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Recent advances in CT andMRI static and dynamic scanning techniques have led to great improvements in the resolution and size
of volumetric medical datasets, and this trend is still ongoing. However, the explosion of dataset size prevents clinicians from taking
advantage of an interactive, high-resolution exploration of volumetric medical data on commodity hardware, due to the memory
constraints of modern graphics cards.This paper presents a hybrid CPU-GPU volume ray-casting method and some hybrid-based
inspection tools aimed at providing interactive, medical-quality visualization using an ordinary desktop PC. Experimental results
show that the hybrid method provides a near-interactive high-fidelity visualization of large medical datasets even if only limited
hardware resources are available.

1. Introduction

Over the past few years, direct volume rendering (DVR) has
stood out as a powerfulmeans to visualize volumetricmedical
data. The main benefit of volume rendering techniques is
that they allow you to capture all the 3D data in a single
2D image, conveying much more information than indirect
rendering techniques [1]. Nonetheless, only recently we have
been experiencing a broader adoption of DVR techniques
in daily clinical practice. For a long time, insufficient image
quality [2] and poor interactivity [3] had been the main
barriers to the adoption of volume visualization in the clinic.
Medical visualization requires interactive response times in
image generation, but until a few years ago interactivity
was achievable only if high-end, highly expensive graphics
workstations were used.

The turning point was the dramatic increase in the pro-
grammability and computational precision ofmodern graph-
ics processing units (GPUs), which have made it possible
to visualize volumetric medical data with a high degree
of accuracy and at an interactive frame rate. Vertex and
fragment units of the new generation of GPUs are now
user programmable, allowing applications to take advantage

of their massive many-core architectures to speed up data
parallel tasks. Moreover, whereas few years ago graphics
hardware supported only 32-bit color and so provided only
8-bit values to store the voxel intensities, now the GPU’s
pixel depth reaches 128 bits per pixel, which means that
each component (red, green, blue, and alpha) has a 32-bit
floating point precision throughout the graphics pipeline. As
a consequence, in recent years much research activity has
been concentrated on the design of GPU-accelerated DVR
techniques suitable for the visualization in real time of 3D [4–
7] and 4D volumetric medical data [8, 9].

However, great advances have also been made in CT and
MRI static and dynamic scanning techniques. Fully isotropic
three- and four-dimensional images are nowadays of com-
mon use in clinical practice.These developments have led the
creation of higher resolution and larger volumetric datasets,
presenting challenging issues for GPU-based visualization.
In the next few years, datasets used in clinical practice are
expected to reach 20483 voxels, against the 643 produced by
the first commercial CT scanner [2].

Whereas modern 64-bit high-performance computing
processors allow us to add sufficient mainmemory to contain
entire 3D datasets of any size, today’s GPUs are severely
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memory constrained. Such memory limitations force users
to discard significant portions of collected data or to view
large visualizations in small sections. In fact, the 10GB/s
bandwidth of PCIe interfaces, available on most off-the-shelf
personal computers, makes it impossible to preserve an inter-
active visualization by transferring “on demand” portions of
the dataset to the graphics memory. Since swapping the data
from system to video memory causes a severe performance
degradation, the entire dataset has to be entirely contained in
the GPU’s memory to avoid the bandwidth bottleneck. As a
result, interactive GPU-based volume rendering is limited to
datasets that fit into the graphics memory.

To meet these challenges, in this paper we present a
hybridDVRmethod aimed at providingmedical-quality ren-
dering at interactive frame rates using commodity hardware.
Such a hybrid approach takes advantage of the heterogeneity
of the resources available on off-the-shelf computers: the
large availability of systemmemory and the parallel-oriented
architecture of modern GPUs.

