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This paper is concerned with the numerical simulation for shape optimization of the Stokes flow around a solid body. The shape
gradient for the shape optimization problem in a viscous incompressible flow is evaluated by the velocity method. The flow is
governed by the steady-state Stokes equations coupled with a thermal model. The structure of continuous shape gradient of the
cost functional is derived by employing the differentiability of a minimax formulation involving a Lagrange functional with the
function space parametrization technique. A gradient-type algorithm is applied to the shape optimization problem. Numerical
examples show that our theory is useful for practical purpose, and the proposed algorithm is feasible and effective.

1. Introduction

Theproblemof finding the shape design of a systemdescribed
by the incompressible Stokes equations arises in many design
problems such as aerospace, automotive, hydraulic, ocean,
and structural and wind engineering. The problem is to
optimize the shape of the domain in order to minimize
a cost functional that depends on the solutions. In the
numerical implements, the shape optimization problem can
be transformed into the minimization problem without con-
straint condition by the Lagrange multiplier and the adjoint
equations using adjoint variables corresponding to the state
equations.

The optimal shape design of a body subjected to the
minimum viscous dissipated energy has been a challenging
task for a long time, and it has been investigated by several
authors. For instance, Pironneau in [1, 2] computed the
derivative of the cost functional using normal variation
approach; Simon [3] used the formal calculus to deduce an
expression for the derivative; Bello et al. in [4, 5] considered
this problem theoretically in the case of Navier-Stokes flow by
the formal calculus.

In the present paper, we will use the so-called function
space parametrization technique which was advocated by

Delfour and Zolésio to solve Poisson equation with Dirichlet
and Neumann condition (see [6]). In our paper [7], we
solved a shape reconstruction problem for the inverse Stokes
problem and investigated the numerical simulation by the
domain derivation and the regularized Gauss-Newton itera-
tive method. However, many authors studied optimal shape
design problems in fluid without heat transfer, steady state or
not. Chenais et al. studied a shape optimal design problem in
a potential flow coupled with a thermal model in [8].

In this paper, we will study the energy minimization
problem for Stokes flow with convective heat transfer in spite
of its lack of rigorous mathematical justification in case the
Lagrange formulation is not convex. We shall show how this
theorem allows, at least formally, to bypass the study of mate-
rial derivative and obtain the expression of shape gradient for
the dissipated energy functional. For the numerical solution
of the viscous energy minimization problem, we introduce
a gradient-type algorithm with mesh adaptation technique,
while the partial differential systems are discretized bymeans
of the finite-elementmethod. Finally, we give some numerical
examples concerning the optimization of a two-dimensional
obstacle located in the viscous flow.

This paper is organized into five parts. In Section 2, we
introduce the shape optimization problem of Stokes flow
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coupled with conductive heat transfer. The cost functional
which we considered is general and depends on the solutions.
In Section 3, we briefly recall the velocity method which is
used for the characterization of the deformation of the shape.
Section 4 is devoted to the computation of the shape gradient
of the Lagrange functional due to a minimax principle
concerning the differentiability of the minimax formulation
by the function space parametrization technique. Finally
in Section 5, we propose a gradient-type algorithm for the
shape optimization problem, and the examples verify that our
method is efficient and useful in the numerical implementa-
tions.

2. Statement of the Shape
Optimization Problem

In two dimensions, we consider a typical problem in which a
solid body 𝑆 with the boundary Γ

𝑠
is located in an external

flow. Let Γ denote the boundary of Ω, and suppose that
an incompressible viscous flow occupies Ω. The boundary
Γ := Γ

𝑤
∪ Γ
𝑠
∪ Γin ∪ Γout, Γin is the inflow boundary, Γout

denotes the outflow boundary, Γ
𝑤
represents the boundary

corresponding to the fluid wall, and Γ
𝑠
is the boundary which

is to be optimized. The unknowns of the full model are the
fluid velocity u, the pressure 𝑝, and the temperature 𝑇.

Find (u, 𝑝, 𝑇) satisfying

−]Δu + ∇𝑝 = 0 in Ω

div u = 0 in Ω

u = 0 on Γ
𝑤
∪ Γ
𝑠

u = 𝑔 on Γin

𝜎 (u, 𝑝) ⋅ n = 0 on Γout,

(1)

−𝛽Δ𝑇 + u ⋅ ∇𝑇 = 0 inΩ

𝜕𝑇

𝜕n
= 0 on Γout ∪ Γ𝑠

𝑇 = 𝑇
1

on Γ
𝑤

𝑇 = 𝑇
2

on Γin,

(2)

where ] stands for the inverse of Reynolds number, the stress
tensor is defined by 𝜎(u, 𝑝) := −𝑝I + 2]𝜀(u) with the rate of
deformation tensor 𝜀(u) := (Du+∗Du)/2. ∗Du represents the
transpose of the matrix Du, I denotes the identity tensor, n is
the unit normal vector on the boundary Γout, and 𝛽 denotes
the inverse of Peclet number.

We introduce the following functional spaces which will
be used throughout this paper. Let 𝐿2(Ω) be the space of
square integrable real-valued functions on Ω with the usual
norm. The space 𝐻𝑘(Ω), where 𝑘 = 1, 2, . . . , 𝑛 denotes the
standard Sobolev space on Ω (see [9]), that is, the space of

functions with generalized derivatives of order up to 𝑘 in
𝐿
2

(Ω). Consider

𝑉
0
(Ω) := {u ∈ (𝐻

2

(Ω))
2

: u = 0 on Γ
𝑤
∪ Γ
𝑠
∪ Γin} ,

𝑉
𝑔
(Ω) := {u ∈ (𝐻

2

(Ω))
2

: u = 0 on Γ
𝑤
∪ Γ
𝑠
,

u = g on Γin} ,

𝑊 (Ω) := {𝑆 ∈ 𝐻
1

(Ω) : 𝑆 = 0 on Γ
𝑤
∪ Γin} ,

𝑄 (Ω) := {𝑝 ∈ 𝐻
1

(Ω) : ∫
Ω

𝑝 d𝑥 = 0} .

