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Feature selection has proved to be a beneficial tool in learning problems with the main advantages of interpretation and gener-
alization. Most existing feature selection methods do not achieve optimal classification performance, since they neglect the
correlations among highly correlated features which all contribute to classification. In this paper, a novel semisupervised feature
selection algorithm based on support vector machine (SVM) is proposed, termed SENFS. In order to solve SENFS, an efficient
algorithm based on the alternating directionmethod of multipliers is then developed. One advantage of SENFS is that it encourages
highly correlated features to be selected or removed together. Experimental results demonstrate the effectiveness of our feature
selection method on simulation data and benchmark data sets.

1. Introduction

Feature selection, with the purpose of selecting relevant
feature subsets among thousands of potentially irrelevant
and redundant features, is a challenging topic of pattern
recognition research that has attracted much attention over
the last few years. A good feature selection method has
several advantages for a learning algorithm such as reducing
computational cost, increasing its classification accuracy, and
improving result comprehensibility [1].

Considering the usage of the class label information,
feature selection methods can be classified into supervised
methods, unsupervised methods, and semisupervised meth-
ods. Supervised feature selection methods usually use only
information from labeled data to find the relevant feature
subsets [2–4]. However, in many real, world applications,
the labeled data are very expensive or difficult to obtain,
which brings difficulty to create a large training data set.
This situation arises naturally in practice, where large amount
of data can be collected automatically and cheaply, when
manual labeling of samples remains difficult, expensive and
time consuming. Unsupervised feature selection methods
could be an alternative in this case through exploiting the
information conveyed by the large amount of unlabeled data
[5, 6]. However, as these unsupervised algorithms ignore

label information, important hints from labeled data are left
out and this will generally downgrade the performance of
unsupervised feature selection algorithms. The combination
of both supervised methods and unsupervised methods is
semisupervised approaches [7–10] which exploit the infor-
mation of both labeled and unlabeled data. A good survey
about semisupervised feature selection approaches can be
found in [9].

The performances of the most existing semisupervised
feature selection methods are insufficient when there are
several highly correlated features, which are all relevant to
classification and the way they interact can help with the
interpretability of the objective problem [11]. Given these
premises, this paper provides two main contributions as
follows.

(i) We present a novel semisupervised feature selection
scheme based on support vector machine (SVM) and
the elastic net penalty proposed by Zou and Hastie
[12] combining 𝑙

1
and 𝑙

2
regularizations, termed

SENFS.

(ii) In order to solve SENFS with the nondifferentiability
of both the loss function and the 𝑙

1
-norm regular-

ization term, an efficient algorithm based on the
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alternating directionmethod of multipliers (ADMM)
[13] is developed.

Compared with other semisupervised feature selection
algorithms, SENFS provides the following benefits.

(i) It permits highly correlated features to be selected or
removed together.

(ii) It performs automatic feature selection as part of the
training process and can achieve better classification
performance using the selected features.

The effectiveness of SENFS is validated on simulated
data and six benchmark semisupervised data sets. Our main
finding is that SENFS can identify the features that are rele-
vant to classification using the data set that consists of only
a few labeled samples and many unlabeled samples.

This paper is organized as follows. Section 2 briefly
introduces the methodology. In Section 3, we derive an
iterative algorithm that yields the entire solution path based
on ADMM to solve this proposed method. In Section 4, we
evaluate the performance of this proposed method on both
simulated and real-world data, followed by a summary in
Section 5.

2. Methodology

Assume that all samples sampled from the same population
generated by target concept consist of 𝑝 features. Given a set
of samples X = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇, in which 𝑛 is the number of

samples, the 𝑖th sample or input vector 𝑥
𝑖
of original feature

𝐷 with 𝑝 features is denoted by 𝑥
𝑖

= {𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑝
}.

The set X can be divided into two parts: labeled set X
𝑙
=

(𝑥
1
, . . . , 𝑥

𝑙
)
𝑇 for which labels y

𝑙
= (𝑦
1
, . . . , 𝑦

𝑙
)
𝑇 are provided

with 𝑦
𝑖
∈ {−1, 1}

𝑙

𝑖=1
for binary problem and unlabeled set

X
𝑢

= (𝑥
𝑙+1

, . . . , 𝑥
𝑙+𝑢

)
𝑇 whose labels are not given, where

𝑙 and 𝑢 are the number of labeled and unlabeled samples,
respectively, and 𝑛 = 𝑙 + 𝑢. Then, the generic goal of
semisupervised feature selection is to find a feature subset
𝐷
 with 𝑑 (𝑑 < 𝑝) features which contains the most inform-

ative features using both data information of X
𝑙
and X

𝑢
. In

other words, the samples (𝑥
1
, . . . , 𝑥



𝑛
)
𝑇 represented in the 𝑑-

dimensional space can well preserve the information of the
samples X = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇 represented in the original 𝑝-

dimensional space.
We begin our discussion with the binary supervised

feature selection based on the elastic net penalty. Wang et al.
[11] proposed a supervised feature selection method based
on SVM with the elastic net penalty term named doubly
regularized support vector machine for binary classification
problems, which solves the optimization of the following
generic objective function over both the hyper plane param-
eters (𝛽, 𝛽

0
):

min
𝛽,𝛽0

𝐶

𝑛

∑

𝑖=1

𝑉 (𝑦
𝑖
𝑔 (𝑥
𝑖
)) + 𝜆

1

𝛽
1 +

𝜆
2

𝛽

2

2

2
, (1)

where the decision function is defined as 𝑔(𝑥) = 𝑥𝛽 + 𝛽
0

and both 𝜆
1
and 𝜆

2
are tuning parameters, and 𝐶 is the

regularization parameter. 𝑉 is the margin loss function; for
example, hinge loss 𝑉(𝑧) = 𝐻

1
(𝑧) = max(1 − 𝑧, 0). The

role of the 𝑙
1
-norm penalty is to allow selection, and the role

of the 𝑙
2
-norm penalty is to help groups of highly correlated

features get selected or removed together which is denoted by
the grouping effect [11].

As for semisupervised feature selection, considering X
𝑙

and X
𝑢
, inspired by the semisupervised learning algorithm

TSVM [14], we apply the elastic net penalty for semisuper-
vised feature selection (SENFS), which solves the following
optimization task over both the hyper plane parameters
(𝛽, 𝛽
0
) and the unlabeled vector y

𝑢
= (𝑦
𝑙+1

, . . . , 𝑦
𝑛
)
𝑇:

min
𝛽,𝛽0,y𝑢∈{−1,+1}

𝐶

𝑙

∑

𝑖=1

𝑉 (𝑦
𝑖
𝑔 (𝑥
𝑖
))

+ 𝐶
∗

𝑛

∑

𝑖=𝑙+1

𝑈 (𝑦
𝑖
𝑔 (𝑥
𝑖
)) + 𝜆

1

𝛽
1 +

𝜆
2

𝛽

2

2

2

s.t. 1

𝑢

𝑛

∑

𝑖=𝑙+1

max (0, 𝑦
𝑖
) = 𝑐.

