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Diffuse optical tomogrpahy (DOT) is to find optical coefficients of tissue using near infrared light. DOT as an inverse problem is
described and the studies about unique determination of optical coefficients are summarized. If a priori information of the optical
coefficient is known, DOT is reformulated to find a perturbation of the optical coefficients inverting the Born expansion which is an
infinite series expansion with respect to the perturbation and the a priori information. Numerical methods for DOT are explained
as methods inverting first- or second-order Born approximation or the Born expansion itself.

1. Introduction

DOT is to findoptical coefficients of tissue using near infrared
light. DOT is known to be of low cost, portable, nonionized,
and nonmagnetized. And DOT has higher temporal reso-
lution and more functional information than conventional
structural medical imaging modalities such as magnetic
resonance imaging (MRI) and computerized tomography
(CT). For the comparison to other functional imaging
modalities such as functional MRI (fMRI), photon emission
tomography (PET), and electroencephalogram (EEG), see [1].
DOT is used in the area of breast imaging [2–4], functional
neuroimaging [5, 6], brain computer interface (BCI) [7, 8],
and the study about seizure [9, 10], newborn infants [11, 12],
osteoarthritis [13], and rat brain [14, 15].

In this paper, DOT is explained as an inverse problem
with respect to a forward problem formulated as an elliptic
partial differential equation. Propagation of light in biolog-
ical tissues is usually described by diffusion approximation
equation in the frequency domain, the simplest but nontrivial
approximation of the Boltzmann equation, as follows:
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DOT is to find the optical coefficients 𝜇
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which is the value of the
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In Section 2, the unique determination of the optical

coefficients is discussed and many known results are sum-
marized for the uniqueness questions. In Section 3, DOT is
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reformulated as to find perturbation of the optical coefficient
inverting the Born expansion.The errors of the Born approx-
imation in the Lebesgue and Sobolev norms are given. In
Section 4, numerical methods of DOT are mainly described
as themethods inverting the first-, second-, and higher-order
Born approximation and Born expansion itself.

2. Uniqueness

The research about unique determination of the optical coef-
ficients in DOT is rare except [16], but it is a very important
issue for DOT as an inverse problem. The determinaiton of
optical coefficients (𝜇

𝑎
, 𝜇

𝑠
) in (1a) and (1b) is equivalent to the

determination of 𝑘 in (2a) and (2b) when 𝜔 ̸= 0.
When 𝜇
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, 𝜅, ∇𝜅 have upper and lower bound and 𝑞 is

contained in 𝐻

−1

(Ω) or a Dirac delta function, (1a) and (1b)
have a unique solution Φ ∈ 𝐻

1

(Ω) and (2a) and (2b) have a
unique solution Ψ ∈ 𝐻

1

(Ω) [17, 18].
Boundary value problem (1a) and (1b) with 𝑞(𝑟) = 𝛿(𝑟, 𝑟
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is equivalent to boundary value problem with (1a) for 𝑞 = 0

and nonzero Robin boundary condition replacing (1b). This
argument can be proved using the function𝐻 in [19]. There-
fore, DOT is redescribed as to find the optical coefficients
from the Robin-to-Dirichlet map defined as a map from
𝐻

−1/2

(𝜕Ω) to𝐻1/2(𝜕Ω). Using unique solvability of (1a) with
theDirichlet orNeumann boundary condition replacing (1b),
the Robin-to-Dirichletmap is equivalent to theNeumann-to-
Dirichlet map and to the Dirichlet-to-Neumann map. Since
𝐼𝑚(𝑘) > 0 for 𝜔 ̸= 0, 𝑘 is not a Dirichlet eigenvalue of
(2a). Therefore, knowing the Dirichlet-to-Neumann map is
also equivalent to knowing farfield map in inverse scattering
problem [20, 21].

Using above results and many known results for inverse
scattering problem, we summarized the uniqueness and
nonuniqueness results as follows.
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positive constant𝑚 can be understood as special cases of Case
2. The limiting cases 𝑚 = ∞ and 𝑚 = 0 could be considered
as (1a) inΩ\𝐷with the Robin boundary condition (1b) on 𝜕Ω
and the boundary condition on 𝜕𝐷 asΦ = 0 (sound-soft case)
and 𝜕Φ/𝜕] = 0 (sound-hard case) on 𝜕𝐷. The uniqueness
for sound-soft and sound-hard obstacle 𝐷 is considered in
[20, 22].
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is shown by assuming that refractive index is not determined
or we use only continuous wave light source. However, if
refractive index is known and 𝜔 ̸= 0, unique determination
of the optical coefficient is possible. This nonuniqueness is
proved by using [23].
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Here, 𝐾(𝑥) is a unknown positive-definite matrix function
such that 𝐾(𝑥) ̸= 𝐼

𝑛
on 𝜕𝐷 and 𝑚(𝑥) is a positive function

such that 𝑚(𝑥) ̸= 1 on 𝜕𝐷. The uniqueness of 𝐷 is solved in
[21, 24–28] and the nonuniqueness of𝐾(𝑥) is reported in [24,
29, 30]. Therefore, although the domain of nonhomogenity
𝐷 can be uniquely determined by infinite measurements,
the nonhomogeneous anisotropic diffusion coefficient 𝐾(𝑥)
cannot be determined uniquely. Similar results are known for
the nonuniqueness and illusion for anisotropic nonhomoge-
neous electric conductivity [24, 31].