(3)

Our aim is to optimize the shape of the boundary Γ
𝑠

that minimizes a given cost functional 𝐽 which depends on
the velocity and the temperature. The cost functional may
represent a given objective related to specific characteristic
features of the fluid flow. We consider the following mini-
mization problem for an incompressible viscous Stokes flow
with convective heat exchanges:

min
Ω∈O

𝐽 (Ω) = 2]∫
Ω

|𝜀 (u)|2d𝑥 + 1

2
∫
Ω

|∇𝑇|
2d𝑥, (4)

where the boundary Γ
𝑤
∪Γin ∪Γout is fixed. An example of the

admissible set O is

O := {Ω ⊂ R
2

: Γ
𝑤
∪ Γin ∪ Γout is fixed, ∫

Ω

d𝑥 = constant} .

(5)

Let Ω be of piecewise 𝐶1, the minimization problem (4) has
at least one solution with given area in two dimensions [10].

3. The Velocity Method

The mathematical difficulty of this problem is as follows. On
the one hand, the set of domains Ω is not a vectorial space;
on other hand, we need an expression of the differential of
the cost functional in order to use a gradient-type algorithm.
To avoid this difficulty, we recall the definition of admissible
domains and define the derivative of a real-valued function
with respect to the domain in a classical manner. Then,
we are able to give an expression of the differential of the
cost functional with the intent to construct a gradient-
type algorithm. There are about three types of techniques
to perform the domain deformation: Hadamard’s normal
variation method, the perturbation of the identity method
[11], and the velocity method [6]. We will use the velocity
method which contains the others.

At first, we choose an open setΩ inR2 with the boundary
𝜕Ω which belongs to piecewise 𝐶𝑘, and a velocity space V ∈

E𝑘 := {V ∈ 𝐶([0, 𝛼];D𝑘(Ω,R2))}, where 𝛼 is a small positive
real number and D𝑘(Ω,R2) denotes the space of all 𝑘-times
continuous differentiable functions with compact support
contained in R2. The velocity field

V (𝑡) (𝑥) = V (𝑡, 𝑥) , 𝑥 ∈ Ω, 𝑡 ≥ 0 (6)
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belongs toD𝑘(Ω,R2) for each 𝑡. It can generate transforma-
tions

𝐹
𝑡
(V) 𝑋 = 𝑥 (𝑡, 𝑋) , 𝑡 ≥ 0, 𝑋 ∈ Ω (7)

through the following dynamical system

d𝑥
d𝑡

(𝑡, 𝑋) = V (𝑡, 𝑥 (𝑡)) , 𝑥 (0, 𝑋) = 𝑋 (8)

with the initial value 𝑋. We denote the transformed domain
𝐹
𝑡
(V)(Ω) by Ω

𝑡
(V) at 𝑡 ≥ 0, and also set Γ

𝑡
:= 𝐹
𝑡
(Γ). There

exists an interval 𝐼 = [0, 𝛽), 0 < 𝛽 ≤ 𝛼, and a one-to-one map
𝐹
𝑡
fromΩ ontoΩ such that (see [6])

(1) 𝐹
0
= I;

(2) (𝑡, 𝑥) → 𝐹
𝑡
(𝑥) belongs to 𝐶1(𝐼; 𝐶𝑘(Ω)) with 𝐹

𝑡
(𝜕Ω) =

𝜕Ω;
(3) (𝑡, 𝑥) → 𝐹

−1

𝑡
(𝑥) belongs to 𝐶(𝐼; 𝐶𝑘(Ω)).

In addition, for sufficiently small 𝑡 > 0, the Jacobian 𝐽
𝑡
of 𝐹
𝑡

is strictly positive:

𝐽
𝑡
(𝑥) := det D𝐹𝑡 (𝑥)

 = detD𝐹
𝑡
(𝑥) > 0, (9)

where D𝐹
𝑡
(𝑥) denotes the Jacobian matrix of the transforma-

tion 𝐹
𝑡
evaluated at a point 𝑥 ∈ Ω associated with the velocity

field V. We also introduce the following notations: D𝐹−1
𝑡
(𝑥)

represents the inverse of the matrix D𝐹
𝑡
(𝑥), and ∗D𝐹−1

𝑡
(𝑥) is

the transpose of the matrix D𝐹−1
𝑡
(𝑥).

Definition 1. Let 𝐽(Ω) be a real-valued functional associated
with any regular domainΩ, we call that the functional has an
Eulerian derivative at Ω in the direction V if the limit exists:

lim
𝑡↘0

𝐽 (Ω
𝑡
) − 𝐽 (Ω)

𝑡
:= d𝐽 (Ω;V) . (10)

Furthermore, if the map V → d𝐽(Ω;V) : E𝑘 → R is
linear and continuous, we say that 𝐽 is shape differentiable at
Ω. In the distributional sense, we have

d𝐽 (Ω;V) = ⟨∇𝐽,V⟩
D𝑘(Ω,R2)
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, (11)

where ∇𝐽 is the shape gradient of 𝐽 in Ω.

4. Function Space Parametrization

In order to compute the exact differential or the shape
gradient, few approaches are possible. In the direct differen-
tiation, it requires to derive the state equations with respect
to the shape variables. In practice, it implies to solve as
many PDE systems as discrete shape variables. In order to
avoid this extra computational cost, we use the classical
adjoint state method which requires to solve only one extra
PDE system. There are two ways for it. The first one is to
discretize the equations, using a finite-element method for
example, and to derive the discrete equations and obtain the
discrete shape gradient. The second one is to calculate the
expression of the exact differential of the cost functional and

to discretize it. In this paper, we follow the last approach.
We will introduce the adjoint state equation and obtain an
expression of the exact differential of the cost functional
𝐽(Ω).