(2)

The constraint in (2) is called the balancing constraint and
is necessary to avoid the trivial solutions where all unlabeled
samples are assigned to the same class. This constraint
enforces a manually chosen constant 𝑐 and an approximation
of this constraint writes (1/𝑛)∑𝑛

𝑖=1
𝑔(𝑥
𝑖
) = 2𝑐 − 1 [15] with 𝑐.

So the constraint can be rewritten as (1/𝑢)∑
𝑛

𝑖=𝑙+1
𝑔(𝑥
𝑖
) =

(1/𝑙) ∑
𝑙

𝑖=1
𝑦
𝑖
. 𝑉 and 𝑈 employ the same loss; for example,

hinge loss 𝑉(𝑧) = 𝐻
1
(𝑧) = max(1 − 𝑧, 0).

Obviously, the difficulty of the above optimization task
consists in finding the optimal assignment for the unlabeled
vector 𝑦 and the hyper plane parameters (𝛽, 𝛽

0
), which is a

mixed-integer programming problem [16]. As described in
[15], for a fixed (𝛽, 𝛽

0
), argmin

𝑦
𝑉(𝑦𝑔(𝑥)) = sign(𝑔(𝑥)). So

the problem of (2) can be seen equivalently as

min
𝛽,𝛽0

𝐶

𝑙

∑

𝑖=1

𝑉 (𝑦
𝑖
𝑔 (𝑥
𝑖
))

+ 𝐶
∗

𝑛

∑

𝑖=𝑙+1

𝑈 (
𝑔 (𝑥
𝑖
)
) + 𝜆

1

𝛽
1 +

𝜆
2

𝛽

2

2

2

s.t. 1

𝑢

𝑛

∑

𝑖=𝑙+1

𝑔 (𝑥
𝑖
) =

1

𝑙

𝑙

∑

𝑖=1

𝑦
𝑖
.

(3)

On the other hand, one effective approximation of the
loss function 𝑈(|𝑧|) was a clipped variant [17] which can be
expressed as

𝑈 (|𝑧|) = 𝑅
𝑠
(𝑧) + 𝑅

𝑠
(−𝑧) − (1 − 𝑠) , (4)

where𝑅
𝑠
(𝑧) is the Ramp loss defined as𝑅

𝑠
(𝑧) = 𝐻

1
(𝑧)−𝐻

𝑠
(𝑧)

with 𝐻
𝑠
(𝑧) = max(𝑠 − 𝑧, 0), 0 ≤ 𝑠 < 1. In our experiments,

the typical value of 𝑠 is 0.3.Themain reason to use the clipped
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symmetric hinge loss is the gain of sparsity in the number of
support vectors yielded by the optimizer [17].Thenwe can get

min
𝛽,𝛽0

𝐶
∗

𝑛

∑

𝑖=𝑙+1

𝑈(
𝑔 (𝑥
𝑖
)
)

= min
𝛽,𝛽0

𝐶
∗

𝑛

∑

𝑖=𝑙+1

(𝑅
𝑠
(𝑧) + 𝑅

𝑠
(−𝑧) − (1 − 𝑠))

= min
𝛽,𝛽0

𝐶
∗

𝑛

∑

𝑖=𝑙+1

(𝐻
1
(𝑔 (𝑥
𝑖
)) + 𝐻

1
(−𝑔 (𝑥

𝑖
)))

− 𝐶
∗

𝑛

∑

𝑖=𝑙+1

(𝐻
𝑠
(𝑔 (𝑥
𝑖
)) + 𝐻

𝑠
(−𝑔 (𝑥

𝑖
))) .

(5)

From (5), we can know that solving the optimization
problem (3) with the clipped symmetric hinge loss is equiv-
alent to solving a classical SVM with the unlabeled samples
counted twice with 𝑦

𝑖
= 1 when 𝑙 + 1 ≤ 𝑖 ≤ 𝑙 + 𝑢 and 𝑦

𝑖
= −1

when 𝑙+𝑢+1 ≤ 𝑖 ≤ 𝑙+2𝑢, which are artificial labels.Therefore
problem (3) can be rewritten as

min
𝛽,𝛽0

𝐶

𝑙

∑

𝑖=1

𝑉 (𝑦
𝑖
𝑔 (𝑥
𝑖
))

+ 𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

(𝐻
1
(𝑦
𝑖
𝑔 (𝑥
𝑖
)) − 𝐻s (𝑦𝑖𝑔 (𝑥

𝑖
)))

+ 𝜆
1

𝛽
1 +

𝜆
2

𝛽

2

2

2

s.t. 1

𝑢

𝑛

∑

𝑖=𝑙+1

𝑔 (𝑥
𝑖
) =

1

𝑙

𝑙

∑

𝑖=1

𝑦
𝑖
.

(6)

As we can seen from (6), when 𝐶 ̸= 0, 𝐶
∗

= 0, SENFS
evolves into a supervised feature selection algorithm, and
when 𝐶 = 0, 𝐶

∗
̸= 0, it becomes an unsupervised model.

In the following, we will illustrate how SENFS has the
grouping effect for correlated features.The following theorem
describes this point.

Theorem 1. Denote the solution to (6) by (𝛽, 𝛽
0
) and 𝛽

0
, the

input 𝑗th feature by 𝐹
𝑗
, and the input 𝑘th feature by 𝐹

𝑘
. Then

for any pair (𝑗, 𝑘), one can have


𝛽
𝑗
− 𝛽
𝑘


≤

2𝑀

𝜆
2

𝑙

∑

𝑖=1


𝑥
𝑖𝑗
− 𝑥
𝑖𝑘



+
2𝑀


𝜆
2

𝑙+2𝑢

∑

𝑖=𝑙+1


𝑥
𝑖𝑗
− 𝑥
𝑖𝑘


,

(7)

where 𝑀 and 𝑀
are positive finite constants. Furthermore, if

the input features 𝐹
𝑗
and 𝐹

𝑘
are centered and normalized, then


𝛽
𝑗
− 𝛽
𝑘


≤

2

𝜆
2

(√2𝑙 (1 − 𝜌
𝑙
) + 2√𝑢 (1 − 𝜌

𝑢
)) , (8)

where 𝜌
𝑙
and 𝜌

𝑢
are the sample correlations between

𝐹
𝑗

and 𝐹
𝑘
, 𝜌
𝑙

= ∑
𝑙

𝑖=1
(𝑥
𝑖𝑗

− 𝑥
.𝑗
) (𝑥
𝑖𝑘

− 𝑥
.𝑘
)/

√∑
𝑙

𝑖=1
(𝑥
𝑖𝑗
− 𝑥
.𝑗
)
2
∑
𝑙

𝑖=1
(𝑥
𝑖𝑘
− 𝑥
.𝑘
)
2
, 𝑥
.𝑗

= (1/𝑙) ∑
𝑙

𝑖=1
𝑥
𝑖𝑗
,

𝑥
.𝑘

= (1/𝑙) ∑
𝑙

𝑖=1
𝑥
𝑖𝑘
, and 𝜌

𝑘
= ∑

𝑙+2𝑢

𝑖=𝑙+1
(𝑥
𝑖𝑗

− 𝑥


.𝑗
)