Furthermore, we introduce three interactive tools based
on the hybrid CPU-GPU ray-casting method aimed at easing
the exploration of large volumetrical data: a gaze-directed
volume rendering tool, which provides images, themaximum
resolution of which is set according to the user’s gaze direc-
tion; an inner structure tool, which allows to interactively
inspect data by using two different transfer functions at the
same time; and a localized oversampling tool, which allows
users to interactively execute oversampling, time-consuming,
and antialiasing technique, only on user-specified regions of
the volume (See video in Supplementary Material available
online at http://dx.doi.org/10.1155/2013/892967).

Both the visualization method and the interactive explo-
ration tools have been implemented and released as open
source software to promote their use and evolution [10].

2. Background

To speed up the rendering of large volumetric medical data,
a well-established approach is to render different blocks
of the volume at different resolutions. As reported in [11],
while interpreting the imaging data, radiologists usually
follow a model for visual search that postulates a preat-
tentive global analysis followed by fixations and discovery
scanning. Therefore, only some structures, which typically
occupy a small percentage of the data, are of interest, but
their analysis requires contextual information like locations
within a specific organ or adjacency to sensitive structures
[12]. Therefore, although interesting features are typically
localized and appear in a small region of interest (ROI), also
the context, which comprises all that is not in the ROI, is
equally important for medical inspection. Nonetheless, it is
acceptable to display objects in the ROI at full resolution
and to omit details for objects outside the ROI. This leads to
a reduction in information and thus, potentially, lowers the
computation and communication requirements.

Multiresolution volume rendering [13–15] is basically
a solution to reduce the computational cost of DVR by
rendering the high-priority regions with the highest accu-
racy and the lower-priority regions with progressively less

accuracy and progressively faster. First, amultiresolution data
hierarchy composed ofmultiple spatially partitioned blocks is
created.Then, at runtime, various amounts of data at different
levels of detail are extracted and used for the rendering as the
user navigates through the hierarchy.However, this technique
is unsuitable for clinical applications, because the hierarchical
data structure is built before the rendering process, making
it difficult to interactively change the high resolution region.
As a consequence, dynamic multiresolution approaches have
recently been proposed to enable the interactive selection of
the region of interestwithout compromising the display speed
[9, 16]. The aforementioned multiresolution approaches
tackle the performance issue of volume rendering but do not
deal with the memory limitations of GPUs.

The most common approach to cope with the memory
limitations of GPUs is to downsample the data to reduce its
extent. However, this approach is not suitable for medical
data visualization, because data downsampling drastically
decreases the quality of the image and so produces visu-
alization artifacts or hides relevant information. To reduce
the number of samples without compromising image quality,
Kraus et al. in [17] have recently proposed a GPU-based
volume rendering method with adaptive sampling in all
three spatial directions. Such an approach can avoid most
of the data transfer between main memory (RAM) and
graphics memory (VRAM) but at the cost of additional data
decompression by the GPU. Compression-based multireso-
lution rendering approaches are instead aimed at allowing an
interactive walkthrough of large medical datasets on com-
modity hardware. In [18, 19], input data are first converted
into a compressed hierarchical wavelet representation. Then,
the wavelet representation is decompressed on the fly and
rendered on the GPU.

All the previously mentioned approaches share the con-
cept of foveated volume, namely a nonuniform sampled
volume, whose density of samples is highest at a point
called the fovea. Whereas an ideal foveated volume has a
smooth transition from the highest to the lowest resolution,
in practice only a small number of levels are presented [20]. In
this work, we present an implementation of a two-level DVR
technique. As in [21–23], the approach consists in dividing
volume data into a context and a focus region, leaving the
user free to change the position and size of the focus region so
as to explore thoroughly different structures in volume data.
However, in this work, rather than focusing on data com-
pression or downsampling procedures, we concentrate on
taking advantage of the heterogeneity of processing resources
to allow an interactive and high-fidelity volume rendering of
large medical datasets also on commodity hardware.