Let Ω be of class 𝐶
2, and we derive the variational

formulation of the state system (1) and (2) in appropriate
Sobolev spaces:

seek (u, 𝑝) ∈ 𝑉
𝑔
(Ω) × 𝑄 (Ω) , such that

∫
Ω

[2]𝜀 (u) : 𝜀 (k) − 𝑝 div k] d𝑥 = 0, ∀k ∈ 𝑉
0
(Ω) ,

∫
Ω

div u 𝑞 d𝑥 = 0, ∀𝑞 ∈ 𝑄 (Ω) ,

find 𝑇 ∈ 𝐻
1

(Ω) , such that

∫
Ω

(𝛽∇𝑇 ⋅ ∇𝑆 + u ⋅ ∇𝑇𝑆) d𝑥 = 0, ∀𝑆 ∈ 𝑊 (Ω) .

(12)

Now, we will prove the main theoretical results of the paper.

Theorem 2. Let Ω be of class 𝐶2 and V ∈ E 2, the cost
functional 𝐽(Ω) possesses the shape gradient ∇𝐽 which can be
expressed as

∇𝐽 = [2] (𝜀 (u) : 𝜀 (k) + |𝜀 (u)|2) + 1

2
|∇𝑇|
2

+ 𝛽∇𝑇 ⋅ ∇𝑆]n,
(13)

where the adjoint states k and 𝑆 satisfy the following adjoint
system:

−]Δk + ∇𝑞 + 𝑆∇𝑇 = −2]Δu in Ω

div k = 0 in Ω

𝜎 (k, 𝑞) ⋅ n − 4]𝜀 (u) ⋅ n = 0, on Γout

k = 0 on Γin ∪ Γ𝑤 ∪ Γ𝑠,

(14)

𝛽Δ𝑆 + u ⋅ ∇𝑆 = Δ𝑇 in Ω

𝛽
𝜕𝑆

𝜕n
+ u ⋅ 𝑆 ⋅ n = ∇𝑇 ⋅ n on Γout ∪ Γ𝑠

𝑆 = 0 on Γin ∪ Γ𝑤.

(15)

Proof. We will utilize the differentiability of a minimax for-
mulation involving a Lagrangian functional with a function
space parametrization technique. Now, we introduce the
following Lagrangian functional associated with (12):

𝐺 (Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆) = 𝐽 (Ω) − 𝐿 (Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆) , (16)
where

𝐿 (Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆)

= ∫
Ω

[2]𝜀 (u) : 𝜀 (k) − 𝑝 div k − div u𝑞] d𝑥

+ ∫
Ω

(𝛽∇𝑇 ⋅ ∇𝑆 + u ⋅ ∇𝑇𝑆) d𝑥.

(17)
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Problem (16) can be put in the following form:

min
Ω∈O

min
(𝑢,𝑝,𝑇)∈𝑉𝑔(Ω)×𝑄(Ω)×𝐻

1
(Ω)

max
(V,𝑞,𝑆)∈𝑉0(Ω)×𝑄(Ω)×𝑊(Ω)

𝐺 (Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆) . (18)

The minimax framework can be used to avoid the study of
the state derivative with respect to the shape of the domain.
The Karush-Kuhn-Tucker conditions will furnish the shape
gradient of the cost functional 𝐽(Ω) by using the adjoint
system.

The first optimality condition for the problem can be
established as follows:

min
(𝑢,𝑝,𝑇)∈𝑉𝑔(Ω)×𝑄(Ω)×𝐻

1
(Ω)

max
(V,𝑞,𝑆)∈𝑉0(Ω)×𝑄(Ω)×𝑊(Ω)

𝐺 (Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆) . (19)

Formally the adjoint equations are defined from the Euler-
Lagrange equations of the Lagrange functional𝐺. Clearly, the
variation of 𝐺 with respect to (k, 𝑞, 𝑆) can recover the state
system and its mixed weak formulation (12). In order to find
the adjoint state system, we differentiate 𝐺 with respect to 𝑝
in the direction 𝛿𝑝:

𝜕𝐺

𝜕𝑝
(Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆) ⋅ 𝛿𝑝 = ∫

Ω

𝛿𝑝 divk d𝑥 = 0. (20)

Taking 𝛿𝑝 with compact support in Ω gives

div k = 0. (21)

Then, we differentiate 𝐺 with respect to u in the direction 𝛿u
and apply Green’s formula:

𝜕𝐺

𝜕u
(Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆) ⋅ 𝛿u

= ∫
Ω

(−2]Δu + ]Δk − ∇𝑞) ⋅ 𝛿ud𝑥 − ∫
Ω

𝑆∇𝑇 ⋅ 𝛿ud𝑥

− 2]∫
𝜕Ω

𝜀 (k) ⋅ n ⋅ 𝛿ud𝑠 + 4]∫
𝜕Ω

𝜀 (u) ⋅ n ⋅ 𝛿ud𝑠

+ ∫
𝜕Ω

𝑞𝛿u ⋅ nd𝑠

= ∫
Ω

(−2]Δu + ]Δk − ∇𝑞) ⋅ 𝛿ud𝑥 − ∫
Ω

𝑆∇𝑇 ⋅ 𝛿ud𝑥

− ∫
𝜕Ω

𝜎 (k, 𝑞) ⋅ n ⋅ 𝛿ud𝑠 + 4]∫
𝜕Ω

𝜀 (u) ⋅ n ⋅ 𝛿ud𝑠.
(22)

Considering 𝛿u with compact support inΩ, we obtain

−]Δk + ∇𝑞 + 𝑆 ∇𝑇 = −2]Δu. (23)

Then, varying 𝛿u on Γout gives

𝜎 (k, 𝑞) ⋅ n − 4]𝜀 (u) ⋅ n = 0 on Γout. (24)

Similarly, we differentiate𝐺with respect to 𝑇 in the direction
𝛿𝑇:

𝜕𝐺

𝜕𝑇
(Ω, u, 𝑝, 𝑇, k, 𝑞, 𝑆) ⋅ 𝛿𝑇

= ∫
Ω

(𝛽Δ𝑆 + u ⋅ ∇𝑆) ⋅ 𝛿𝑇d𝑥

− ∫
Γout∪Γ𝑠

(𝛽
𝜕𝑆

𝜕n
+ u ⋅ 𝑆 ⋅ n)𝛿𝑇d𝑠

+ ∫
Ω

∇𝑇 ⋅ ∇ (𝛿𝑇) d𝑥

= ∫
Ω

(𝛽Δ𝑆 + u ⋅ ∇𝑆) ⋅ 𝛿𝑇 d𝑥

− ∫
Γout∪Γ𝑠

(𝛽
𝜕𝑆

𝜕n
+ u ⋅ 𝑆 ⋅ n)𝛿𝑇d𝑠

− ∫
Ω

Δ𝑇 ⋅ 𝛿𝑇 d𝑥 + ∫
𝜕Ω

∇𝑇 ⋅ 𝛿𝑇 ⋅ n d𝑠.