(𝑥
𝑖𝑘

− 𝑥


.𝑘
)/√∑

𝑙+2𝑢

𝑖=𝑙+1
(𝑥
𝑖𝑗
− 𝑥


.𝑗
)
2
∑
𝑙+2𝑢

𝑖=𝑙+1
(𝑥
𝑖𝑘
− 𝑥


.𝑘
)
2, 𝑥



.𝑗
=

(1/2𝑢)∑
𝑙+2𝑢

𝑖=𝑙+1
𝑥
𝑖𝑗
, 𝑥


.𝑘
= (1/2𝑢)∑

𝑙+2𝑢

𝑖=𝑙+1
𝑥
𝑖𝑘
.

The term |𝛽
𝑗
−𝛽
𝑘
| in (7) describes the difference between

the coefficient paths of 𝐹
𝑗
and 𝐹

𝑙
. If both features are highly

correlated, that is, 𝜌 = 1, Theorem 1 says that difference
between the coefficient paths of them is almost 0, in which
case both features will be selected or removed together. The
upper bound in (7) or (8) provides a quantitative description
for the grouping effect of SENFS.

3. Algorithm for SENFS

The alternating direction method of multipliers (ADMM)
developed in the 1970s and is well suited to distributed convex
optimization and in particular to large-scale problems arising
in statistics, machine learning, and related areas.Themethod
is closely related to many other algorithms, such as the
method of multipliers [18], Douglas-Rachford splitting [19],
Bregman iterative algorithms [20] for 𝑙

1
problems, and others.

In this section, we first propose an efficient algorithm
to solve SENFS based on ADMM by introducing auxiliary
variables and reformulating the original problem.Then prove
its convergence property and get the adjustment principle for
penalty parameters. Finally describe the stopping criterion
and computational cost.

3.1. Deriving ADMM for SENFS. It is hard to solve the
model (6) directly due to the nondifferentiability of three loss
functions and a 𝑙

1
-norm term. In order to derive an ADMM

algorithm, we introduce some auxiliary variables to handle
these nondifferentiable terms.

Let 𝑋
𝑙

= {(𝑥
𝑖𝑗
)
𝑙,𝑝

𝑖=1,𝑗=1
} denote labeled data, let 𝑋

𝑢
=

{(𝑥
𝑖𝑗
)
𝑙+2𝑢,𝑝

𝑖=𝑙+1,𝑗=1
} denote unlabeled data, and let 𝑌

𝑙
, 𝑌
𝑢
be diag-

onal matrixes with their diagonal elements to be the vector
y
𝑙
= (𝑦
1
, . . . , 𝑦

𝑙
)
𝑇 and y

𝑢
= (𝑦
𝑙+1

, . . . , 𝑦
𝑙+2𝑢

)
𝑇, respectively.

The constrained problem in (6) can be reformulated into an
equivalent form

min
𝛽,𝛽0

𝐶

𝑙

∑

𝑖=1

(ℎ
𝑖
)
+
+ 𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

(𝑎
𝑖
)
+

− 𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

(𝑏
𝑖
)
+
+ 𝜆
1‖t‖1 +

𝜆
2

2

𝛽

2

2

s.t.

{{{{{{{{{

{{{{{{{{{

{

h = 1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
)

a = 1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
)

b = 𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
)

t = 𝛽

1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽 + 𝛽
0
) = 𝑟,

(9)
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where h = (ℎ
1
, . . . , ℎ

𝑙
)
𝑇, a = (𝑎

1
, . . . , 𝑎

2𝑢
)
𝑇, and b =

(𝑏
1
, . . . , 𝑏

2𝑢
)
𝑇, 1
𝑙
is an 𝑙-column vector of 1s and 1

𝑢
is an 2𝑢-

column vector of 1s, and 𝑟 = (1/𝑙) ∑
𝑙

𝑖=1
𝑦
𝑖
. The Lagrangian

function of (9) is

𝑙 (𝛾) = 𝐶

𝑙

∑

𝑖=1

(ℎ
𝑖
)
+

+ 𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

((𝑎
𝑖
)
+
− (𝑏
𝑖
)
+
) + 𝜆
1‖t‖1 +

𝜆
2

2

𝛽

2

2

+ u𝑇
ℎ
(1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
) − h)

+ u𝑇
𝑎
(1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − a)

+ u𝑇
𝑏
(𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − b)

+ k𝑇 (𝛽 − t) + 𝑞(𝑟 −
1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽 + 𝛽
0
)) .

(10)

In problem (10), 𝛾 = {𝛽, 𝛽
0
, h, a, b, t, u

ℎ
, u
𝑎
, u
𝑏
, k, 𝑞},

and u
ℎ
, u
𝑎
, and u

𝑏
are dual variables corresponding to the

constraints h = 1
𝑙
−𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
), a = 1

𝑢
−𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
),

and b = 𝑠1
𝑢
−𝑌(𝑋

𝑢
𝛽+𝛽
0
1
𝑢
), respectively, k is corresponding

to the constraint t = 𝛽, and 𝑞 is a scalar corresponding to the
balancing constrain. As in themethod ofmultipliers, we form
the augment Lagrangian

𝐿 (𝛾) = 𝑙 (𝛾) +
𝜇
1

2

1𝑙 − 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
)

2

2

+
𝜇
2

2

1𝑢 − 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
)

2

2

+
𝜇
3

2

𝑠1𝑢 − 𝑌 (𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
)

2

2

+
𝜇
4

2

𝛽 − t
2

2

+
𝜇
5

2



𝑟 −
1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽 + 𝛽
0
)



2

2

,

(11)

where 𝜇
1
, 𝜇
2
, 𝜇
3
, 𝜇
4
> 0 are parameters. Problem (11) is the

form of ADMM, which consists of the following iterations:

(𝛽
𝑘+1

, 𝛽
𝑘+1

0
, h𝑘+1, a𝑘+1, b𝑘+1, t𝑘+1)

= arg min
𝛽,𝛽0,h,a,b,t

𝐿 (𝛽, 𝛽
0
, h, a, b, t, u𝑘

ℎ
, u𝑘
𝑎
, u𝑘
𝑏
, k𝑘, 𝑞𝑘) ,

u𝑘+1
ℎ

= u𝑘
ℎ
+ 𝜇
1
(1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
) − h𝑘+1) ,

u𝑘+1
𝑎

= u𝑘
𝑎
+ 𝜇
2
(1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − a𝑘+1) ,

u𝑘+1
𝑏

= u𝑘
𝑏
+ 𝜇
3
(𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − b𝑘+1) ,

k𝑘+1 = k𝑘 + 𝜇
4
(𝛽
𝑘+1

− 𝑡
𝑘+1

) ,

𝑞
𝑘+1

= 𝑞
𝑘
+ 𝜇
5
(𝑟 −

1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
)) .