3. Materials and Methods

3.1. Volume Ray Casting. Volume rendering describes a
wide range of techniques for generating images “directly”
from three-dimensional scalar data. Among the many DVR
techniques, we have chosen ray casting [24] to implement
the hybrid CPU-GPU visualization method. Ray casting
is the most direct volume-rendering approach [25], and a
recent imaging scientist-guided evaluation has confirmed
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Figure 1: Dataflows that depict memory transfers and code executions of the CPU-only, GPU-only and hybrid CPU-GPU ray casting
methods.

that it is the most acceptable technique for the high-fidelity
requirements of medical imaging [2]. Basically, ray casting
is a process that, for each pixel in the image to render, casts
a single ray from the eye through the pixel’s center into
the volume and integrates the optical properties obtained
from the volume densities encountered along the ray. Rays
advance a unit vector step by step, and a value is derived
by trilinear interpolation from the eight corners of the
cell containing the point. Volume rendering via ray casting
is an inherently parallelizable task, because the rays are
processed independently. SincemodernGPUs are able to take
advantage of a massive parallelism thanks to their parallel-
oriented hardware architecture, many methods have been
proposed to provide a high-quality and real-time ray casting
executed on a per-fragment level completely on GPUs.

To better describe the hybridmethod, we firstly introduce
CPU- and GPU-only ray-casting methods specifically focus-
ing on memory transfers. In a typical CPU-only ray-casting
pipeline, volume data is first loaded entirely into the RAM,
then the software ray-casting method is run. The workload
on the CPU is generally balanced by assigning different lines
of the image plane to different threads. The result of this
elaboration is saved in a buffer which is shared between all

the threads (see Figure 1, CPU-only). Each thread 𝑇
𝑖
runs the

software ray-castingmethod for a line𝑅
𝑘
, only if the following

expression is true:

𝑅
𝑘
mod (𝑁

𝑇
− 1) = 𝑇

𝑖
, (1)

where 𝑁
𝑇
is the total number of threads. To avoid possible

collisions and the need for synchronization primitives, the
location of the pixel data inside the shared buffer is deter-
mined by considering its position in the viewport. When all
the threads terminate, the elapsed rendering time is pushed in
a vector. This value is used to adjust the sampling distance in
order to achieve an interactive frame rate. Usually, to enhance
the interactivity of the image analysis, a high resolution
image of the volume is rendered only when the user is not
interacting with the scene, whereas just a low-resolution
image is provided otherwise.

In GPU-only ray-casting methods, rather than the inter-
activity, the main issue is the fitting of the dataset into
the graphics memory. If the volume data does not fit the
video memory, a scale factor is computed. The dataset is
uniformly downsampled according to such a scale factor and
is then loaded as a 3D texture into the VRAM. The GPU
processes the data through a fragment program executed
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Figure 2:Multiresolution volume visualization with a different level
of detail for the ROI (inside the white box) and for the context
(outside the white box).

using all the available GPU cores. The result of this parallel
elaboration is stored in a 2D texture and then displayed (see
Figure 1, GPU-only). Mechanisms similar to those of CPU-
only implementations for preserving an interactive frame rate
can also be present.

3.2. The Hybrid Volume Ray Casting. The proposed hybrid
volume ray-casting method produces a multiresolution visu-
alization of the data, in which only the ROI is always rendered
at high resolution, whereas the context is rendered at a
variable resolution according to the availability of resources.
The dataset is first downsampled in order to fit into the
graphics memory. At the same time, a fully detailed version
of the dataset is stored into the system main memory. Then,
the CPU is used to render at high resolution only the region
of interest, whereas the GPU is used to render the context.

The resolution of the context depends on the availability
of video memory on the graphics card. If the entire dataset
fits inside the VRAM, a full resolution image both of the ROI
and of the context is visualized. Figure 2 shows the result of
an application of the hybrid volume ray-casting method to
render a 1 GB CT dataset on a graphics card equipped with
512MB of dedicated video memory.