(25)

According to the compact support of 𝛿u inΩ, we can get

𝛽Δ𝑆 + u ⋅ ∇𝑆 = Δ𝑇. (26)
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In addition, varying 𝛿u on Γout and Γ𝑠 leads to

𝛽
𝜕𝑆

𝜕n
+ u ⋅ 𝑆 ⋅ n = ∇𝑇 ⋅ n. (27)

Hence, we obtain the following adjoint state system (14) and
(15).

The velocity method is employed to simulate the domain
deformations. We perturb the boundary Γ

𝑠
and consider the

transformation 𝐹
𝑡
(V); then the flow of the velocity field can

be expressed as follows:

V ∈ 𝑉ad := {V ∈ 𝐶
0

(0, 𝛼; (𝐶
2

(R
2

))
2

) :

𝑉 = 0 in the neighborhood of Γ
𝑠
} .

(28)

The perturbed domain can be defined by Ω
𝑡
= 𝐹
𝑡
(V)(Ω).

Now, we define the cost functional:

𝑗 (𝑡) := min
(𝑢𝑡 ,𝑝𝑡,𝑇𝑡)∈𝑉𝑔(Ω𝑡)×𝑄(Ω𝑡)×𝐻

1
(Ω𝑡)

max
(V𝑡 ,𝑞𝑡,𝑆𝑡)∈𝑉0(Ω𝑡)×𝑄(Ω𝑡)×𝑊(Ω𝑡)

𝐺 (Ω
𝑡
, u
𝑡
, 𝑝
𝑡
, 𝑇
𝑡
, k
𝑡
, 𝑞
𝑡
, 𝑆
𝑡
) , (29)

where (u
𝑡
, 𝑝
𝑡
, 𝑇
𝑡
) and (k

𝑡
, 𝑞
𝑡
, 𝑆
𝑡
) satisfy (14) and (15) on the

perturbed domainΩ
𝑡
, respectively.

Our object is to derive the derivative with respect to
the variable 𝑡. Unfortunately, the Sobolev spaces 𝑉

𝑔
(Ω
𝑡
),

𝑉
0
(Ω
𝑡
), 𝑄(Ω

𝑡
), and 𝑊(Ω

𝑡
) depend on the parameter 𝑡,

so we need to introduce the so-called function space
parametrization technique which consists in transporting
the different quantities defined on the variable domain
Ω
𝑡
back into the reference domain Ω which does not

depend on the perturbation parameter 𝑡. Since the func-
tionals above mentioned are defined in a fixed domain Ω

with respect to the parameter 𝑡, we can apply the differ-
ential calculus. Hence, we define the following functional
spaces:

𝑉
𝑔
(Ω
𝑡
) = {u ∘ 𝐹−1

𝑡
: u ∈ 𝑉

𝑔
(Ω)} ,

𝑉
0
(Ω
𝑡
) = {k ∘ 𝐹

−1

𝑡
: k ∈ 𝑉

0
(Ω)} ,

𝑄 (Ω
𝑡
) = {𝑝 ∘ 𝐹

−1

𝑡
: 𝑝 ∈ 𝑄 (Ω)} ,

𝑊 (Ω
𝑡
) = {𝑆 ∘ 𝐹

−1

𝑡
: 𝑆 ∈ 𝑊 (Ω)} ,

𝐻
1

(Ω
𝑡
) = {𝑇 ∘ 𝐹

−1

𝑡
: 𝑇 ∈ 𝐻

1

(Ω)} ,

(30)

where “∘” denotes the composition of the two maps.
Since𝐹

𝑡
and𝐹−1
𝑡

are diffeomorphisms, these parametriza-
tions cannot change the value of the saddle point. We can
rewrite (29) as

𝑗 (𝑡) = min
(𝑢,𝑝,𝑇)

max
(V,𝑞,𝑆)

𝐺 (Ω
𝑡
, 𝑢 ∘ 𝐹

−1

𝑡
, 𝑝 ∘ 𝐹

−1

𝑡
, 𝑇 ∘ 𝐹

−1

𝑡
,

V ∘ 𝐹
−1

𝑡
, 𝑞 ∘ 𝐹

−1

𝑡
, 𝑆 ∘ 𝐹

−1

𝑡
) ,

(31)

where the Lagrangian functional

𝐺(Ω
𝑡
, u ∘ 𝐹−1

𝑡
, 𝑝 ∘ 𝐹

−1

𝑡
, 𝑇 ∘ 𝐹

−1

𝑡
, k ∘ 𝐹

−1

𝑡
, 𝑞 ∘ 𝐹

−1

𝑡
, 𝑆 ∘ 𝐹

−1

𝑡
)

= 𝐼
1
(𝑡) + 𝐼

2
(𝑡) + 𝐼

3
(𝑡)

(32)

with

𝐼
1
(𝑡) := 2]∫

Ω𝑡


𝜀 (u ∘ 𝐹−1

𝑡
)


2

d𝑥 + 1

2
∫
Ω𝑡


∇ (𝑇 ∘ 𝐹

−1

𝑡
)


2

d𝑥,

𝐼
2
(𝑡) := −∫

Ω𝑡

[2]𝜀 (k ∘ 𝐹
−1

𝑡
) : 𝜀 (u ∘ 𝐹−1

𝑡
)

− (𝑝 ∘ 𝐹
−1

𝑡
) div (k ∘ 𝐹−1

𝑡
)

− div (u ∘ 𝐹−1
𝑡
) (𝑞 ∘ 𝐹

−1

𝑡
)] d𝑥,

𝐼
3
(𝑡) := −∫

Ω𝑡

[𝛽∇ (𝑇 ∘ 𝐹
−1

𝑡
) ⋅ ∇ (𝑆 ∘ 𝐹

−1

𝑡
)

+ (u ∘ 𝐹−1
𝑡
) ⋅ ∇ (𝑇 ∘ 𝐹

−1

𝑡
) (𝑆 ∘ 𝐹

−1

𝑡
)] d𝑥.