(12)

The efficiency of the iterative algorithm (12) lies on
whether the first equation of (12) can be solved quickly.
According to the theory of ADMM, these variables (𝛽, 𝛽

0
),

h, a, b, and t are updated in an alternating or sequential
fashion, which accounts for the term alternating direction. So
we can get

(𝛽
𝑘+1

, 𝛽
𝑘+1

0
) = argmin

𝛽,𝛽0

𝐿 (𝛽, 𝛽
0
, h𝑘, a𝑘, b𝑘, t𝑘,u𝑘

ℎ
,u𝑘
𝑎
,u𝑘
𝑏
, k𝑘, 𝑞𝑘) ,

h𝑘+1 = argmin
h

𝐿 (𝛽
𝑘+1

, 𝛽
𝑘+1

0
, h, a𝑘, b𝑘, t𝑘,u𝑘

ℎ
, u𝑘
𝑎
,u𝑘
𝑏
, k𝑘, 𝑞𝑘) ,

a𝑘+1 = argmina 𝐿 (𝛽
𝑘+1

, 𝛽
𝑘+1

0
, h𝑘+1, a, b𝑘, t𝑘, u𝑘

ℎ
, u𝑘
𝑎
, u𝑘
𝑏
, k𝑘, 𝑞𝑘) ,

b𝑘+1 = argmin
b

𝐿 (𝛽
𝑘+1

, 𝛽
𝑘+1

0
, h𝑘+1, a𝑘+1, b, t𝑘,u𝑘

ℎ
,u𝑘
𝑎
,u𝑘
𝑏
, k𝑘, 𝑞𝑘) ,

t𝑘+1 = argmin
t

𝐿 (𝛽
𝑘+1

, 𝛽
𝑘+1

0
, h𝑘+1, a𝑘+1, b𝑘+1, t, u𝑘

ℎ
,u𝑘
𝑎
, u𝑘
𝑏
, k𝑘, 𝑞𝑘) .

(13)

For the first equation in (13), it is equivalent to the
following convex optimization:

(𝛽
𝑘+1

, 𝛽
𝑘+1

0
)

= argmin
𝛽,𝛽0

𝜆
2

2

𝛽

2

2
+ u𝑇
ℎ
(1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
) − h)

+ u𝑇
𝑎
(1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − a)

+ u𝑇
𝑏
(𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − b)

+ k𝑇 (𝛽 − t) + 𝑞(𝑟 −
1

𝑢

𝑢

∑

𝑖=1

(𝑥
𝑖
𝛽 + 𝛽
0
))

+
𝜇
1

2

1𝑙 − 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
) − h

2

2

+
𝜇
2

2

1𝑢 − 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − a

2

2

+
𝜇
3

2

𝑠1𝑢 − 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − b

2

2

+
𝜇
4

2

𝛽 − t
2

2

+
𝜇
5

2



𝑟 −
1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽 + 𝛽
0
)



2

2

.

(14)

The objective function in the above minimization prob-
lem is quadratic and differentiable, and since (𝛽

𝑘+1
, 𝛽
𝑘+1

0
)

minimizes this function by definition, the optimal solution
can be found by solving a set of linear equations
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(

(𝜆
2
+ 𝜇
4
+
𝜇
5

𝑢2

𝑛

∑

𝑖=𝑙+1

𝑥
𝑇

𝑖

𝑛

∑

𝑖=𝑙+1

𝑥
𝑖
) I + 𝜇

1
𝑋
𝑇

𝑙
𝑋
𝑙
+ (𝜇
2
+ 𝜇
3
)𝑋
𝑇

𝑢
𝑋
𝑢

𝜇
1
𝑋
𝑇

𝑙
1
𝑙
+ (𝜇
2
+ 𝜇
3
)𝑋
𝑇

𝑢
1
𝑢
+
𝜇
5

𝑢

𝑛

∑

𝑖=𝑙+1

𝑥
𝑇

𝑖

1𝑇
𝑙
𝑋
𝑙
+ (𝜇
2
+ 𝜇
3
) 1𝑇
𝑢
𝑋
𝑢
+
𝜇
5

𝑢

𝑛

∑

𝑖=𝑙+1

𝑥
𝑖
1
𝑢

𝑙𝜇
1
+ 2𝑢 (𝜇

2
+ 𝜇
3
) + 𝜇
5

)(
𝛽
𝑘+1

𝛽
𝑘+1

0

)

= (
𝑋
𝑇

𝑙
𝑌
𝑇

𝑙
(u𝑘
ℎ
+ 𝜇
1
(1 − h𝑘)) + 𝑋

𝑇

𝑢
𝑌
𝑇

𝑢
(u𝑘
𝑎
+ u𝑘
𝑏
+ 𝜇
2
(1 − a𝑘) + 𝜇

3
(𝑠 − b𝑘)) − k𝑘 + (𝑞

𝑘
+ 𝜇
5
𝑟)

𝑛

∑

𝑖=𝑙+1

𝑥
𝑇

𝑖

𝑢
+ 𝜇
4
t𝑘

1𝑇
𝑙
𝑌
𝑇

𝑙
(u𝑘
ℎ
+ 𝜇
1
(1 − h𝑘)) + 1𝑇

𝑢
𝑌
𝑇

𝑢
(u𝑘
𝑎
+ u𝑘
𝑏
+ 𝜇
2
(1 − a𝑘) + 𝜇

3
(𝑠 − b𝑘)) + 𝑞

𝑘
+ 𝜇
5
𝑟

) .

(15)

In (15), I is a 𝑝 × 𝑝 unit matrix and the coefficient matrix
is a (𝑝 + 1) × (𝑝 + 1)matrix, independent of the optimization
variables. For large 𝑝, small 𝑛 setting, the term 𝑋

𝑇

𝑙
𝑋
𝑙
in the

coefficientmatrix will be a positive low rankmatrix with rank
atmost 𝑙while the term𝑋

𝑇

𝑢
𝑋
𝑢
in the coefficientmatrix will be

a positive low rankmatrixwith rank atmost 2𝑢.Therefore, the
coefficient matrix is also low rank matrix with rank at most
(2𝑢 + 1). And if we use CG to solve the problem (15), it will
converge in less than (2𝑢 + 1) steps [21].