In more detail, the hybrid method starts by computing
the scale factor used to downsample all the volumetric data
in order to make them fit the VRAM (see Figure 1, Hybrid
CPU-GPU). To compute this value, both the maximum
texture size allowed on the graphics card and the available
dedicated graphics memory are analyzed. Next, the volume
is downsampled by scaling it uniformly along the three axes.
Then, the downsampled data is loaded as a 3D texture into the
graphics memory to provide a fast and direct access from the
GPU cores.Therefore, at this time, the volume is both present
in the RAM and, in a downsampled version, in the VRAM.

Each time a viewport update is requested, themost recent
view matrix is compared with the previous one. If a change
in the position or orientation of the camera is detected, the
shared buffer which holds the result of the CPU-based ray-
casting of the context is cleared. Then, the context part of the
image is recomputed by using the GPU. When no changes
in camera data are detected, the shared buffer is not cleared,
and only the ROI is recomputed by the CPU. By acting in
this way, when the ROI is resized or moved by the user, just
the high-resolution region of the image is recomputed. As

a consequence, the user can progressively extend the high-
resolution part of the image in an interactive way.

To compute the final image, a thread is launched for each
available CPU core. If the context needs to be recomputed,
oneCPU thread is used to interactwith the graphics hardware
in order to control and handle the results of the ray-
casting elaboration. Such a CPU thread instructs the GPU
to execute the fragment program that implements the ray-
casting method and then stores the results in a 2D texture.
The remaining CPU threads run the ray-casting method in
order to draw the high-resolution area. In accordance with
the CPU-only pipeline, we balance the workload on the CPU
by assigning different lines of the image plane to different
threads (see (1)). Only those casting rays whose starting
points are inside the ROI are assigned to CPU threads. The
color of each pixel is finally written into a buffer which is
shared by all the threads.

Let 𝑝 be a pointer to the first memory location of the
aforementioned buffer. For each processed pixel located at
(𝑥, 𝑦) we access the corresponding data structure inside the
buffer following this indexation:

𝑖 = 𝑝 ⋅ [𝑦 ⋅ pixels Per Row ⋅ size of (𝑖) + 𝑥 ⋅ size of (𝑖)] . (2)

As a result, different threads write to different memory
locations. The method waits for all the threads to terminate
and then draws the context information from the GPU to
the viewport.The buffer containing the high-resolution result
coming from the CPU-based ray casting is then rendered
above the context.

3.3. The Inspection Tools. The novel hybrid visualization
method allows us to implement advanced medical image
exploration tools that are commonly used only on high-end
graphics workstations. In the following, three of these inspec-
tion tools for 3D medical image exploration are introduced.

3.3.1. Gaze-Based Volume Rendering. The gaze-based volume
rendering approach [26, 27] consists in letting a high-
resolution sweet spot follow the user’s gaze to achieve a trade-
off between the computation resource and the represented
details. In more details, the eye tracker is used to collect
information so as to calculate where to place the region of
interest.The gaze-based approach is aimed at keeping at high
resolution just the part of the image which is currently under
inspection (fovea), so allowing users to benefit from both
high resolution and interactive frame rate.

In our implementation, the gaze tracking is smoothed, as
described in [28, 29]. Moreover, to preserve an interactive
frame rate, the system automatically reduces the ROI size
so as to keep the frame rate at a user defined level. In this
way, both the position and the size of the region of interest
are entirely controlled by the application, leaving the user
free to simultaneouslymanipulate (e.g., rotate, zoom, etc.) the
volume.

3.3.2. Virtual Lens. The virtual lens tools provide a highly
interactive simultaneous visualization of interior and exterior
structures (see Figure 3). As in the Virtual Magic Lantern
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Figure 3: The virtual lens tool: ROI and context are visualized with
different transfer functions and color lookup tables. ROI position
and size can be controlled interactively by the viewer.

described in [30], the virtual lens allows the focal region to
be visualized using a secondary transfer function and/or a
different color lookup table.

Real-time modifications of the transfer function and of
the color lookup table are featured as well (and applied
simultaneously to the ROI, generated by the CPU, and to the
context, generated from the GPU).