(33)

To perform the differentiation of the perturbed Lagrangian
functional𝐺(Ω

𝑡
, u∘𝐹−1
𝑡
, 𝑝∘𝐹
−1

𝑡
, 𝑇∘𝐹
−1

𝑡
, k∘𝐹−1
𝑡
, 𝑞∘𝐹
−1

𝑡
, 𝑆∘𝐹
−1

𝑡
),

we introduce the following Hadamard formula:

d
d𝑡

∫
Ω𝑡

𝐹 (𝑡, 𝑥) d𝑥 = ∫
Ω𝑡

𝜕𝐹

𝜕𝑡
(𝑡, 𝑥) d𝑥

+ ∫
𝜕Ω𝑡

𝐹 (𝑡, 𝑥)V ⋅ n
𝑡
d𝑠

(34)

for a sufficiently smooth functional 𝐹
𝑡
: [0, 𝛼] ×R2 → R.

By Hadamard formula (34), we obtain

𝜕
𝑡
𝐺(Ω
𝑡
, u ∘ 𝐹−1

𝑡
, 𝑝 ∘ 𝐹

−1

𝑡
, 𝑇 ∘ 𝐹

−1

𝑡
,k ∘ 𝐹
−1

𝑡
, 𝑞 ∘ 𝐹

−1

𝑡
, 𝑆 ∘ 𝐹

−1

𝑡
)
𝑡=0

= 𝐼


1
(0) + 𝐼



2
(0) + 𝐼



3
(0) ,

(35)
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where

𝐼


1
(0) = 4]∫

Ω

𝜀 (u) : 𝜀 (−Du ⋅ V) d𝑥 + 2]∫
Γ𝑠

|𝜀 (u)|2V
𝑛
d𝑠

+ ∫
Ω

∇𝑇 ⋅ ∇ (−D𝑇 ⋅ V) d𝑥 + 1

2
∫
𝜕Ω

|∇𝑇|
2V
𝑛
d𝑠,

(36)

𝐼


2
(0) = − ∫

Ω

[2]𝜀 (−Du ⋅ V) ⋅ 𝜀 (k)

+ 2]𝜀 (u) ⋅ 𝜀 (−Dk ⋅ V) + Du ⋅ u ⋅ (−Dk ⋅ V)

+ D (−Du ⋅ V) ⋅ u ⋅ k + Du ⋅ (−Du ⋅ V) ⋅ k

− (−∇𝑝 ⋅ V) div k − 𝑝 div (−Dk ⋅ V)

− (−∇𝑞 ⋅ V) div u − 𝑞 div (−Du ⋅ V)] d𝑥

+ ∫
Γ𝑠

(−2] (𝜀 (u) : 𝜀 (k)) − Du ⋅ u ⋅ k

+𝑝 div k + div u𝑞)V
𝑛
d𝑠,

(37)

𝐼


3
(0) = − ∫

Ω

𝛽∇ (−D𝑆 ⋅ V) ⋅ ∇𝑇d𝑥

− ∫
Ω

𝛽∇𝑆 ⋅ ∇ (−D𝑇 ⋅ V) d𝑥

− ∫
Ω

(−Du ⋅ V) ⋅ ∇𝑇 𝑆 d𝑥

− ∫
Ω

u ⋅ ∇ (−D𝑇 ⋅ V) 𝑆 d𝑥

− ∫
Ω

u ⋅ ∇𝑇 (−D𝑆 ⋅ V) d𝑥

− ∫
Γ𝑠

(𝛽∇𝑇 ⋅ ∇𝑆 + u ⋅ ∇𝑇𝑆)V
𝑛
d𝑠.

(38)
To simplify (36)–(38), we introduce the following lemma.

Lemma 3 (see [6]). If two vector functions u and k vanish on
the boundary Γ

𝑠
, the following identities

Du ⋅ V ⋅ n = div uV
𝑛
,

𝜀 (u) : 𝜀 (k) = (𝜀 (u) ⋅ n) ⋅ (𝜀 (k) ⋅ n) ,

(𝜀 (u) ⋅ n) ⋅ ( Dk ⋅ V) = (𝜀 (u) ⋅ n) ⋅ (𝜀 (k) ⋅ n)V
𝑛

(39)

hold on the boundary Γ
𝑠
.

Noting u and k vanish on the boundary Γ
𝑠
, V|
Γin∪Γ𝑤∪Γout

=

0, and employing Lemma 3, (36) can be rewritten as

𝐼


1
(0) = − 2]∫

Ω

Δu (−Du ⋅ V) d𝑥 + 2]∫
Γ𝑠

|𝜀 (u)|2V
𝑛
d𝑠

− ∫
Ω

Δ𝑇 ⋅ (−D𝑇 ⋅ V) d𝑥 + 1

2
∫
Γ𝑠

|∇𝑇|
2V
𝑛
d𝑠.

(40)

Since (u, 𝑝) and (k, 𝑞) satisfy (1) and (14), respectively, (37)
reduces to

𝐼


2
(0) = ∫

Ω

] (Δk + ∇div k) (−Du ⋅ V) d𝑥

− 2∫
Γ𝑠

(𝜀 (k) ⋅ n) (−Du ⋅ V) d𝑠

+ ∫
Ω

] (Δu + ∇div u) (−Dk ⋅ V) d𝑥

− 2∫
Γ𝑠

(𝜀 (u) ⋅ n) (−Dk ⋅ V) d𝑠

− ∫
Ω

∇𝑝 (−Dk ⋅ V) d𝑥

+ ∫
Γ𝑠

𝑝 (−Dk ⋅ V) ⋅ nd𝑠

− ∫
Ω

∇𝑞 (−Du ⋅ V) d𝑥

+ ∫
Γ𝑠

𝑞 (−Du ⋅ V) ⋅ nd𝑠

= ∫
Ω

(2]Δu + ∇𝑇𝑆) (−Du ⋅ V) d𝑥

+ ∫
Γ𝑠

(2]𝜀 (u) : 𝜀 (k))V
𝑛
d𝑠.