For the second equation in (13), it is equivalent to solving

h𝑘+1 = argmin
h

𝐶

𝑙

∑

𝑖=1

(ℎ
𝑖
)
+

+ (u𝑘
ℎ
)
𝑇

(1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
) − h𝑘+1)

+
𝜇
1

2


1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
) − h𝑘+1

2

2
.

(16)

In order to solve (16), we need the following Proposition
[22].

Proposition 2. Let 𝑠
𝜆
(𝑤) = arg min

𝑥∈R 𝜆𝑥
+
+ 0.5‖𝑥 − 𝑤‖

2

2

where 𝜆 > 0. Then

𝑠
𝜆
(𝑤) =

{{

{{

{

𝑤 − 𝜆 𝑤 > 𝜆,

0 0 ≤ 𝑤 ≤ 𝜆,

𝑤 𝑤 < 0.

(17)

Combined with Proposition 2 and

u𝑘
ℎ



2

2

2𝜇
1

+ (u𝑘
ℎ
)
𝑇

(1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
) − h𝑘+1)

+ 0.5𝜇
1


1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
) − h𝑘+1

2

2

= 0.5𝜇
1



u𝑘
ℎ

𝜇
1

+ 1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
) − h𝑘+1



2

2

,

(18)

we can update h𝑘+1 according to Corollary 3.

Corollary 3. The update of h𝑘+1 in (16) is equivalent to

h𝑘+1 = 𝑆
𝐶/𝜇1

(1
𝑙
+
u𝑘
ℎ

𝜇
1

− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
)) , (19)

where 𝑆
𝜆
(𝑤) = (𝑠

𝜆
(𝑤
1
), . . . , 𝑠

𝜆
(𝑤
𝑙
)).

For the third equation in (13), it is equivalent to solving
(20):

a𝑘+1 = argmina 𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

(𝑎
𝑖
)
+

+ (u𝑘
𝑎
)
𝑇

(1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − a𝑘+1)

+
𝜇
2

2


1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − a𝑘+1

2

2
.

(20)

Combined with Proposition 2 and

u𝑘
𝑎



2

2

2𝜇
1

+ (u𝑘
𝑎
)
𝑇

(1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − a𝑘+1)

+ 0.5𝜇
2


1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − a𝑘+1

2

2

= 0.5𝜇
2



u𝑘
𝑎

𝜇
2

+ 1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − a𝑘+1



2

2

,

(21)

we can update a𝑘+1 according to Corollary 4.

Corollary 4. The update of a𝑘+1 in (20) is equivalent to

a𝑘+1 = 𝑆
𝐶
∗
/𝜇2

(1
𝑢
+
u𝑘
𝑎

𝜇
2

− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
)) , (22)

where 𝑆
𝜆
(𝑤) = (𝑠

𝜆
(𝑤
1
), . . . , 𝑠

𝜆
(𝑤
2𝑢
)).

For the fourth equation in (13), it is equivalent to solving

b𝑘+1 = argmin
b

𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

(𝑏
𝑖
)
+

+ (u𝑘
𝑏
)
𝑇

(𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − b𝑘+1)

+
𝜇
3

2


𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − b𝑘+1

2

2
.

(23)

In order to solve (23), we need the following proposition.

Proposition 5. Let 𝑔
𝜆
(𝑤) = arg min

𝑥∈R 𝜆𝑥
+
+ 0.5‖𝑥 − 𝑤‖

2

2
,

where 𝜆 < 0. Then

𝑔
𝜆
(𝑤) = {

𝑤 − 𝜆 𝑤 > 0,

𝑤 𝑤 < 0.
(24)
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Proof. The function 𝜆𝑥
+
+ 0.5‖𝑥 − 𝑤‖

2

2
is strongly convex,

so it has a unique solution. Therefore, by the subdifferential
calculus [23], 𝑔

𝜆
is the unique minimizer of the following

equation:

0 ∈ 𝜆𝜕 (𝑥
+
) + 𝑥 − 𝑤, (25)

where 𝜕(𝑥
+
) is the subdifferential of the function 𝑥

+
. Accord-

ing to [23], 𝜕(𝑥
+
) can be expressed as

𝜕 (𝑥
+
) =

{{

{{

{

1 𝑥 > 0,

{𝑝 : 𝑝 ∈ [0, 1]} 𝑥 = 0,

0 𝑥 < 0.

(26)

With (25) and (26), we can get the desired result.
Then, combined with Proposition 5 and


u𝑘
𝑏



2

2

2𝜇
3

+ (u𝑘
𝑏
)
𝑇

(𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − b𝑘+1)

+ 0.5𝜇
3


𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − b𝑘+1

2

2

= 0.5𝜇
3



u𝑘
𝑏

𝜇
3

+ 𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
) − b𝑘+1



2

2

,

(27)

we can update b𝑘+1 according to Corollary 6.

Corollary 6. The update of b𝑘+1 in (23) is equivalent to

b𝑘+1 = 𝐺
−𝐶
∗
/𝜇3

(𝑠1
𝑢
+
u𝑘
𝑏

𝜇
3

− 𝑌
𝑢
(𝑋
𝑢
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑢
)) ,

(28)

where 𝐺
𝜆
(𝑤) = (𝑔

𝜆
(𝑤
1
), . . . , 𝑔

𝜆
(𝑤
2𝑢
)).

For the fifth equation in (13), it is equivalent to solving

t𝑘+1 = argmin
t

𝜆
1


t𝑘+11 + (k𝑘)

𝑇

(𝛽
𝑘+1

− t𝑘+1)

+ 0.5𝜇
4


𝛽
𝑘+1

− t𝑘+1
2

2
.

(29)

Solving (29) can be done efficiently using soft threshold,
and we can update t𝑘+1 according to Corollary 7.

Corollary 7. The update of t𝑘+1 in (29) is

t𝑘+1 = 𝑇
𝜆1/𝜇4

(
k𝑘

𝜇
4

+ 𝛽
𝑘+1

) , (30)

where 𝑇
𝜆
(𝑤) = (𝑡

𝜆
(𝑤
1
), . . . , 𝑡

𝜆
(𝑤
𝑝
)), and 𝑡

𝜆
(𝑤) =

sgn(𝑤)max{0, |𝑤| − 𝜆}.

