A GENERALIZATION OF A THEOREM BY CHEO AND YIEN CONCERNING DIGITAL SUMS

CURTIS N. COOPER and ROBERT E. KENNEDY

Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, Missouri 64093 U.S.A.
(Received January 20, 1986)

ABSTRACT. For a non-negative integer n, let $s(n)$ denote the digital sum of n. Cheo and Yien proved that for a positive integer x, the sum of the terms of the sequence

$$
\{\mathrm{s}(\mathrm{n}): \mathrm{n}=0,1,2, \ldots,(\mathrm{x}-1)\}
$$

is (4.5) $x \log x+0(x)$. In this paper we let k be a positive integer and determine that the sum of the sequence

$$
\{s(k n): n=0,1,2, \ldots,(x-1)\}
$$

is also (4.5)xlogx $+0(x)$. The constant implicit in the big-oh notation is dependent on k.

KEY WORDS AND PHRASES. Digital sums.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 10 H 25

1. INTRODUCTION.

In Cheo and Yien [1], it was proven that for a positive integer \mathbf{x},

$$
\begin{equation*}
\sum_{n=0}^{x} s(n)=(4.5) x \log x+0(x) \tag{1.1}
\end{equation*}
$$

where $s(n)$ denotes the digital sum of n. Here, we will show that, in fact, for any positive integer k,

$$
\begin{equation*}
\sum_{n=0}^{x} s(k n)=(4.5) x \log x+0(x) \tag{1.2}
\end{equation*}
$$

where the constant implicit in the big-oh notation is dependent on k.
The following notation will be used to facilitate the proof of (1.2). For integers x and y,

$$
\begin{equation*}
x \bmod y \tag{1.3}
\end{equation*}
$$

will be the remainder when x is divided by y and, as usual, square brackets will denote the integral part operator. In addition, for non-negative integers m, i, and j we let

$$
\begin{align*}
& {[\mathrm{m}]^{j}=\mathrm{m} \bmod 10^{j},} \tag{1.4}\\
& {[\mathrm{~m}]_{i}=\left[\mathrm{m} / 10^{\mathbf{i}}\right],} \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
[\mathrm{m}]_{i}^{j}=\left[[\mathrm{m}]^{j}\right]_{i} \tag{1.6}
\end{equation*}
$$

for $i<j$.
Thus, the j right-most digits of m are given by (1.4) and the number determined by dropping the i right-most digits of m is given by (1.5). Therefore, the number determined from the jth right-most digit of m to the (i +1)st right-most digit of m is given by (1.6).
2. A PROOF OF (1.2) WHEN k AND 10 ARE RELATIVE PRIME.

Let $(k, 10)=1$, x be a positive integer, and $L=[\log x]$. Then

$$
\begin{align*}
x \sum_{n}^{-1} s(k n) & =\sum_{n} \sum_{0}^{-1} s\left([k n]^{L}\right)+\sum_{n}^{=} \sum_{0} s\left([k n]{ }_{L}\right) \tag{2.1}\\
& =x \sum_{n}^{=} \sum_{0}^{1} s\left([k n]^{L}\right)+0(x) \tag{2.2}
\end{align*}
$$

This follows since for non-negative integers L and m,

$$
\begin{equation*}
\mathrm{m}=[\mathrm{m}]^{\mathrm{L}}+10^{\mathrm{L}}[\mathrm{~m}]_{\mathrm{L}} \tag{2.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
s(m)=s\left([m]^{L}\right)+s\left([m]_{L}\right) \tag{2.4}
\end{equation*}
$$

Also, since each $s\left([k n]_{L}\right.$) is bounded by a constant (dependent on k), we have that the second term of (2.1) is $0(x)$.

Next, for $i=0,1,2, \ldots$, L define

$$
\begin{equation*}
x_{i}=[x]_{L+1-i} 10^{L+1-i} \tag{2.5}
\end{equation*}
$$

Then,

$$
\begin{aligned}
& =x_{1} \sum_{n=0}^{1} s\left([k n]^{L}\right)+\sum_{n=x_{1}}^{\sum_{=}^{1}} s\left([k n]_{L-1}^{L}\right)+\sum_{n=x_{1}}^{\sum_{=}^{1}} s\left([k n]^{L-1}\right) .
\end{aligned}
$$

In the same way,

$$
\begin{align*}
& +\sum_{n=x_{2}}^{x} s\left([k n]^{L-2}\right) . \tag{2.7}
\end{align*}
$$