(41)

Similarly, according to Lemma 3, the state system (2), and the
adjoint state system (15), (38) becomes

𝐼


3
(0) = ∫

Ω

𝛽 (−D𝑆 ⋅ V) ⋅ Δ𝑇 d𝑥

− ∫
𝜕Ω

𝛽 (−D𝑆 ⋅ V) ∇𝑇 ⋅ n d𝑠

+ ∫
Ω

𝛽Δ𝑆 ⋅ (−D𝑇 ⋅ V) d𝑥
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− ∫
𝜕Ω

𝛽 (−D𝑇 ⋅ V) ∇𝑆 ⋅ nd𝑠

+ ∫
Ω

divu ⋅ (−D𝑇 ⋅ V) 𝑆d𝑥

+ ∫
Ω

u ⋅ ∇𝑆 ⋅ (−D𝑇 ⋅ V) d𝑥

− ∫
Γ𝑠

u ⋅ (−D𝑇 ⋅ V) 𝑆 ⋅ nd𝑥

− ∫
Ω

(−Du ⋅ V) ⋅ ∇𝑇𝑆d𝑥

− ∫
Ω

u ⋅ ∇𝑇 (−D𝑆 ⋅ V) 𝑆d𝑥

− ∫
Γ𝑠

(𝛽∇𝑇 ⋅ ∇𝑆 + u ⋅ ∇𝑇𝑆)V
𝑛
d𝑠

= ∫
Ω

(𝛽Δ𝑇 − u ⋅ ∇𝑇) (−D𝑆 ⋅ V) d𝑥

+ ∫
Ω

(𝛽Δ𝑆 + u ⋅ ∇𝑆) (−D𝑇 ⋅ V) d𝑥

− ∫
Ω

(−Du ⋅ V) ⋅ ∇𝑇𝑆d𝑥

− ∫
Γ𝑠

(𝛽∇𝑆 + u𝑆) ⋅ n ⋅ (−D𝑇 ⋅ V) d𝑠.

(42)

Adding (40)–(42) together, we finally obtain the boundary
expression for the Eulerian derivative of 𝐽(Ω):

d𝐽 (Ω;V) = 2]∫
Γ𝑠

[𝜀 (u) : 𝜀 (k) + |𝜀 (u)|2]V
𝑛
d𝑠

+
1

2
∫
Γ𝑠

|∇𝑇|
2V
𝑛
d𝑠 + ∫

Γ𝑠

𝛽∇𝑇 ⋅ ∇𝑆 ⋅ V
𝑛
d𝑠.

(43)

Since the mapping V → d𝐽(Ω;V) is linear and continuous,
we get the expression for the shape gradient

∇𝐽 = [2] (𝜀 (u) : 𝜀 (k) + |𝜀 (u)|2) + 1

2
|∇𝑇|
2

+ 𝛽∇𝑇 ⋅ ∇𝑆]n
(44)

by (11). This completes the proof.

5. Finite-Element Approximation and
Numerical Simulation

5.1. Discretization of the Optimization Problem. We suppose
that Ω is a bounded polygonal domain of R2 and only
consider the conforming finite-element approximations. Let
𝑋
ℎ
⊂ (𝐻

2

(Ω))
𝑁 and S

ℎ
⊂ 𝐿
2

(Ω) be two families of finite
dimensional subspaces parameterized by ℎ which tends to
zero. We also define the following functional spaces:

𝑉
0ℎ
:= {u
ℎ
∈ 𝑋
ℎ
: u
ℎ
= 0 on Γ

𝑤
∪ Γ
𝑢
∪ Γin} ,

𝑉
𝑔ℎ

:= {u
ℎ
∈ 𝑋
ℎ
: u
ℎ
= 0 on Γ

𝑤
∪ Γin, uℎ = g on Γin} ,

𝑄
ℎ
:= {𝑝
ℎ
∈ 𝑆
ℎ
: ∫
Ω

𝑝
ℎ
d𝑥 = 0} ,

𝑊
ℎ
:= {𝑆
ℎ
∈ 𝐻
1

(Ω) : 𝑆
ℎ
= 0 on Γ

𝑤
∪ Γin} .

(45)

Besides, the following assumptions are supposed to hold.

(H1) There exists 𝐶 > 0 such that for 0 ≤ 𝑚 ≤ 𝑙,

inf
Vℎ∈𝑉𝑔ℎ

kℎ − k
1 ≤ 𝐶ℎ

𝑚

‖k‖
𝑚+1

,

∀k ∈ (𝐻
𝑚+1

(Ω))
𝑁

∩ 𝑉
𝑔
(Ω) ;

(46)

(H2) there exists 𝐶 > 0 such that for 0 ≤ 𝑚 ≤ 𝑙
,

inf
𝑞ℎ∈𝑄ℎ

𝑞ℎ − 𝑞
0 ≤ 𝐶ℎ

𝑚𝑞
𝑚, ∀𝑞 ∈ 𝐻

𝑚

(Ω) ∩ 𝑄 (Ω) ;

(47)

(H3) the Ladyzhenskaya-Brezzi-Babuska inf-sup condition
is verified; that is, there exists 𝐶 > 0 such that

inf
0 ̸= 𝑞ℎ∈𝑄ℎ

sup
0 ̸= Vℎ∈𝑉ℎ

∫
Ω

𝑞
ℎ
divk
ℎ
d𝑥

kℎ
1
𝑞ℎ

0

≥ 𝐶, 𝑉
ℎ
= 𝑉
𝑔ℎ

or 𝑉
0ℎ
.