According to the theory of ADMM, ‖𝑠𝑘
1
‖
2
, ‖𝑠𝑘
2
‖
2
, ‖𝑠𝑘
3
‖
2
,

and ‖𝑠
𝑘

4
‖
2
must be small below some certain threshold

𝛿. Considering the auxiliary variables in (11), we expect
that ‖1

𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
) − h‖

2
, ‖1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − a‖

2
,

‖𝑠1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − b‖

2
, and ‖𝛽 − t‖

2
also must be

small. Therefore, in our experiment, algorithm for SENFS
stops whenever


𝑠
𝑘

1

2
< 𝛿,


𝑠
𝑘

2

2
< 𝛿,


𝑠
𝑘

3

2
< 𝛿,


𝑠
𝑘

4

2
< 𝛿,

1𝑙 − 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
) − h2 < √𝑙𝛿,

1𝑢 − 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − a2 < √2𝑢𝛿,

𝑠1𝑢 − 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽
0
1
𝑢
) − b2 < √2𝑢𝛿,

𝛽 − t2 < √𝑝𝛿.

(31)

Finally, we can get the algorithm for SENFS.The detailed
procedure of the algorithmADMMfor SENFS is summarized
in Algorithm 8 as follows.

Algorithm 8. ADMM algorithm for SENFS.

Input. Labeled data set {𝑥
𝑖
, 𝑦
𝑖
}
𝑙

𝑖=1
; unlabeled data set

{𝑥
𝑖
}
𝑛

𝑖=𝑙+1
; tuning parameters 𝜆

1
and 𝜆

2
; regularization

parameter 𝐶.
Output. Selected feature set.
Step 1. Initialize 𝛽0, 𝛽0

0
, h0, a0, b0, t0, u0

ℎ
, u0
𝑎
, u0
𝑏
, k0,

and 𝑞
0.

Step 2. If (31) is satisfied, go to Step 3; otherwise,

(1) update 𝛽𝑘+1 and 𝛽
𝑘+1

0
according to (15);

(2) update h𝑘+1, a𝑘+1, b𝑘+1, and t𝑘+1 according to
Corollaries 3–7, respectively;

(3) update u𝑘+1
ℎ

, u𝑘+1
𝑎

, u𝑘+1
𝑏

, k𝑘+1, and 𝑞
𝑘+1 accord-

ing to (12).

Step 3. Get the best feature subset according to
𝛽
𝑘+1

𝑗
, 𝑗 = 1, . . . , 𝑝. If 𝛽𝑘+1

𝑗
= 0, the corresponding

𝑗th feature is abandoned; otherwise, it is selected as
an important feature.

3.2. Convergence Analysis and Computational Cost. The con-
vergence property of Algorithm 8 can be derived from the
theory of the alternating direction method of multipliers.
According to the standard convergence theory of ADMM,
Algorithm 8 satisfies the dual variable convergence [24]. So
Theorem 9 holds.

Theorem 9. Suppose that (𝛽∗, 𝛽
0

∗
) is one of solution of (5).

Then the following property holds:

𝐶

𝑙

∑

𝑖=1

𝐻
1
(𝑦
𝑖
(𝑥
𝑖
𝛽
𝑘
+ 𝛽
𝑘

0
))

+ 𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

(𝐻
1
(𝑦
𝑖
(𝑥
𝑖
𝛽
𝑘
+ 𝛽
𝑘

0
)) − 𝐻s (𝑦𝑖 (𝑥𝑖𝛽

𝑘
+ 𝛽
𝑘

0
)))

+ 𝜆
1


𝛽
𝑘1

+
𝜆
2


𝛽
𝑘

2

2

2
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= 𝐶

𝑙

∑

𝑖=1

𝐻
1
(𝑦
𝑖
(𝑥
𝑖
𝛽
∗
+ 𝛽
∗

0
))

+ 𝐶
∗

𝑙+2𝑢

∑

𝑖=𝑙+1

(𝐻
1
(𝑦
𝑖
(𝑥
𝑖
𝛽
∗
+ 𝛽
∗

0
)) − 𝐻s (𝑦𝑖 (𝑥𝑖𝛽

∗
+ 𝛽
∗

0
)))

+ 𝜆
1

𝛽
∗1 +

𝜆
2

𝛽
∗
2

2

2
.

(32)

As for the computational issue, it is hard to predict the
computational cost because it depends on the all the penalty
parameters. According to our experience, we only need to
iterate a few hundred iterations to get a reasonable result. On
the other hand, the efficiency of Algorithm 8 lies mainly on
whether we can quickly solve the linear equations (15). And
the computational cost for solving (15) is 𝑂(𝑙

2
𝑝 + 4𝑢

2
𝑝).

3.3. Varying Penalty Parameter. In order to make perfor-
mance less dependent on the initial choice of the penalty
parameter, it is necessary to use different penalty parame-
ters. According to our experiment experience, the penalty
parameters 𝜇

1
, 𝜇
2
, 𝜇
3
, and 𝜇

4
have a huge influence on

the performance and the number of iterations involved, so
adaptive selections of them are performed.

For 𝜇
1
, let𝑓(𝛽, 𝛽

0
) = 𝐶∑

𝑙

𝑖=1
(ℎ
𝑖
)
+
+𝐶
∗
∑
𝑙+2𝑢

𝑖=𝑙+1
(𝐻
1
(𝑦
𝑖
(𝑥
𝑖
𝛽+

𝛽
0
)) − 𝐻s(𝑦𝑖(𝑥𝑖𝛽 + 𝛽

0
))) + 𝜆

1
‖𝛽‖
1
+ 0.5𝜆

2
‖𝛽‖
2

2
, and the

constraint conditions are h = 1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽

0
1
𝑙
) and the

constraint of (3). The optimization task (6) is equivalent to

𝑊(𝛽, 𝛽
0
) = 𝑓 (𝛽, 𝛽

0
) + u𝑇
ℎ
(1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
) − h)

+ 𝑞(𝑟 −
1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽 + 𝛽
0
))

+
𝜇
1

2

1𝑙 − 𝑌
𝑙
(𝑋
𝑙
𝛽 + 𝛽
0
1
𝑙
) − h

2

2

+
𝜇
5

2



𝑟 −
1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽 + 𝛽
0
)



2

2

.

(33)

The necessary optimality conditions for the problem (6)
are dual feasibility as

0 ∈
𝜕𝑓 (𝛽
∗
, 𝛽
∗

0
)

𝜕𝛽∗
− 𝑋
𝑇

𝑙
𝑌
𝑇

𝑙
u∗
ℎ
−
𝑞
∗

𝑢

𝑛

∑

𝑖=𝑙+1

𝑥
𝑇

𝑖
. (34)

Since 𝛽𝑘+1 minimizes𝑊(𝛽
𝑘+1

, 𝛽
𝑘+1

0
, u𝑘
ℎ
, 𝑞
𝑘
) by definition, we

have that

0 ∈
𝜕𝑓 (𝛽
𝑘+1

, 𝛽
𝑘+1

0
)

𝜕𝛽𝑘+1

− 𝑋
𝑇

𝑙
𝑌
𝑇

𝑙
(u𝑘
ℎ
− 𝜇
1
(1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
1
𝑙
) − h𝑘))

−
𝑞
𝑘

𝑢

𝑛

∑

𝑖=𝑙+1

𝑥
𝑇

𝑖
−
𝜇
5

𝑢

×

𝑛

∑

𝑖=𝑙+1

𝑥
𝑇

𝑖
(𝑟 −

1

𝑢

𝑛

∑

𝑖=𝑙+1

(𝑥
𝑖
𝛽
𝑘+1

+ 𝛽
𝑘+1

0
))

=
𝜕𝑓 (𝛽
𝑘+1

, 𝛽
𝑘+1

0
)

𝜕𝛽𝑘+1
− 𝑋
𝑇

𝑙
𝑌
𝑇

𝑙
u𝑘+1
ℎ

−
𝑞
𝑘+1

𝑢

×

𝑛

∑

𝑖=𝑙+1

𝑥
𝑇

𝑖
+ 𝜇
1
𝑋
𝑇

𝑙
𝑌
𝑇

𝑙
(h𝑘 − h𝑘+1) .

