑗
= 0. Figure 4(d) shows

the probability of edges that are optimal and may end up
being in the final solution usingGAandPREGA.As indicated
in Figure 4(d), PREGA has higher probabilities to find the
optimal subsolutions than GA. Also indicated in Figure 4(d)
is that even though the average diversity of GA and PREGA
crosses over at about generation 513, the final results of GA
and PREGA are very similar. More precisely, the difference is
about 0.86 optimal edges with a problem of size 1,002.

In summary, the down side of PREGA is that it may
quickly converge to a suboptimal solution, but the up side
is that the quality of the end result is very close to that of
GA. For both GA and PREGA, the number of generations
required for the diversity to converge to 1 is in general
unpredictable. Using the benchmark pr1002 as an example,
if the number of generations performed is 100, PREGA can
not only reduce the computation time by about 94.84%, but
it can also even enhance the quality of the end result by about
5.08%. However, the average diversities of GA and PREGA at
generation 100 are both greater than 1, which indicates that if
we let them run longer, theymay be able to find a solution that
is better than the current one. More precisely, as Figure 4(c)
indicates, the average diversity of GA is about 1.4, and the
average diversity of PREGA is about 3. Thus, to see what
might happen to both GA and PREGA when the diversity
approaches 1, the pr1002 benchmark is carried out again for
30 runs and 1,000 generations each run. In average, PREGA
takes 0.86 s per run, and GA takes 102.54 s per run. PREGA
reduces the computation time by about 99.16% (((0.86 −
102.54)/102.54) × 100 = −99.16) or by a factor of 119.23
compared to GA, and the quality of the end results is very
close to each other. In other words, for a large problem, the
number of generations required by GA to converge to even a
suboptimal solution could be large and is unpredictable. On
the other hand, PREGA can quickly provide a solution the
quality of which is very close to that of GA even if the size of
the problem is large.

5.2. Time Complexity of PREGA. The time complexity of
genetic algorithm is a very important issue, and it has
attracted much attention of many researches [51–53]. In [51],
Ambati et al. used information exchange probability, repro-
duction time, and fitness computation time for estimating
the time complexity of GA. According to the results of [51],
Ambati et al. presented a GA-based algorithm for solving the
TSP, the expected running time of which is𝑂(𝑛 log 𝑛), where
𝑛 is the number of cities. This is due to the fact that their
simulations indicate that “good” solutions can be obtained by
GA in𝑂(log 𝑛) generations, even if the size of the TSP is large.
In another research [53], Tseng andYang showed that the time
complexity of GA is 𝑂(ℓ𝑚𝑛2) for data clustering problem,
where ℓ is the number of generations,𝑚 the population size,
and 𝑛 the number of patterns.

In this paper, we assume that the time complexity of the
traditional genetic algorithm is (𝑛𝑚ℓ), where 𝑛 is the number
of genes, 𝑚 the number of chromosomes, and ℓ the number

of generations. This can be easily justified by the following
analysis on the time complexity of the fitness function,
selection, crossover, and mutation operators used by the
traditional genetic algorithm as far as certain conditions are
met. For instance, suppose that tournament selection is used
as the selection operator, and its size is 𝑘 (a constant that
is far less than 𝑚). Let us further suppose that one point
crossover with probability 𝑝

𝑐
and one point mutation with

each gene having probability 𝑝
𝑚
which are mutated are used

where 𝑝
𝑐
and 𝑝

𝑚
are less than 1. The selection operator takes

𝑘𝑚 time at each iteration, because GA needs to randomly
select 𝑘 chromosomes from a set of 𝑚 chromosomes to find
the best one and performs this procedure 𝑚 times. The one
point crossover will exchange the information about 𝑝

𝑐
𝑚𝑛

time, and the mutation operator will take about 𝑝
𝑚
𝑚𝑛 time,

and the fitness function takes𝑚𝑛 time.Theoverall complexity
of the traditional genetic algorithm is thus 𝑂(𝑛𝑚ℓ) (e.g., 𝑘,
𝑝
𝑐
, and 𝑝

𝑚
are parameters (constants) that you choose before

a simulation is carried out, and all the simulation results
given in Section 4 have 𝑘 = 3 (≪𝑚 = 80), 𝑝

𝑐
= 0.5

(<1), and 𝑝
𝑚
= 0.01 (≪1)) where 𝑚 and 𝑛 are as defined

above, ℓ is the number of generations required to converge,
and the assumption that all the operators do not take more
than 𝑛 or 𝑚 time holds. Otherwise, the time complexity
could be 𝑂(𝑛2𝑚ℓ) or 𝑂(𝑛𝑚2ℓ). In the ideal case, the pattern
reduction algorithm can reduce the time complexity of GA
from 𝑂(𝑛𝑚ℓ) to 𝑂(𝑛𝑚). This can be easily proved by letting
Δ (0 < Δ < 1) be a constant indicating the percentage
of patterns retained at each iteration. In other words, 1 − Δ
is the percentage of genes removed at each iteration in all
chromosomes. Then,

ℓ−1

∑

𝑖=0

Δ
𝑖
𝑛𝑚 = 𝑛𝑚

ℓ−1

∑

𝑖=0

Δ
𝑖

≤ 𝑛𝑚

∞

∑

𝑖=0

Δ
𝑖

= 𝑛𝑚
1

1 − Δ

= 𝑂 (𝑛𝑚) .

(6)

In summary, the time complexity of PREGA is bound
from above by 𝑂(𝑛𝑚ℓ) and from below by 𝑂(𝑛𝑚). In the
best case, when the PREGA algorithm is started at the very
first iteration and the removal bound is set to 100%, the time
complexity will be𝑂(𝑛𝑚). In theworst case, if PREGA cannot
detect any common genes to be removed, then PREGA will
fall back to GA, and the time complexity will be 𝑂(𝑛𝑚ℓ).
In other words, the time complexity of PREGA depends on
(1) the iteration at which PREGA starts, (2) the number
of patterns removed at each iteration, and (3) the removal
bound, which is defined to be “up to 𝑥%of the genes detected
can be removed,” though in practice, a little bit more than
the removal bound of genes can be removed to simplify the
implementation (more details can be found in Section 4.1).
Our simulation results showed that PREGA can reduce the
computation time of GA from about 80% to 95.32% when
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the removal bound is set to 100% for complex data sets. The
results further showed that if the number of generations of
GA is set to an even larger value, we can reduce the time
complexity of GA to approach that of the ideal case, that is,
𝑂(𝑛𝑚).

6. Conclusion

This paper presents a novel technique for reducing the
computation time of GA or GA-based algorithms based on
the notion of pattern reduction. To evaluate the performance
of the proposed algorithm, we use it to solve the traveling
salesman problem, the benchmarks of which range in size
from 130 to 13,509 cities. All our simulation results showed
that the proposed algorithm can effectively cut down the
computation time of GA and its variants, especially in
cases where the data sets are large. Our simulation results
further showed that the proposed algorithm can significantly
reduce the computation time of the state-of-the-art heuristic
algorithms we compared in the paper, such as ACO and PSO,
even though these algorithms themselves are very efficient
in solving the combinatorial optimization problems. In the
future, our focus will be on enhancing the performance of
the proposed algorithm and widening the domains of its
application.
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