(48)

The Galerkin finite-element approximation of the state sys-
tem (1) and (2) in mixed form are as follows:

seek (u
ℎ
, 𝑝
ℎ
) ∈ 𝑉
𝑔ℎ
× 𝑄
ℎ
, such that (k

ℎ
, 𝑞
ℎ
) ∈ 𝑉
0ℎ
× 𝑄
ℎ

∫
Ω

[2]𝜀 (u
ℎ
) : 𝜀 (k

ℎ
) − 𝑝
ℎ
div k
ℎ
] d𝑥 = 0

∫
Ω

div u
ℎ
𝑞
ℎ
d𝑥 = 0,

find 𝑇
ℎ
∈ 𝐻
1

ℎ
, such that

∫
Ω

(𝛽∇𝑇
ℎ
⋅ ∇𝑆
ℎ
+ u
ℎ
⋅ ∇𝑇
ℎ
𝑆
ℎ
) d𝑥 = 0, ∀𝑆

ℎ
∈ 𝑊
ℎ
.

(49)
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Similarly, we can obtain the finite element approximation for
adjoint state system,

seek (k
ℎ
, 𝑞
ℎ
, 𝑆
ℎ
) ∈ 𝑉
0ℎ
× 𝑄
ℎ
×𝑊
ℎ
,

such that (𝜑
ℎ
, 𝜉
ℎ
, 𝛾
ℎ
) ∈ 𝑉
0ℎ
× 𝑄
ℎ
×𝑊
ℎ

∫
Ω

[ 2]𝜀 (k
ℎ
) : 𝜀 (𝜑

ℎ
) − 𝑞
ℎ
div𝜑
ℎ
+ 𝑆
ℎ
∇𝑇
ℎ

= 4]∫
Ω

𝜀 (u
ℎ
) : 𝜀 (𝜑

ℎ
) d𝑥

∫
Ω

divk
ℎ
𝜉
ℎ
d𝑥 = 0

∫
Ω

𝛽∇𝑆
ℎ
⋅ ∇𝛾
ℎ
+ u
ℎ
⋅ ∇𝑆
ℎ
𝛾
ℎ
d𝑥 = ∫

Ω

∇𝑇
ℎ
⋅ ∇𝛾
ℎ
d𝑥.

(50)

We also have the discrete cost functional

𝐽
ℎ
(Ω) = 2]∫

Ω

𝜀 (uℎ)


2d𝑥 + 1

2
∫
Ω

∇𝑇ℎ


2d𝑥, (51)

and the discrete shape gradient

∇𝐽
ℎ
= [2] (𝜀 (u

ℎ
) : 𝜀 (k

ℎ
) +

𝜀 (uℎ)


2

)

+
1

2

∇𝑇ℎ


2

+ 𝛽∇𝑇
ℎ
⋅ ∇𝑆
ℎ
]n.

(52)

5.2. A Gradient-Type Algorithm. Next, we will present a
gradient-type algorithm and numerical examples in two
dimensions to verify that our previousmethods could be very
useful and efficient for the numerical implementation of the
shape optimal design problem.

We describe the gradient-type algorithm for the min-
imization of a cost functional 𝐽(Ω). For the minimization
problem (4), we rather work with the unconstrained mini-
mization problem

min
Ω∈R2

𝐺 (Ω) = 𝐽 (Ω) + 𝑙𝑉 (Ω) , (53)

where 𝑉(Ω) := ∫
Ω

d𝑥 and 𝑙 is a positive Lagrange multiplier.
The Eulerian derivative of 𝐺(Ω) is

d𝐺 (Ω;V) = ∫
Γ𝑠

∇𝐺 ⋅ Vd𝑠, (54)

and the shape gradient ∇𝐺 := [2](𝜀(u
ℎ
) : 𝜀(k

ℎ
) + |𝜀(u

ℎ
)|
2

) +

(1/2)|∇𝑇
ℎ
|
2

+ 𝛽∇𝑇
ℎ
⋅ ∇𝑆
ℎ
+ 𝑙]n. Ignoring regularization, a

descent direction is found by defining V = −ℎ
𝑘
∇𝐺, and then

we can update the shapeΩ asΩ
𝑘
= (I + ℎ

𝑘
V)Ω, where ℎ

𝑘
is a

descent step at 𝑘th iteration.
However, in this paper in order to avoid boundary

oscillations (and irregular shapes) and due to the fact that
the gradient-type algorithm produces shape variations which
have less regularity than the original parametrization, we
change the scalar product with respect to which we compute
a descent direction [2, 12], for instance, (𝐻1(Ω))2. In this case,

Γ𝑠

Γ𝑤

Γ𝑤

Γin Γout

Figure 1: Schematic illustration for the boundary of domain Ω.

Figure 2: Initial mesh of the domain Ω.

the descent direction is the unique element d ∈ (𝐻
1

(Ω))
2 of

the problem

−Δd + d = 0 in Ω,

d = 0, on Γin ∪ Γout ∪ Γ𝑤,

Dd ⋅ n = −∇𝐺 on Γ
𝑠
.

(55)

The resulting algorithm consists of the following parts:

(1) give an initial shape Ω
0
, an initial step ℎ

0
, and a

Lagrange multiplier 𝑙
0
;

(2) solve the state system and adjoint state system, then
we can evaluate the descent direction 𝑑

𝑘
by (55) with

Ω = Ω
𝑘
and 𝑙 = 𝑙

𝑘
;

(3) set Ω
𝑘+1

= (𝐼 − ℎ
𝑘
𝑑
𝑘
)Ω
𝑘
, where ℎ

𝑘
is a small positive

real number and can be chosen by some rules (see [1]).

Next, we will discuss some details of the gradient-type
algorithm and they will make our algorithm truly efficient
and effective.

5.2.1. Lagrange Multiplier. We now discuss the choice of the
Lagrange multiplier 𝑙 in the optimization problem (53). The
value of 𝑙 is updated at each iteration so the shape satisfies
the fixed-volume constraint when the algorithm converges.
Due to the relatively high cost in moving the mesh, we do
not impose exactly the volume constraint before convergence.
If the present volume is greater than the target volume, we
increase the multiplier 𝑙, otherwise we decrease it. However,
this may lead to the oscillation of the volume. Hence in this
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(a) u
1
for initial shape (b) u

2
for initial shape

(c) u
1
for optimal shape (d) u

2
for optimal shape

Figure 3: Comparison of the initial shape and optimal shape (Re = 100).