(35)

Compared with (34), (35) means that the quantity
𝜇
1
𝑋
𝑇

𝑙
𝑌
𝑇

𝑙
(h𝑘 − h𝑘+1) can be viewed as a residual for (34), and

let 𝑠𝑘+1
1

= 𝜇
1
𝑋
𝑇

𝑙
𝑌
𝑇

𝑙
(h𝑘 − h𝑘+1).

For 𝜇
2
, let 𝑓(𝛽, 𝛽

0
) = 𝐶∑

𝑙

𝑖=1
𝐻
1
(𝑦
𝑖
(𝑥
𝑖
𝛽 + 𝛽

0
)) +

𝐶
∗
∑
𝑙+2𝑢

𝑖=𝑙+1
((𝑎
𝑖
)
+
−𝐻s(𝑦𝑖(𝑥𝑖𝛽+𝛽

0
))) + 𝜆

1
‖𝛽‖
1
+0.5𝜆

2
‖𝛽‖
2

2
, and

the constraint conditions are a = 1
𝑢
− 𝑌
𝑢
(𝑋
𝑢
𝛽 + 𝛽

0
1
𝑢
) and

the constraint of (3). Through the same solving process as
parameter 𝜇

1
, we can get the residual 𝑠𝑘+1

2
= 𝜇
𝑘+1

2
𝑋
𝑇

𝑢
𝑌
𝑇

𝑢
(a𝑘 −

a𝑘+1). Similarly, we can get the residual 𝑠𝑘+1
3

= 𝜇
𝑘+1

3
𝑋
𝑇

𝑢
𝑌
𝑇

𝑢
(b𝑘−

b𝑘+1) for parameter 𝜇
3
and 𝑠

𝑘+1

4
= 𝜇
𝑘+1

4
𝑋
𝑇

𝑢
𝑌
𝑇

𝑢
(t𝑘+1 − t𝑘)

for parameter 𝜇
4
. With these residuals, we can get a simple

scheme to update 𝜇
1
, 𝜇
2
, 𝜇
3
, and 𝜇

4
, respectively, according to

Corollary 10.

Corollary 10. The update of 𝜇
1
, 𝜇
2
, 𝜇
3
, 𝜇
4
is

𝜇
𝑘+1

1
=

{{{{{{

{{{{{{

{

𝜏
incr

𝜇
𝑘

1
𝑖𝑓


1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘
+ 𝛽
𝑘

0
1
𝑙
) − h𝑘2 > 𝜃


𝑠
𝑘

1

2

𝜇
𝑘

1

𝜏decr
𝑖𝑓


𝑠
𝑘

1

2
> 𝜃


1
𝑙
− 𝑌
𝑙
(𝑋
𝑙
𝛽
𝑘
+ 𝛽
𝑘

0
1
𝑙
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𝜇
𝑘

1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝜇
𝑘+1

2
=
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𝜏
incr

𝜇
𝑘
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𝑢
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𝑢
𝛽
𝑘
+ 𝛽
𝑘

0
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𝑢
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𝑘
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𝑘
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𝑖𝑓
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𝑘

2

2
> 𝜃


1
𝑢
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𝛽
𝑘
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𝑠
𝑘

4

2

𝜇
𝑘

4
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𝑖𝑓


𝑠
𝑘

4

2
> 𝜃
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𝜇
𝑘
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𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(36)

where 𝜏incr > 1, 𝜏
decr

>, and 𝜃 > 1 are parameters. Typical
choices might be 𝜏incr = 𝜏

decr
= 2 and 𝜃 = 10.

4. Experimental Evaluation

This section examines the performance of SENFS with
respect to its feature selection and test error on simulated
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Table 1: Comparisons of selected features and their standard errors (in parenthesis). 𝐹relevant is the number of selected relevant features and
𝐹noise is the number of selected noise features.

𝜌
SENFS Spectral DrSVM

𝐹relevant 𝐹noise 𝐹relevant 𝐹noise 𝐹relevant 𝐹noise

0 6.2 (0.28) 5.6 (0.28) 4.75 (0.22) 5.9 (0.29) 5.41 (0.27) 5.7 (0.15)
0.5 7.2 (0.01) 3.9 (0.05) 6.88 (0.1) 6.2 (0.24) 6.83 (0.31) 5.4 (0.17)
0.9 8.9 (0.04) 2.1 (0.11) 8.32 (0.09) 4.15 (0.15) 8.1 (0.08) 4.55 (0.22)

Table 2: Comparisons of test errors, computational time needed, and their standard errors (in parenthesis).

𝑑
SENFS Spectral DrSVM

Test error Time Test error Time Test error Time
1 9.4 (0.12)% 6.7 (1.1) 15.7 (0.27)% 5.5 (1.0) 17.1 (0.31)% 6.1 (1.2)
2 8.7 (0.13)% 6.4 (0.2) 14.2 (0.14)% 5.3 (0.1) 16.2 (0.27)% 5.8 (0.2)
3 7.5 (0.02)% 5.9 (0.4) 12.3 (0.07)% 4.7 (0.1) 14.6 (0.11)% 4.9 (0.2)

Table 3: Data sets used in the experiments. 𝑛, 𝑝, and 𝑙 are the
number of samples, features, and labeled samples, respectively.

Data set 𝑛 𝑝 𝑙

Digit1 1500 241 10 or 100
USPS 1500 241 10 or 100
COIL2 1500 241 10 or 100
BCI 400 117 10 or 100
g241c 1500 241 10 or 100
g241n 1500 241 10 or 100

data and six benchmark data sets. In order to evaluate the
effectiveness of SENFS, we compare SENFS with an existing
semisupervised feature selection algorithm: Spectral [10],
and a supervised feature selection algorithm: DrSVM [11],
which also has the characteristics of grouping effect. On
the other hand, in order to evaluate the quality of selected
features, SVM was executed on these selected features. The
experiments are run on a desktop with Pentium(R) 2.0G
CPU, 1.99G main memory. The programs are compiled in
Windows system with Matlab in version R2009a.