3.3.3. Localized Oversampling. Real-world objects have con-
tinuous, smooth curves and lines, whereas monitors can only
display discrete points of light. This causes a problem known
as aliasing. Oversampling is one of the ways of reducing
the aliasing problem. This antialiasing approach consists in
casting additional rays and then averaging the computed
values. Samples are taken at several instances inside the pixel
(and not just at the center). In concrete terms, instead of
sampling one ray per pixel, 4/16/64 rays are sampled per pixel.
Moreover, the number of sample points on each ray can vary
too. In fact, to better simulate the continuous integration of
the light effects in a discrete space, a high sampling rate can
be used, together with opacity correction techniques to avoid
over-composited values.

Figure 4 shows the enhancements in image quality due
to the application of oversampling techniques to volume ray
casting. In particular, the stripes pattern is not visible even at
high zoom levels. However, the rendering time considerably
increases if oversampled volume ray casting is used, since the
computational load increases proportionally to the number
of rays casted through the volume and to the number of
sample points on each ray. The localized oversampling tool
takes advantage of the hybrid rendering method to apply
oversampling only on a region of interest. In this way, the total
rendering time is reduced so as to preserve the interactive
inspection of medical images.

4. Results and Discussion

4.1. Experimental Testbed. The hybrid CPU-GPU volume
ray-casting method has been implemented entirely in the
C++ language as an extension of the open-source visualiza-
tion toolkit (VTK) library [31]. Then, the CPU-, GPU-, and
hybrid-based ray-castingmethods have been integrated into a

DICOMviewer developed entirely in C++ by using the open-
source libraries VTK, for the 3D rendering and visualization,
andwxWidgets [32], for the user interface.The source code of
both the extension of the VTK library and the experimental
testbed application is released as open source software and is
available for download [10].The tools have been implemented
by extending the Medical Imaging Toolkit (MITO) open-
source software [33].

To evaluate the hybrid CPU-GPU ray-casting method,
we compared the rendering times obtained by using the
hybrid CPU-GPU with the CPU-only and GPU-only ray-
casting methods as implemented in the VTK library. The
performance measures were computed by averaging the
rendering times obtained in twelve trials. For the hybrid
technique, in each trial the ROI size was increased gradually
from 0% to 100% of the rendering window.

Two sets of human 16-bit CT data in DICOM format
were used in our evaluation: Cenovix, a renal angio-CT
composed of 361 slices, and visible human female (VHF),
a complete, anatomically detailed, three-dimensional rep-
resentation of the female human body from the National
Library ofMedicine of the USA [34] composed of 1734 slices.
The resolution of the slices was, for both datasets, 512 × 512
pixels. In all the experiments, the two datasets were rasterized
with the same transfer function. Specifically, window level
and width settings were set to 50 and 350, respectively.

The sampling distance of the casting rays was set to the
diagonal of the voxels that compose the dataset. Specifically,
the sampling distance was set to 0.973 and to 1.73 for
the Cenovix and the VHF dataset, respectively. Rendering
times vary drastically with rendering window size, viewing
direction, and distance of the camera from the volume. In
all the experiments, we rendered the volumetric data in two
windows, the size of whichwas 720×380 pixels and 1440×760
pixels, respectively.Weused axial as the viewing direction and
performed a dolly in of the camera so as to let the rendered
image fill the entire window.

The performance measures have been gathered on three
machines.

Mobile (MO). A notebook equipped with a single CPU Intel
Mobile Core 2 Duo P8600 at 2.40GHz, 4GB RAM DDR2 at
400MHz, a graphics card NVIDIA GeForce 9500M GT (32
streamprocessors, 256MBdedicated videomemoryGDDR2,
and 128-bit memory interface), and an OSWindows 7 32 bits.

Consumer Level (CL). A desktop PC equipped with a single
CPU Intel Core i7 860 at 2.80GHz, 8GB RAM DDR3 at
667MHz, a graphics card Nvidia Quadro FX 580 (32 stream
processors, 512MB dedicated videomemory GDDR3, 128-bit
memory interface), and an OSWindows 7 64 bits.