3. Born Approximation
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It is proved that the 𝑛th order term in the above Born
expansion (4) is the 𝑛th order Frechet derivative divided by
𝑛! [18]. The bounds for the operatorsR
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using the estimates (6a) and (6b).
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4. Numerical Methods

Numerical methods for DOT are explained in terms of solv-
ing the Born approximation given in Section 3. Other numer-
ical methods not categorized as inverting Born approxima-
tion are commented in the final section.

4.1. Linearized Methods. Linearized DOT to find 𝛿𝑥 by
solving the first-order Born approximation is studied by
many researchers in the initial stage of DOT. Although this
method lacks exact recovery in most cases, it is used still
frequently when faster real-time computing is needed and
very good a priori information is given. In this method,
the discretized problem is an algebraic equation and it
is essential to use efficient matrix solver. In the Jacobian
matrix, the number of rows is the number of measurements
and the number of columns is the number of elements
to be determined. In most cases, the number of elements
is larger than the number of measurements in order to
obtain higher resolution image.Therefore, the algebraic equa-
tion is usually an underdetermined system. Efficient matrix
solvers including arithmetic reconstruction technique (ART),
simultaneous arithmetic reconstruction technique (SART),
simultaneous iterative reconstruction technique (SIRT), and
the Krylov space methods are studied [33, 34]. Since the
linearized problems also have ill-posed property of DOT,
there are many researches about regularization methods
including the Tikhonov regularization. The dependence on
the discretization error due to ill posedness of the linearized
method is reported in [35].

4.2. Nonlinear Methods. Nonlinear method is to find 𝛿𝑥

by solving the Born expansion [36]. This method is usu-
ally formulated as optimization problem and is solved by
the Newton-type method including Levenberg-Marquardt
method [37, 38]. A few softwares based on nonlinear method
with finite element forward solver with corresponding refer-
ences are as follows:

(i) TOAST (Time-Resolved Optical Absorption and
Scattering Tomography) [39],

(ii) NIRFAST (Near InfraRed Florescence and Spectral
Tomography) [40, 41],

(iii) PMI (Photon Migration Imaging) Toolbox [42].

Nonlinear method needs heavy computation due to large
iteration numbers. To reduce the heavy computation, there
are studies about efficient numerical techniques such as
multigrid, domain decomposition [43], and adaptive [44]
method.

4.3. Inverse Born Approximation of Order Higher Than Two.
Thismethod is to find 𝛿𝑥 by solving second- and higher-order
Born approximation. In fact, solving the Born approximation
of order higher than two is implicit but can be approximated
by explicit inverse Born approximation. Formal inverse of the
Born approximation is called inverse Born approximation.
The first-order inverse Born approximation corresponds to

linearized DOT and inverse Born expansion itself corre-
sponds to (nonlinear) DOT. Higher-order methods improve
the order of convergence for lower-order methods. The error
of the inverse Born approximation is given and analyzed in
terms of the Lebesgue space norms when 𝛿𝜅 = 0 [45] and in
terms of the Sobolev space norms for the second order [46].

4.4. Other Methods. The solution of (1a) and (1b) is usually
solved by finite element method [36]. Another approach
for the forward problem is to compute directly the Robin
function using the Fourier-Laplace transform [47–50]. The
disadvantage of this method is that it depends on the special
geometry of the region of interest and the inverse Fourier-
Laplace transfrom is known to be severely ill posed.

Equations (1a) and (1b) could be replaced by probabilistic
approach in the Monte Carlo method [51]. The method takes
much more time than finite element method and highly
depends on random number generator. The comparison of
finite element method and the Monte Carlo method is done
by many papers including [52].

The diffusion approximation (1a) and (1b) is the first-
order approximation of radiative transfer equation. There
are studies about DOT based on radiative transfer equation
[53, 54] and its 𝑛th order approximation [55].

5. Conclusion

Unique determination of DOT is surveyed. The study about
nonuniqueness for anisotropic diffusion coefficients and for
unknown refractive index is also surveyed. The perturbation
of photon density with respect to the perturbed optical
coefficient is expanded using the Born expansion and the
error analysis removing higher-order terms is given. The
numerical methods for DOT are described by inverting first-,
second-, and higher-order Born approximation, and the Born
expansion itself is reviewed.
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