The limited number of samples prohibits having enough
and independent training and testing data for performance
evaluation. It is very common to apply accross-validation
(CV) in this scenario. We used 5-fold CV: we partitioned
the data set into five complementary subsets of equal size.
Four subsets were used as training data; the remaining subset
served as test data. We repeated this process five times such
that each of the five subsets was used exactly once as test data.
To get more reliable estimate, we performed the 5-fold CV
for 10 times and the experimental results are average results
over test data sets. Moreover, finding the appropriate value
of the tuning parameter pair 𝜆

1
and 𝜆

2
is essential for the

performance of SENFS.We employed 10-fold CV over a large
grid.

4.1. Simulation. Weevaluate the performance of SENFSusing
two parameters: the correlation between relevant features

denoted by 𝜌, the number of labeled samples, and the degree
of overlapping among classes denoted by 𝑑. Consider 2-class
problem in which the samples are lying in a 𝑝 dimensional
space with the first 10 dimensional being relevant to classi-
fication and the remaining features being noise, where the
correlation between the first 10 features is 𝜌. The number of
samples is 300 with 𝑝 = 500. For the samples from +1 class,
they are sampled from a normal distribution with mean and
covariance as follows:

∑ = (

∗

∑

10 × 10

0
10×(𝑝−10)

0
(𝑝−10)×10

I
(𝑝−10)×(𝑝−10)

), (37)

where the diagonal elements of∑∗ are 1 and the off-diagonal
elements are all equal to 𝜌. The −1 class has a similar
distribution expect that its mean is:

𝛼
−
= (−𝑑, . . . , −𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

10

, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝−10

) . (38)

To evaluate the effect of the correlation between relevant
features, SENFS is compared with Spectral and DrSVM,
measured by the number of selected features with two labeled
samples and 𝑑 = 1. The results are summarized in Table 1. As
shown in Table 1, on this simulated data, when the relevant
features are highly correlated (e.g., 𝜌 = 0.9), Spectral and
DrSVM tend to keep only a small subset of the relevant
correlated variables and overlook the others, while the SENFS
tends to identify all of them, due to the grouping effect.These
three methods seem to work well in removing irrelevant
features.

The effects of the number of labeled samples on test error
over the top 10 selected features are summarized in Figure 1
with 𝑑 = 1 and 𝜌 = 0.9. As can be seen, the test errors
of SENFS, Spectral, and DrSVM decrease with the increase
of the number of labeled samples, but SENFS seems to
achieve the best classification performance when the number
of labeled samples is varying, which may imply that SENFS
can make better use of the labeled samples than spectral and
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Table 4: Comparisons of test errors and their standard errors (in parenthesis) on benchmark data sets.

Dataset SENFS Spectral DrSVM
𝑙 = 10 𝑙 = 100 𝑙 = 10 𝑙 = 100 𝑙 = 10 𝑙 = 100

Digit1 15.1 (0.04)% 4.28 (0.12)% 17.7 (0.09)% 8.7 (0.15)% 21.35 (0.05)% 5.85 (0.16)%
USPS 21.17 (0.03)% 11.1 (0.24)% 29.87 (0.15)% 12.6 (0.31)% 31.8 (0.12)% 17.3 (0.3)%
COIL2 36.1 (1.04)% 13.6 (0.98)% 37.7 (1.3)% 16.9 (0.91)% 47.2 (0.8)% 31.2 (1.1)%
BCI 43.9 (0.23)% 33.8 (0.24)% 49.87 (0.15)% 42.1 (0.31)% 47.8 (0.12)% 36.7 (0.8)%
g241c 32.8 (1.14)% 24.9 (1.12)% 42.8 (1.29)% 32.7 (1.5)% 41.75 (1.1)% 26.0 (1.6)%
g241n 37.6 (0.83)% 24.3 (0.24)% 45.7 (0.3)% 33.6 (0.51)% 41.8 (0.32)% 25.7 (0.67)%
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Figure 1: Test error versus the number of labeled samples.

DrSVM. The supervised feature selection method DrSVM
achieves the worst results because it only relies on the few
labeled samples and discards the large amount of unlabeled
samples.

In Table 2, the effect of the degree of overlapping among
classes on test error over the top 5 selected features is eval-
uated with two labeled samples and 𝑑 = 1 and 𝜌 = 0.9, also
reporting the typical computational time of our experimental
campaign. As we can see, SENFS seems to have the best
prediction performance. When 𝑑 is small, the two classes
overlap largely and in this case, other methods achieved
worse performance compared with SENFS. However, SENFS,
solving the programming problem (6) needing an iterative
procedure, requires more computational time than the other
methods as you can see in Table 2. It is noted that the absolute
values are not as important as the relative differences between
the individual methods.

4.2. Application to Benchmark Data Sets. Several benchmark
data sets are selected to test the performance of SENFS, which
are used as benchmark data sets in [7, 8] to test the perfor-
mances of semisupervised algorithms.These benchmark data

sets consist of 9 semisupervised learning data sets.We did not
test the SSL6, SSL8, and SSL9 data sets since the SSL6 data
set includes six classes, the SSL8 data set contains too many
samples (𝑛 is over one million) and the SSL9 data set has too
many dimensions (𝑝 is over ten thousand). The names and
characteristics of the left six data sets are given in Table 3.

In this study, we examine performance evaluation
through 5-fold cross-validation that is, we randomly select
four fifths of the unlabeled samples, plus all the labeled
samples, for SENFS, Spectral, and DrSVM to select optimal
feature subsets, while leaving the remaining one fifth for
testing test error on the selected features using SVM, where
all the labeled samples are used for training SVM.The results
measured by test error are reported in Table 4. As can be
seen, SENFS outperforms the semisupervised and supervised
feature selection methods on all the six data sets when 𝑙 = 10

and 𝑙 = 100. When 𝑙 = 10, Spectral performs the second best,
on USPS, COIL2, and BCI data sets, while DrSVM performs
the second best on Digit1, BCI, g241c and g241n data sets
when 𝑙 = 100.

5. Conclusion

This paper has proposed a novel semisupervised feature
selection algorithm based on SVMand the elastic net penalty.
The whole methodology of SENFS and the solution path
based on ADMM have been described in detail in this paper.
The experimental results illustrate that SENFS can identify
the relevant features and encourage highly correlated features
to be selected or removed together.

Future work will address how these selected features
interpret their semantic relationship with the data they are
selected from, which can be used for unknown data analysis,
and extend SENFS to be suitable for multiclass case.
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Proof of Theorem 1. Consider another set of coefficients
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It is simple to verify that both the loss function𝐻
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Similarly, we can get
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are positive constants. As described in [11],
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, and (7) is obtained. For (8), we simply
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