Continuing in this manner and combining terms, we have

$$
\begin{align*}
x \sum_{n=0}^{1} s\left([k n]^{L}\right) & =\sum_{i}^{L} x_{i} \sum_{n}^{=} s\left([k n]^{L+1-i}\right) \\
& +\sum_{i-1}^{L} x \sum_{i}^{=} s\left([k n]_{L-i}^{L+1}\right) \tag{2.8}
\end{align*}
$$

Since

$$
\begin{equation*}
s\left([k n]_{L-i}^{L+1-i}\right) \tag{2.9}
\end{equation*}
$$

is a decimal digit and

$$
\begin{equation*}
x-x_{i}=[x]^{L+1-i} \leqq 10^{L+1-i} \tag{2.10}
\end{equation*}
$$

for each i, it follows that

$$
\begin{equation*}
\sum_{i=1}^{L} \sum_{n=x_{i}}^{\sum_{=}^{1} s\left([k n]_{L-i}^{L+1-i}\right)=0(x) .} \tag{2.11}
\end{equation*}
$$

To determine the value of the first term of (2.8), we need the following lemma. Its proof is straight forward and will not be given.

LEMMA 2. Let d and i be non-negative integers. Then for $(k, 10)=1$,

$$
\begin{equation*}
\left\{[k n]^{i}: n=d, d+1, \ldots, d+10^{i}-1\right\}=\left\{n: n=0,1, \ldots, 10^{i}-1\right\} \tag{2.12}
\end{equation*}
$$

By this lemma and the fact that

$$
\begin{equation*}
x_{i}-x_{i-1}=[x]_{L+1-i}^{\mathrm{L}+2-i} 10^{\mathrm{L}+1-i} \tag{2.13}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
x_{i=x_{i-1}}^{\sum_{n=1}^{1} s\left([k n]^{L+1-i}\right)=\left([x]_{L+1-i}^{L+2-i}\right)} \sum_{n=0}^{10} s(n) \tag{2.14}
\end{equation*}
$$

for each i.
Now since

$$
\begin{equation*}
\sum_{n=0}^{10^{L+1-i}-1} s(n)=4.5(L+1-i) 10^{\mathrm{L}+1-i} \tag{2.15}
\end{equation*}
$$

by [2], we have that

$$
\begin{equation*}
\sum_{i=1}^{L} x_{i} \sum_{x_{i-1}}^{1} s\left([k n]^{L+1-i}\right)=(4.5) x \log x+0(x) \tag{2.16}
\end{equation*}
$$

Using (2.16) and (2.11) in (2.8), by (2.2) we have the expression given in (1.2). The constant implicit in the big-oh notation is dependent on k with k and 10 relatively prime.
3. CONCLUSION.

For any positive integer k, there exists non-negative integers a, b, and r such that $k=2^{a} 5^{b} r$ with $(r, 10)=1$. Note that if $k=r$, then we have (1.2). However, by use of the following generalization to Lemma 2, and some technical modifications, it can be shown that the restriction that k and 10 be relatively prime can be removed in the derivation of (2.1). That is,

$$
\begin{equation*}
\sum_{n=0}^{x} s(k n)=(4.5) x \log x+0(x) \tag{3.1}
\end{equation*}
$$

for any positive integer k.
LEMMA 3. Let $k=2{ }^{a}{ }_{5}{ }^{b} r$ with $(r, 10)=1$ and $i \geqq \max \{a, b\}$. Then for any non-
negative integer d,

$$
\begin{align*}
& \left\{[k n]^{i}: n=d, d+1, d+2, \ldots, d+\left(10^{i} / 2^{a} 5^{b}\right)-1\right\} \\
& \quad=\left\{2^{a_{5} b} n: n=0,1,2, \ldots,\left(10^{i} / 2^{a_{5}} b^{b}\right)-1\right\} . \tag{3.2}
\end{align*}
$$

Finally, based on the above techniques, it is strongly conjectured that for any positive integers k_{1} and k_{2}, it again follows that

$$
\begin{equation*}
\sum_{n=0}^{1} s\left(k_{1} n+k_{2}\right)=(4.5) x \log x+0(x) \tag{3.3}
\end{equation*}
$$

REFERENCES

1. CHEO, P. and YIEN, S. A Problem on the K-adic Representation of Positive Integers, Acta Math. Sinica 5 (1955), 433-438.
2. KENNEDY, R.E. and COOPER, C.N. On the Natural Density of the Niven Numbers, College Math. Journal 15 (1984), 309-312.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