High End (HE). A graphical workstation equipped with two
CPUs Intel Xeon W5590 at 3.33GHz, 24GB RAM DDR3
at 667MHz, a graphics card Nvidia Quadro FX 5800 (240
stream processors, 4GB dedicated video memory GDDR3,
512 bit memory interface), and an OS Windows XP x64
edition.
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Figure 4: Oversampled volume ray casting (a) not used, (b) low, (c) medium, and (d) high.
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Figure 5: Rendering times of GPU-, CPU-, and hybrid-based ray-
casting methods on the consumer-level hardware.

4.2. Experimental Results and Discussion. On the mobile
machine, both the datasets must be heavily downsampled to
fit the 256MB of video memory available. As a consequence,
the GPU-only volume rendering is not suitable for a medical
quality exploration of the data. As the ROI size increases,
the CPU-only method shows lower rendering times than the
hybrid one, providing an average frame rate of 6.2 frames per
second (fps) with a rendering window size of 720×380. This
is due to the fact that the notebook used was equipped with
only two CPU cores.Whereas the CPU-only method exploits
both these cores in the rendering computation, the hybrid
method uses one core for the rendering of the high-resolution
area and the other one to control the rendering of the context
performed by the GPU. Notwithstanding this, the results
show that the hybrid method allows a much more interactive
visualization (fps ≥ 10) of the Cenovix dataset for a high-
resolution area smaller than 20% of the screen. Considering
the larger VHF dataset, the hybrid method provides an fps ≥
5 for high-resolution areas covering up to the 20% of the
screen, whereas the CPU-only method provides an fps ≃ 2.2.

When using the consumer-level hardware, the hybrid
CPU-GPU method allows us to keep an interactive visual-
ization (fps ≥ 10) of the Cenovix dataset independently of
the ROI size (see Figure 5(a)). Moreover, it allows a highly-
interactive visualization (fps ≥ 25) as long as the ROI size
is smaller than 45% of the screen. This result was to be
expected since, in these experimental conditions, the CPU-
only rendering time also allows an interactive frame-rate
(fps ≃ 15). For an ROI larger than 99% of the screen, the
CPU-only method produces rendering times slightly lower
than the ones produced by the hybrid one due to the overhead
introduced into the latter to handle both the CPU and the
GPU rendering processes. When switching to the large VHF
dataset, the hybrid CPU-GPU method still allows us to keep
an interactive frame rate until the ROI size covers up to 40%
of the screen (see Figure 5(b)). It is worth noting that the
GPU-only rendering method, even if it allows an interactive
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Figure 6: Comparison of the hybrid volume ray-casting rendering
times with different sizes of the rendering window.

visualization of data (fps ≃ 12), requires a downsampling
of the dataset in order to fit the available dedicated video
memory (512MB nominally, 487MB actually available), so it
cannot be used for medical quality inspection of data. For an
ROI size larger than 40% of the screen, the hybrid method
provides a near-interactive visualization (4 < fps < 10).

On the high-end machine, thanks to the sixteen CPU
cores available (eight physical and eight logical due to
hyperthreading), all the volume ray-casting methods allow
us to keep an interactive visualization of both the Cenovix
and the VHF datasets. However, also in this case, the hybrid
method produces lower rendering times than the CPU-only
method as long as the high-resolution area is smaller than
98% of the screen. Since the high-end hardware we used
is equipped with sufficient VRAM (4GB) to avoid the data
downsampling step of the ray-casting pipeline, the GPU-only
method can provide a high-fidelity volume rendering with
the highest frame rate (fps ≃ 34 with the VHF dataset).