(a) 𝑝 for initial shape (b) 𝑇 for initial shape

(c) 𝑝 for optimal shape (d) 𝑇 for optimal shape

Figure 4: Comparison of the initial shape and optimal shape (Re = 100).

paper, we relax it by assuming that the first order optimality
condition is satisfied:

d𝐺 (Ω;V) = d𝐽 (Ω;V) + 𝑙d𝑉 (Ω;V) = 0, (56)

at least in the average sense on the boundary Γ
𝑠
; that is,

𝑙 = −

∫
Γ𝑠

∇𝐽d𝑠

∫
Γ𝑠

d𝑠
. (57)

Finally in Step (3) of our algorithm, we refresh the Lagrange
multiplier by

𝑙
𝑘+1

=
𝑙
𝑘
+ 𝑙

2
+

𝑚

𝑉 (Ω
𝑘
) − 𝑉target (Ω)



𝑉target (Ω)
, (58)

where𝑚 is a small positive parameter and 𝑉target(Ω) denotes
the target volume of the shape.

5.2.2. Step Size. The choice of the descent step size ℎ
𝑘
is not

an easy task. Too big, the algorithm is unstable; too small,
the rate of convergence is insignificant. The classical exact
line search method can be very expensive and is unnecessary
to guarantee convergence in shape optimization problems.
Here, we use the backtracking approach [13]. To limit the
number of the required state solutions and to prevent the
solver from crashing because of bad shape, it is important to
provide the backtracking procedure with a good initial guess.
Here, we choose the initial guess ℎ

0
so that

ℎ
0
∇𝐺 (Ω

𝑘
) ⋅ d
𝑘
= ℎ
𝑘−1

∇𝐽 (Ω
𝑘−1

) ⋅ d
𝑘−1

. (59)

5.2.3. Stopping Criterion. In our algorithm, we do not choose
any stopping criterion. A classical stopping criterion is to find
that whether the shape gradients in some suitable norm are
small enough. However, since we use the continuous shape
gradients, it is hopeless for us to expect very small gradient
norm because of numerical discretization errors. Instead, we
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Figure 5: Convergence history of the cost function (Re = 100).
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Figure 6: Convergence history of the cost function (Re = 400).

fix the number of iterations. If it is too small, we can restart it
with the previous final shape as the initial shape.

5.3. Numerical Examples. In all computations, the finite-
element discretization is effected using the 𝑃

1
bubble—𝑃

1

pair of finite element spaces on a triangular mesh. The
mesh is performed by a Delaunay-Voronoi mesh generator
(see [1]), and during the shape deformation, we utilize a
metric-based anisotropic mesh adaptation technique where
the metric can be computed automatically from the Hessian
of a solution. The Hessian H

ℎ
of 𝑦
ℎ
can be approximated

by using a recovery method, such as the Zienkiewicz-Zhu
recovery procedure [14], the simple linear fitting [15], or the
double 𝐿2 projection:

H
ℎ
= 𝐼
𝐿
2 (∇ (𝐼

𝐿
2 (∇𝑢
ℎ
))) , (60)

where 𝐼
𝐿
2 denotes the 𝐿2 projection on the𝑃

1
Lagrange finite-

element space (see [16]). Here, we use (60) to get the Hessian.
As it has been said in [16], there is no convergence proof of
this method but the result is better.

We consider shape optimization of the Stokes flow around
a solid body in two dimensions. The schematic geometry of
the fluid domain is described in Figure 1, corresponding to an

external flow around a solid body 𝑆. We reduce the problem
to a bounded domain𝐷 by introducing an artificial boundary
𝜕𝐷 := Γin∪Γ𝑤∪Γout which has to be taken sufficiently far from
𝑆 so that the corresponding flow is a good approximation of
the unbounded external flow around 𝑆 and Ω := 𝐷 \ 𝑆 is the
effective domain. In addition, the boundary Γ

𝑠
:= 𝜕𝑆 is to be

optimized.
We choose 𝐷 to be a rectangle (0, 9) × (0, 3) and 𝑆 is

to be determined in our simulations. The no-slip boundary
conditions are imposed at all the other boundaries. The
admissible set is defined as

O := {Ω ⊂ R
2

: 𝜕𝐷 is fixed, the area 𝑉target (Ω) = 2.1} .

(61)

We set the initial shape of the body 𝑆 to be a circle of center
(4.5, 1.5) with radius 𝑟 = 1.

The state systems and the adjoint system are discretized
by a mixed finite-element method. Spatial discretization is
effected using the Taylor-Hood pair [17, 18] of finite-element
spaces on a triangular mesh; that is, the finite-element spaces
are chosen to be continuous piecewise quadratic polynomials
for the velocity and continuous piecewise linear polynomials
for the pressure.

The finite-element meshes used for the calculations at
Re = 100 have been shown in Figure 2, and the initial finite-
element mesh consists of 1676 elements with 922 vertices.

Figures 3 and 4 demonstrate the comparison between the
initial shape and optimal shape for the distribution of the
velocity u = (𝑢

1
, 𝑢
2
)
𝑇, the pressure 𝑝, and the temperature

𝑇 with the Reynolds numbers Re = 100.
We run many iterations in order to show the good con-

vergence and stability properties of our algorithm; however,
it is clear that it has converged in a much smaller number
of iterations (see Figures 5 and 6). We also find that, when
the Reynolds number increases, the reduced energy increases
with fixed numbers of iterations. However, as the Reynolds
number increases, the computational cost associated with the
computation of the Stokes system raises; hence, the cost of the
fully optimization procedure increases.

6. Conclusion

In this paper, the optimal shape problem in a Stokes flow
coupled with convective heat transfer has been presented.We
derived the structure of shape gradient for the cost functional
by function space parametrization technique without the
usual study of the derivative of the state. Though for the
time being this technique lacks a rigorous mathematical
framework, a gradient-type algorithm is effectively used for
the minimization problem for various Reynolds numbers
and we also compare the results for different Reynolds
numbers in numerical tests. Further research is necessary
on efficient implementations for the Navier-Stokes flow with
higher Reynolds number andmuchmore real problems in the
industry.
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