Finally, Figure 6 shows a comparison of average rendering
times obtained with the hybrid CPU-GPU method with
the mobile, consumer-level, and high-end machine with a
rendering window size of 720 × 380 and 1440 × 760. In
this figure, rendering times are reproduced in a logarithmic
scale with base 10. Basically, the slope of the hybrid method

curve is mainly given by the CPU contribution to the ray-
casting computation, whereas the y-intercept is mainly given
by the GPU contribution. In fact, only the GPU works
when the ROI size is zero, whereas the CPU rendering time
becomes progressively greater than the GPU one as the ROI
size increases. The performance gap between the different
machines becomesmore evident with the larger dataset.With
the mobile machine, the VHF dataset can be visualized only
at a near-interactive frame rate (fps ≥ 2), with an ROI size
smaller than 58% of the 720 × 380 rendering window (see
Figure 6(a)) and smaller than 6% of the screen of the 1440 ×
760 rendering window (see Figure 6(b)). With a consumer-
levelmachine, instead, an interactive visualization of theVHF
dataset is possiblewith the small renderingwindow if the ROI
size is smaller than 45% of the screen.The high-endmachine,
in the worst combination of dataset and rendering window,
allows an interactive visualization until the region of interest
is lower than 38% of the screen.

Figure 6 also shows that the hybrid method scales almost
linearly with the total number of pixels to render. In more
detail, doubling the sides of the rendering window (and
so quadrupling the number of pixels to render), we have
observed that rendering times are almost quadrupled. The
results also show that, whereas an increase in the number
of CPU cores produces a linear increase in rendering per-
formance (58% of average reduction between the 8 logical
CPU cores at 2.80GHz of the consumer level machine and
the 16 at 3.33GHz of the high-end machine), an increase in
the number of GPU cores produces a gain that varies with
the size of the dataset and especially with the number of pixels
to render. In fact, the reduction of rendering times obtained
with the 240GPU cores of the HE machine compared to the
32GPU cores of the CL machine varies from 40%, obtained
with the Cenovix dataset and a window size of 720 × 380,
to 68%, obtained with the VHF dataset and a quadrupled
window size. The latter result confirms that, when fragment
programs are used, the more there are pixels to render and
so CPU threads simultaneously in flight, the more the overall
efficiency increases due to a better hiding of memory access
latency.

5. Conclusions

Theexplosion ofmedical dataset size prevents clinicians from
taking advantage of an interactive, high-resolution GPU-
based 3D visualization on commodity hardware. To provide
an interactive visualization, the entire dataset has to be
entirely contained in the graphics memory, but today’s GPUs
are severely memory constrained. As a result, interactive
volume rendering on commodity hardware is limited to
datasets that fit into the GPU’s memory.

In this paper, a 3D volume visualization method has been
proposed to visualize interactively large medical datasets on
machines with limited hardware resources. The rendering
method is based on a hybrid approach that takes advantage
of the heterogeneity of the resources available on off-the-shelf
computers: the large availability of system memory and the
parallel-oriented architecture of graphical processing units.
Specifically, the CPU is used to render a fully detailed image
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of a user-controlled region of interest, whereas the GPU is
used to render the remaining part of the image by using a
downsampled version of the dataset.

Furthermore, three inspection tools based on the hybrid
rendering method have been introduced: (i) a gaze-directed
volume rendering tool, which provides images the maximum
resolution of which is set according to the user’s gaze
direction; (ii) an inner structure tool, which allows to inspect
volumetric data by using two different transfer functions at
the same time; and (iii) a localized oversampling tool, which
allows users to interactively enhance the image quality only
on a region of interest.

The experimental results indicate that the hybrid ren-
dering method and the inspection tools can be profitably
used for the interactive exploration of large medical dataset
on machines on which, due to limited hardware resources,
CPU- and GPU-based rendering methods cannot provide
an interactive, high-fidelity visualization. Future work will
focus on designing alternative ways to divide the workload
between CPU and GPU and on testing the approach also for
gradient-shaded rendering.The visualizationmethod and the
inspection tools have been implemented and issued as open
source software, which may promote their use and evolution.

Disclosure

The Cenovix dataset is from http://www.dicom7.com/. The
VHF dataset is from https://mri.radiology.uiowa.edu/VHDi-
com.
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